Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3627580 A
Publication typeGrant
Publication dateDec 14, 1971
Filing dateFeb 24, 1969
Priority dateFeb 24, 1969
Also published asDE2008325A1, DE2008325B2
Publication numberUS 3627580 A, US 3627580A, US-A-3627580, US3627580 A, US3627580A
InventorsKrall Harry J
Original AssigneeEastman Kodak Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Manufacture of magnetically sensitized webs
US 3627580 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Inventor Appl. No.

Filed Patented Assignee MANUFACTURE OF MAGNETICALLY SENSITIZED WEBS 8 Claims, 1 Drawing Fig.

2,784,259 3/1957 Camras 179/1002 FOREIGN PATENTS 933,762 8/1963 Great Britain 117/238 1,116,011 6/1968 Great Britain 117/238 OTHER REFERENCES Spratt, Magnetic Tape Recording, 2- 65, pages 15, 109, 1 12, 1 14 Primary Examiner-William D. Martin Assistant Examiner-B. D. Pianalto Attorneys-Walter O. Hodson and Robert F. Cody ABSTRACT: The requirement for time-consuming, costly bulk-erasing of the magnetic sound track on motion picture [52] U.S.Cl llll77/223385, mm is eliminated in the disclosed process AS indicated mm is 51 I I Cl coated with a magnetically sensitized stripe. Prior to the time i50 i H0117! /080 when the wipe dries, the mm is exposed to a strong panic|e ie 0 re 1 I223 orienting magnetic field thereby to improve the recordability 35 of the stripe. Such particle orientation causes the particles to [56] References cued betclpme tu nidi rectiolnally magnetized, which COITlblllflIlOi] WI coa mg irregu an ies increases measura c noise eve. UNITED STATES PATENTS To remove such noise, the invention provides that the film be 3,1 Bauer l X exposed to alte nating magneic fields of gradually decreasing 3,256,1 12 6/1966 Camras 1 17/238 strength, such fields being disposed after the coating dries and l Fl'ledmal'l before the is wound The invention may be practiced in 34l6'949 12/1968 Camras 117/238 UX the manufacture of other magnetically sensitized recording 3,490,945 1/1970 Slovinsky 117/238 X b PRIOR ART THE INVENTION I8 /4 STOCK COATEI? W/NDUP PATENTED DEB] 41971 A TTORNEYS L H mm H N 1C v'V RN A H MANUFACTURE OF MAGNETICALLY SENSITIZED WEBS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to manufacturing processes; and in particular to the manufacture of magnetic recording webs; and still more particularly to the manufacture of motion picture film having a magnetic recording medium thereon.

2. Description of the Prior Art U.S. Pats. No. 2,784,259 and 3,222,205 are representative of art relevant to the invention.

Prior to the invention, motion picture film with a magnetic recording stripe and been manufactured as follows: A web of photographically sensitized film was conveyed from a roll thereof to a windup stage under controlled lighting conditions. As the webs moved along, a hopper deposited a solution, containing a dispersion of elongated magnetic particles, along one edge of the film. Before the solution became dry, the web was passed through a strong magnetic field, parallel to the length of the web, to cause the magnetic particles to orient so that their respective easy directions of magnetization, i.e. their respective major axes, were parallel to the length of the web. This was done so that audio recording on the stripe would be at high resultant" signal levels. The strong magnetic field, while accomplishing its intended purpose of particle orientation, undesirably left such particles so magnetically ordered that the net external field of the stripe was at a constant saturated level everywhere except in the vicinity of stripe discontinuities; and so, because of such discontinuities, and other irregularities within the coating, polarized particle concentrations produce transient output noise signals. Such noise signals have been defined as modulation noise by Skipwith W. Athey, in his treatise (available from the Superintendent of Documents) on Magnetic Tape Recording, SP-5038, pages I60 through 163, prepared under Contract NASw-945, Jan. 1966, National Aeronautics and Space Administration. Obviously, such noise had to be removed "prior to exposure" of the striped film so that high quality visual and audio reproductions would obtain. To this end, so-called bulk-erasure of noise was employed.

With bulk-erasure, spools of film are placed on a rotating table and gradually exposed to a magnetic field of decreasing strength, thus randomizing the distribution of those particle fields which are oriented one way, or the other. A random distribution of particle orientations produces a minimum net field in the vicinity of a sound-reproducing head: which is to say that such a distribution produces a minimum detectable noise.

Bulk-erasure is effective for its intended purpose, but adds a time-consuming, separate and expensive, step to the manufacturing process in question.

