Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3627682 A
Publication typeGrant
Publication dateDec 14, 1971
Filing dateOct 16, 1968
Priority dateOct 16, 1968
Publication numberUS 3627682 A, US 3627682A, US-A-3627682, US3627682 A, US3627682A
InventorsHall Joseph P Jr, Young George J
Original AssigneeDu Pont
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Encapsulated particulate binary magnetic toners for developing images
US 3627682 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 1 3,627,682

[72] Inventors Joseph P. Hall, Jr. 1 5 n 1 References Cited Shavertown; George J. Young, Dallas, both of Pa. UNITED STATES PATENTS No. Cooper l 0c. Shelffe et al. l Patented Dec. 14, Fauser et al. [73] Assignee L du Pom de Nemours and Company 3,165,420 1/1965 Tomanek et al. 252/621 Wilmington, DeL 2,846,333 8/1958 W1lson 252/621 2,826,634 3/1958 Ellis 252/62.1 2,758,939 8/1956 Sugarman. 252/621 54 E C S PARTICULATE BINARY 1,879,361 9/1952 Finnhofe 252/621 MAGNETIC TONERS FOR DEVELOPING IMAGES FOREIGN PATENTS 21 Claims 1 Drawing 8- 1,108,192 4/1968 Great Britain 252/621 [52] U.S. Cl 252/6254,

Primary Examiner-George F. Lesmes 252/6253, 252/621, 96/1 R, 178/6.6 A, 346/74 Assistant Examinepfil. p g

M, 1 17/235 51 1111.01 003 9/02 Attorney James Ryan [50] Field of Search 252/621, m

62.53, 62.54; 1 17/932 ABSTRACT: Described and claimed are flowable, particulate,

binary toners for developing magnetic images comprising a particulate hard magnetic material, e.g., Fe O or CrO and a particulate soft magnetic material, e.g., Fe, each type of material being present in substantially each toner particle.

2:2: 0 if if 35 PATENIEB DEE! 41971 INVENTURS JOSEPH P HALL, JR. GEORGE J. YOUNG BY M H ATTORNEY ENCAPSULATED PARTICULATE BINARY MAGNETIC TONERS FOR DEVELOPING IMAGES BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to, and has as its principal object provision of, improved encapsulated particulate magnetic pigments of developers for developing magnetic images, which particulate substances contain a hard magnetic material and a soft magnetic material essentially within each particle.

Magnetic developers are frequently called toners" in the art. The tenn toner will accordingly be used in the following discussion to refer to a particulate material capable of developing or making visible a magnetic image. The novel toners of this invention are particularly useful in the readout step of the thennomagnetic copying processes disclosed in the Nacci Belgian Pat. No. 672,017 and therrnomagnetic imaging processes disclosed in the Nacci Belgian Pat. No. 672,018. See I also the copending, coassigned Nacci U.S. application Ser. No. 682,234, filed Nov. 13, 1967, now abandoned.

2. Description of the Prior Art As shown, for example, by Atkinson et al. U.S. Pat. No. 2,826,634, the use of iron or iron oxide particles, either alone or encapsulated in low-melting resins or binders, for developing magnetic images, is well known to the art. These toners have been successfully used to develop magnetic images recorded on magnetic tapes, films, drums and printing plates. The encapsulating resin or binder may aid in transferring the decorated magnetic image (or the developing pigment) to paper and can further be heated, pressed or vapor softened or subjected to combinations of these treatments to attach physically or fix the magnetic particles to the surface fibers of the copy paper. In general, images on copy paper using either ironor iron oxide-based magnetic particles have been of lowoptical density or unpleasing appearance due to the difficulty of hiding the natural metallic luster of iron or due to the feeble pickup of iron oxide particles resulting from their tendency to form agglomerates that are in an internally magnetically satisfied state, relatively unresponsive to the weak fields emanating from he surface of magnetic images recorded on films, tapes, printing plates or other magnetic storage media.

The present invention provides improvements in toners. In particular, it provides toners with desirable printing characteristics For example, slurries made from these toners, although settling rapidly, are easily reslurried and are nonreactive chemically with the dispersing medium (such as, the rusting of iron by water) so that they print equally well even after along periods of storage. The dispersions have less tendency to agglomerate due to magnetic forces than dispersions containing either hard or soft magnetic materials used alone. Also the optical reflectance density of the ultimate copy and its appearance in terms of image crispness and sharpness are generally improved with these toners that both pack more tightly on the magnetic image (because of lack of magnetic agglomeration) to give superior areawise coverage on the ultimate copy surface and are more strongly attracted to the magnetic image.

THE DRAWING The achievement of the above-noted and other objects of the invention will be evident from the remainder of the specification and from the drawing (essentially FIG. 6 of the abovementioned application of Nacci, Ser. No. 682,234) wherein:

The figure shows a schematic view of apparatus for the thermographic repoduction of documents in which the magnetic toners of this invention are particularly useful. In the figure, a magnetized thermomagnetic copying member in the form of a film 35 is stretched over the surface of a transparent drum which is driven in the direction indicated in the arrow. The document which is to be copied, 21, is fed through the machine in stationary relationship with the copying member by friction applied by the flexible belt 22 which holds the document in contact with the copying member and moves synchronously therewith over the idling rollers 23 and 24. At the center of drum 20 is positioned a Xenon lamp 25 which emits flashes of light at high intensity with a duration of the order of a millisecond over the surface of the member in contact with the document as defined by the stationary mask or shield 36. Each flash forms a magnetic image of the document on the copying member. The copying member returns to its initial thermal state in about 0.5 second, and the flashes are spaced in time at somewhat longer intervals. The speed of document feed and drum rotation is maintained so that each portion of the document is exposed to the radiation at least once while in contact with the copying member.

The magnetic image can be developed by padding on a toner of this invention by the padding roll 26 which dips in a bath 27 containing the toner in suspension. Surplus toner is removed by wiping means 28. The image is then transferred to paper 38 which is fed from a roll 29, passing over the idling roll 30 and thence in contact with the recording member by pressure roll 31, when the image is transferred. The toner particles are then fused to the copying paper by a band of heaters 32, and the paper is removed on the roll 33.

Once the document has passed through the machine forming the magnetic image, a large number of copies can be made by continued rotation of drum 20, since the image is substantially pennanent. The image can be destroyed and the magnetic recording member returned to its uniformly magnetized state ready to copy further documents by operation of the magnetic head 34.

DESCRIPTION OF THE INVENTION In accordance with the present invention, it has now been found that a surprising improvement in the quality of images printed on copy paper, transparent plastic sheets and the like can be effected through the use of resin-encapsulated magnetic pigments that contain binary mixtures of at least one each of a magnetically hard and a magnetically soft powder material that may optionally contain opacity control agents, release agents, and the like. The magnetically soft powder material may be iron or another high-permeability, lowremanence material, such as certain of the ferrites, e.g., (Zn, Mn)Fe O, or pennalloys, while the magnetically hard material may be an iron oxide, preferably Fe O, v-Fe,0, other of the ferrites, e.g., BaFe O or chromium dioxide. The ratio of the hard to soft components may vary considerably but is preferably in the range of 1:6 to 4:1 by weight. The encapsulating resin is generally present in the order of 2040 percent, preferably 20-30 percent, by weight of the final composition. Small amounts of the order of 1-5 percent of additives, such as carbon black or black or colored dyes, for a blacker or colored copy, and stearamide or silicone derivatives for easier transfer to paper may be added if desired. For reasons given later, particle diameter in the range of 3-20 microns is preferred.

The improved binary magnetic toners of this invention are prepared by a process in which a hard and soft magnetic material are mixed together in desired proportions with an encapsulating resin in a solvent for the resin, ball-milled and spray dried. More specifically, the respective hard and soft magnetic powders (cf. seq. for meaning of hard" and soft) in ratio of 1:6 to 4:1, but preferably approximately equal quantities by weight, are intimately mixed and dispersed, preferably by ball-milling for a length of time extending up to 17 hours or more at about 60 percent by weight nonvolatiles content, in a multicomponent dispersions system consisting of:

1. An organic liquid selected on the basis of its chemical inertness toward the magnetic materials, its volatility characteristics, and its ability to dissolve the encapsulating polymer;

2. A readily fusible, organosoluble organic hinder or encapsulating resin; and

3. Optionally (a) additives such as carbon black, pigments or dyes to control color, (b) agents such as stearamide or silicones to promote easy release during magnetic image transfer, and (c) agents such as conductive carbons or electron donors and acceptors to control the electrostatic properties of the toner particles.

The dispersion resulting from the steps above is separated from the ceramic balls, sand, or other grinding means, diluted, and spray dried at a nonvolatiles content of about 20 percent by weight. The diluent is a compatible organic liquid, usually the same solvent employed during preparation of the dispersion. Spray drying is accomplished by conventional means, e.g., by dropping the diluted dispersion onto a disk rotating at high speed or by using a conventional spray drying nozzle. The droplets are dried in a chamber through which a heated gas is flowing, obtained, for example, by combustion of natural gas in air. Gas flow and temperature are adjusted in known manner to remove solvent quickly, leaving discrete, free-flowing, approximately spherical toner particles, preferably about 3-20 microns in size.

Spray-dried toners tend to have the magnetic particles buried in the resin spheres. Occasionally it is advantageous to have these particles at the surface of the toner spheres. This may be accomplished by the additional step of abrading the spheres by fluid-energy milling (jet pulverizing) to expose the magnetic particles.