As used throughout the specification, all references to noise" are to be taken as references to modulation noise. (noise which is of an AC nature, and which is dependent on the number and arrangement of particles in a magnetic coating, is also referred to by Athey, but use of the invention will have virtually no effect on removal ofAC noise.

SUMMARY OF THE INVENTION Before indicating the nature of the invention, it is considered instructive to indicate first what the invention is not: the invention has nothing to do with the erasure of purposely recorded intelligence on a magnetic recording medium. Rather, the invention is concerned with supplying" spools of magnetically sensitized web material to users thereof, which spools need not be erased-to remove recorded manufacturing noise-prior to recording thereon. Supplying noise-free magnetically sensitized webs is especially critical in the case of motion picture film for the obvious reason that taking motion pictures, with accompanying audio, is a once-through-thecamera procedure. That is, magneticsound cameras and magnetic-sound printers are customarily built without erase heads,

and their perfonnance is limited by the noise level of the film as supplied by the manufacturer.

The invention suggests, in the manufacture of magnetically sensitized webs, the in-line" use of alternating magnetic fields, which alternating fields are disposed in the direction of web travel after the stripe of oriented particles dries, but before the windup part of the process. The alternating fields gradually decrease in strength from drier to windup; and the maximum field strength so employed is preferably at least that necessary to reverse the direction of saturation of the particles. Movement of the web through gradually decreasing alternating fields causes the respective field orientations of the individual particles, one way or the other, to be in accordance with a noiseless" statistical distribution, and this is so even through the axes of the particles are all disposed one way for purposes of improved recordability.

An object of the invention is to provide an improved process for manufacturing magnetically sensitized recording webs.

Another object of the invention is to provide an improved process for manufacturing magnetic-recording webs devoid of manufacturing noise.

Another object of the invention is to provide a method of manufacturing motion picture film having a magnetically sensitized recording medium thereon, which method obviates the prior need for bulk-erasure of manufacturing noise from the film.

The invention will be described with reference to the FIGURE. The FIGURE shows the prior art method of manufacturing magnetically sensitized webs as improved by the invention.

With reference to the FIGURE, a photographically sensitized web 10 of motion picture film is continuous from a roll 12 thereof to a windup section 14. Magnetic particles, dispersed throughout a coating solution 16, are applied to the web 10 at a coating stage 18, say by means of a hopper. The coating solution 16, as indicated by the cross section A, has the axes (and fields) of its magnetic particles oriented in all directions. The orientation (and field) of a particle is shown by a small arrow, circled dots and circled crosses indicating, respectively, arrows out of and into the figure. The coating solution, as represented in cross section A, has the following irregularities: a depression 20, a mound 22, a bubble 24 and a cluster 25 of particles, all of which irregularities may inadvertently occur during application of the coating 16 to the web 10. A magnetic pickup head disposed proximate the coating of the cross section A would see no resultant (noise) field at the depression 20; at the mound 22; at the bubble 24, or at the particle cluster 25.

While a web with a cross section A is virtually devoid of recorded noise, the recording of intelligence on such a web leaves much to be desired. This is because deliberately recorder intelligence is reduced in intensity and quality by those particle fields which are not oriented in accordance with the recorded intelligence.

To improve the recordability of the coating 16, the coated web 10 is passed through the core of a strong solenoid 26 before such coating dries (dryer 28). The solenoid 26 exerts a magnetic field on the particles within the coating 16, causing such particles to orient so that their respective axes are all aligned parallel to the length of the web 10. See cross section B. Recording on a web with its particle axes parallel to the length of the web allows the individual particle fields to switch one way, or the other, in bunches according to the sound being recorded, i.e. at high signal levels. Such increase in recordability creates a noise problem within the web 10: The concentrations of magnetic particles at the dispersion 20 of cross section B, at the bubble 24', at the mound 22, and at the particle cluster 25', appear at noise modulation frequencies; and since the particles of each such concentration are similarly oriented, they produce resultant noise signals which may be picked up by a sound reproducing head. See the signal B associated with the cross section B; the diagram B shows noise signals corresponding to the concentrations of particles.

Were it not for the invention, the web 10 of magnetically sensitized film would be spooled directly by the windup 14; after which the spooled film would have to be bulk-erased, as noted above, so it could be supplied noise-free to users thereof. To avoid this costly and time consuming manufacturing procedure, the invention suggests that decreasing altemating fields be disposed between the dryer 28 and windup section 14 of the process. As presently practiced, at least ten field reversals are provided by an array of equal-strength bar magnets, 30a through k, which magnets are progressively positioned father and farther from the web 10. The magnets are preferably disposed normally to the web 10; and the magnets are so positioned with respect to the web 10 that their respective effective fields at the web decrease progressively in increments of about percent. The effective strength of the magnet 30a at the web is about that necessary to switch the orientations of the fields of the magnetically saturated particles. Thus, the magnet 30a will tend to switch the fields of most particles; the magnet 30b will switch fewer fields, the magnet 300 still fewer, etc. Attendantly a randomized orientation, one way or the other, of particle fields obtains, there being no net resultant noise field within the coating which can be pickup up by a sound reproducing head. The cross section C of the figure shows the axes of all particle similarly oriented, their respective fields being statistically distributed, one way or the other, regardless of the coating irregularities 22", 24", 25". After being wound into spools, the film may be used without further processing.

The invention has been described in detail with particular reference to a preferred embodiment thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. For example, whereas the figure shows equally strong magnets disposed farther and farther from the web 10, the same effect would obtain with progressively weaker magnets all of which are similarly positioned relative to the web; or by differently orienting the magnets. Also, whereas pennanent magnets a through k are preferably employed because they do not themselves generated any heat, electromagnets may be substituted for such magnets; etc.

lclaim:

l. in a process for the manufacture of a web having magnetic recording medium thereon which has a low modulation noise level, which process includes the steps of a, conveying said web from a first point to a windup point,

b. applying a fluid coating of magnetic particles to said web between said first and said windup points,

c. exposing said web to a first magnetic field, after application of said coating and before such coating dries, said field being sufficient to orient similarly the axes of the said particles,

d. drying the said oriented coating, and

e. winding the coated web into a roll thereof at said windup point, the improvement of exposing said web after said coating dries and before said windup point, to alternating magnetic fields of decreasing strength, whereby to randomize one way of the other the orientations of the respective fields of the particles.

2. The process of claim 1 wherein the magnetic particles are generally elongated, and wherein the first magnetic field is disposed to orient the lengthwise axes of the said magnetic particles substantially parallel to the length of the web.

3. The process of claim 1 wherein at least one of the alternating fields is of a strength sufficient to reverse the directions of the fields of the respective particles within the said coating.

4. The process of claim 3 wherein the said alternating fields are provided by an array of permanent magnets.

5. The process of claim 4 wherein the said permanent magnets are bar magnets disposed normally to the said web.

6. A process for the manufacture of motion picture film having a magnetic recording stripe thereon comprising the steps of a. conveying a web of photographically sensitized film from a source thereof to a windup section 4 b. striping a fluid coating of magnetically sensitized material on said film before said film reaches the windup section,

c. passing said film through a unidirectional magnetic field after it is striped and before such stripe dries,

d. exposing said film to alternating magnetic fields of decreasing strength after said stripe dries and before said film is wound, thereby to reduce the modulation noise level of said magnetically striped film, and

e. winding said magnetically striped film into a roll thereof.

7. The process of claim 6 wherein the said fluid contains elongated magnetic particles, wherein the alternating magnetic fields are provided by an array of permanent magnets, and wherein at least one of the alternating fields is strong enough to switch the magnetization of the particles within the stripe.