The toners prepared as above may be applied to imaged magnetic films either from a dispersion, that is, such as an ink, or in the dry state. In the former case, a nonsolvent dispersion medium such as water, etc., is generally employed. in the latter case, the toner is conveniently mixed with an inert solid, particulate material such as polystyrene beads. In either case, the toners can be transferred from the imaged magnetic film to an ultimate copy which can be further treated as by heat if desired.

The magnetically hard" and magnetically soft" materials which form the basis of the present toners are substances which are, respectively, permanently magnetizable and substantially nonpermanently magnetizable under similar conditions below the Curie point of the materials (cf. British Pat. No. 1,108,102). A magnetically hard material, as the term is used here, has a coercivity of at least 40 Oe and exhibits a significant remanence. The latter is 20 percent or more of the saturation magnetization and the material can be used to fashion a permanent magnet. Magnetically soft material has low coercivity, e.g., of the order of an oested or less when in bulk form, and high permeability, permitting saturation to be obtained with a small applied field. More importantly, the soft material exhibits a remanence of less than 5 percent of the saturation magnetization. The ideal magnetic properties for soft materials are found in high permeability, low-loss compositions used in transformers, but such properties are seldom realized in small-diameter particles. Nevertheless, as long as the remanence is low, these particles serve very well even though they are not, strictly speaking, high-permeability materials.

Soft" magnetic materials are discussed widely in the literature, e.g., by E. W. Lee and R. L. Lynch, Advances in Physics, supplement to Philosophical Magazine 8 (July 1959), pp. 292-348. This high permeability implies a narrow hysteresis loop, a low-energy product, (BH),,,,,,, and low-hysterisis loss. Such materials are used in transformers and motors. Examples are soft iron, silicon-iron alloys, and the permalloys, i.e., magnetic alloys of nickel and iron. Certain ferrites (such as Mn ln e o can also be used but their low magnetizations generally give an inferior toner. Preferred as soft magnetic materials for use in this invention are iron-based pigmenm such as carbonyl iron, iron flakes and iron alloys.

Many magnetic materials usually designated as soft may become hard and show high-coercive force when prepared as fine particles. Geometric factors, including size and shape of the particle, are important. For example, iron is normally considered a soft" magnetic material with a coercivity of a fraction of an oersted. However, small iron particles composed of single magnetic domains with lengths great compared to their diameters can be expected to show coercivities of the order of 10 -10 Ge. in this case, high coercivity is due to shape anisotropy. For some other materials, such as manganese bismuthide or cobalt, high coercivity for single domain particles may be the result of magnetocrystalline anisotropy arising from an easy direction of magnetization along a particular crystalline direction. Even fine nickel particles should show a high coercivity under unaxial stress. Many normally soft magnetic materials not in single domain form can be made to exhibit a high coercivity after being subjected to cold work or other similar treatments designed to introduce defects or internal strains which serve to pin or block movement of domain walls. Further discussion of Hard Magnetic Materials" can be found in the article by that title by E. P. Wohlforth, Advances in Physics, supplement to Philosophical Magazine 8 (Apr. 1959), pp. 87-224 and in the book by R. M. Bozorth on Ferromagnetisrnf D. Van Nostrand and Company, Princeton, New Jersey 1951 particularly the section on fine particles, pp. 828-834.

Hard magnetic materials are usually characterized by having a high-intrinsic coercivity, il-l ranging from a few tens of oersteds, e.g., 40 0e, to several hundred or even several thousand oersteds and a relatively high remanence, B,., when the materials are removed from a magnetic field. Accordingly, these hard" materials will in general have a high-energy product (Ell-l ranging as high as several tens of thousands of joules/m Such materials are of relatively low permeability and require high fields for magnetic saturation.

Examples of hard magnetic materials include the permanent magnetic materials, such as the Alnicos, the Lodexes" (acicular iron-cobalt alloys encased in lead or plastic, manufactured by the General Electric Company), the Indox" barium ferrite compositions, and materials used in tape recording, magnetic discs, and magnetic printing inks. These latter materials include v-iron oxide F8 0, magnetite (black Fe O chi-iron carbide and chromium dioxide crop.

Preferred Fe O particles include the commercially available types 3090" and 4000" (Wright Industries), the much less expansive, naturally occurring and modified magnetites, and acicular forms of Fe O, such as the lRN sold by C. K. Williams and Company. Other hard magnetic iron oxides can be used such as v-Fe O especially when reddish or brownish toner particles are desired. The recently available black, magnetically hard pigment Cr0 is especially preferred because of its magnetic properties.

The ratio of the hard to soft component may vary considerably but is preferably in the range l:6 to 4:1 by weight, a ratio of about l:l being more preferred. It is preferred that the soft magnetic material be less than 5 microns in maximum dimension and that the hard magnetic material have a maximum dimension not exceeding about 1 micron.