8. The process of claim 7 wherein the permanent magnets are bar magnets disposed normally to the film,

i I6 i

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2784259 *Dec 17, 1952Mar 5, 1957Armour Res FoundRecording and erase head for magnetic recorders
US3150995 *Apr 28, 1961Sep 29, 1964Rca CorpMagnetic recording element having diisocyanate-based elastomer binder and method forpreparing same
US3256112 *Jul 23, 1962Jun 14, 1966Iit Res InstMethod and apparatus for orienting magnetic particles of a recording medium and magnetic recording medium
US3413141 *Sep 2, 1965Nov 26, 1968IbmMethod and apparatus for making oriented magnetic recording media
US3416949 *Aug 2, 1965Dec 17, 1968Iit Res InstLow noise record medium and method for producing the same
US3490945 *Nov 15, 1966Jan 20, 1970Rca CorpMagnetic recording element and method for preparing same
GB933762A * Title not available
GB1116011A * Title not available
Non-Patent Citations
Reference
1 *Spratt, Magnetic Tape Recording, 2 65, pages 15, 109, 112, 114
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3953656 *Feb 28, 1974Apr 27, 1976Tdk Electronic CompanyMagnetic recording medium and preparation thereof
US4208447 *Jun 5, 1978Jun 17, 1980International Business Machines CorporationMethod for disorienting magnetic particles
US4281043 *Dec 12, 1977Jul 28, 1981Graham Magnetics, Inc.Polymodal magnetic recording media and compositions useful therein
US4451535 *Apr 13, 1981May 29, 1984Eastman Kodak CompanyMagnetic recording elements, process for making the same and their use in recording
US4518626 *Dec 28, 1983May 21, 1985Fuji Photo Film Co., Ltd.Process for preparing magnetic recording medium
US4544574 *Nov 28, 1983Oct 1, 1985Fuji Xerox Co., Ltd.Method of manufacturing a magnetic recording medium
US4578280 *Feb 27, 1984Mar 25, 1986Agfa-Gevaert AktiengesellschaftProcess for the production of a magnetic recording material with perpendicular orientation
US4931309 *Jan 18, 1989Jun 5, 1990Fuji Photo Film Co., Ltd.Uniform orientation of magnetic particles over entire area
US5420742 *Jul 30, 1993May 30, 1995Minnesota Mining And ManufacturingReducing tendency of generating false cure tones
US7047883Mar 11, 2003May 23, 2006Jds Uniphase CorporationMethod and apparatus for orienting magnetic flakes
US7241489Jan 20, 2004Jul 10, 2007Jds Uniphase CorporationOpaque flake for covert security applications
US7258915Aug 14, 2003Aug 21, 2007Jds Uniphase CorporationInks, paints with inorganic dielectrics (zinc sulfide flakes) within carrier which fluoresce when illuminated with ultraviolet radiation; may include explosives; for stock certificates, bank notes
US7300695Jan 4, 2005Nov 27, 2007Jds Uniphase CorporationAlignable diffractive pigment flakes
US7517578Dec 22, 2004Apr 14, 2009Jds Uniphase CorporationMethod and apparatus for orienting magnetic flakes
US7550197Jul 11, 2007Jun 23, 2009Jds Uniphase CorporationNon-toxic flakes for authentication of pharmaceutical articles
US7604855Dec 20, 2005Oct 20, 2009Jds Uniphase CorporationKinematic images formed by orienting alignable flakes
US7625632Aug 2, 2006Dec 1, 2009Jds Uniphase CorporationPigment particles with diffraction gratings are selectively aligned to form image(s); pigment flakes with a layer of magnetic material; printed pixelgram, dot diffractive, optically-variable image devices (DOVID), kinegrams; decoration or counterfeiting prevention
US7645510Oct 4, 2005Jan 12, 2010Jds Uniphase CorporationProvision of frames or borders around opaque flakes for covert security applications
US7667895Nov 15, 2005Feb 23, 2010Jds Uniphase CorporationPatterned structures with optically variable effects
US7674501May 1, 2006Mar 9, 2010Jds Uniphase CorporationTwo-step method of coating an article for security printing by application of electric or magnetic field
US7729026Dec 12, 2006Jun 1, 2010Jds Uniphase CorporationSecurity device with metameric features using diffractive pigment flakes
US7876481Oct 24, 2006Jan 25, 2011Jds Uniphase CorporationPatterned optical structures with enhanced security feature
US7880943Oct 1, 2007Feb 1, 2011Jds Uniphase CorporationPatterned optical structures with enhanced security feature
US7934451Jan 15, 2007May 3, 2011Jds Uniphase CorporationApparatus for orienting magnetic flakes
US8025952Oct 30, 2007Sep 27, 2011Jds Uniphase CorporationPrinted magnetic ink overt security image
US8118963Jun 27, 2007Feb 21, 2012Alberto ArgoitiaStamping a coating of cured field aligned special effect flakes and image formed thereby
US8343615Apr 4, 2006Jan 1, 2013Jds Uniphase CorporationCounterfeiting prevention and authentication using magnetically alignable flakes; Fresnel reflector; optical illusions
US8658280Oct 28, 2011Feb 25, 2014Jds Uniphase CorporationTaggent flakes for covert security applications having a selected shape
US8726806Sep 26, 2012May 20, 2014Jds Uniphase CorporationApparatus for orienting magnetic flakes
EP0005845A1 *Jun 1, 1979Dec 12, 1979International Business Machines CorporationMethod and apparatus for manufacturing magnetic media
EP2165774A1 *Jul 1, 2003Mar 24, 2010JDS Uniphase CorporationMethod and apparatus for orienting magnetic flakes
Classifications
U.S. Classification427/549, G9B/5.297, 427/177, 427/286, 427/393.5, 430/129
International ClassificationG11B5/845
Cooperative ClassificationG11B5/845
European ClassificationG11B5/845