A variety of organic solvents may be used as solvents for binders and dispersion media for the hard and soft magnetic materials during toner preparation. Use of a 1:1 mixture of npmpylalcohohtoluene and n-propyl alcoholzxylene is dacrlbed in the pics. The cuisiorganic solvent selected depends pily upon its ability to dissolve the binder.

It is important, moreover, that the solid toner particles of this invention be free-flowing with a sticking temperature above dtat encountered in shipment and storage. Stick temperature is related to thermoplasticity, l.e., the melting or fusion temperature of the binder, and if too low, the toner particles may become cemented or sintered together, thereby interfering with their use in image development systems. In wet systems, binders of somewhat lower sticking temperature may sometimes be used provided the particles are protected by a film of the dispersing medium. It will be appreciated that freeflowing characteristics are particularly important for toners used in dry imaging methods, e.g., the cascade method described in table I and in examples 5 and 6 below. Particles precoated with or containing surfactants (see below) for use in liquid development systems should also be free-flowing to facilitate complete dispersion and to prevent clogging of replenishment devices.

Binders are preferably of the thermoplastic type in order to permit fixing to the paper by melting or fusion. Certain waxy polymers are also useful and can be caused to flow into paper by pressure. Preferred binders include the low molecular weight polyamides and ethylene/vinyl acetate copolymers. Of these, for ease of spray drying, ease in image development from aqueous or nonaqueous dispersions and ease of fixing to paper by fusion, the low-molecular weight polyamides are especially preferred. The binder (encapsulating resin) is generally present in the order of 20 40 percent, preferably 20 -30 percent, by weight of the final composition.

Binders and solvents other than those described in the examples may be used. Preferred binders readily melt to fluid liquids, but have a sticking temperature above about 60 C. In some instances, the solutions must be kept warm to prevent gelation prior to spray drying. The binders are readily soluble in organic liquids that are sufficiently volatile for spray drying, and they are chemically resistant toward the hard and soft magnetic materials present in the toners. The binder serves to fix the developed image to paper and hence is a functional part of the toner. Binders and solvents in addition to those described in the examples include:

1. Copolymers with functional groups, e.g., styrene/dimethylaminomethyacrylate copolymer dissolved in xylene or toluene; ehtylene-methacrylic acid copolymer dissolved in 7:2 parts by weight toluene: Triclene trichloroethylene; and styrene/acrylonitrile copolymer dissolved in toluene.

2. Copolymers containing vinyl acetate, e.g., ethylene/vinyl acetate copolymer dissolved in xylene; and mixtures of ethylene/vinyl acetate copolymer and waxes dissolved in toluene.

3. Hydrocarbon types, e.g., Paraflint, or Tervan 2,865 hydrocarbon waxes dissolved in toluene or xylene; Piccolastic D125 styrene resin dissolved in toluene; and styrene/indene copolymer dissolved in toluene or xylene.

4. Fluorine-containin g copolymer-s, e. g., tetrafluoroethylene/vinylidene fluoride/vinyl butyrate copolymer dissolved in methyl ethyl kctone, and

tetrafluoroethylene/vinyl acetate copolymer dissolved in cyclohexanone.

Additives to enhance the functional behavior of the toners include color and opacity control agents, surface modifiers, release agents, materials to increase afiinity for the copy paper, and the like.

Since toners are normally used to give black copy on white paper, carbon black or a black dye such as "Nigrosine 588 may be added to give a more pleasing appearance, enhance reflectance optical density, and hide the metallic gray of particulate iron in the toners and exert control over electrostatic properties of the toners. Other dyes and pigments may be added to give a range of colored toners; for many of these :1- Fe,o, (yellow-red) is used in preference to Fe O (black) as the hard magnetic species along with dyes or pigments. Conductive carbons such as acetylene blacks or graphite and certain electron donors or acceptors may be used to control electrostatic properties of the toner particles. Stearamide or silicones may be added to promote easy release during the magnetic image transfer to paper. Other modifications to the surface of the toner particles to enhance these properties are well within the state of the art. Small amounts of the order of 1-5 percent of additives, such as carbon black or colored dyes, for a blacker or colored copy, and stearamide or silicon derivatives for easier transfer to paper are usually adequate.

Other additives of particular importance where the toners are to be applied to a magnetic image from a liquid dispersion are surfactants. These materials aid greatly in dispersing the binary toners in water. A preferred surfactant is Lakeseal (see below).

The surfactant or dispersing agent can be added to the toner before it is spray dried, in which case it is distributed throughout the particle, or the particles can be coated with the agent after spray drying, in which case it is carried only on the surface of the particle. Note example 7, below. Both types of toner particles, i.e., those carrying up to about 2 percent by weight of surfactant distributed throughout the particles or those carrying it held on the surface, constitute additional aspects of the invention.

As noted above, in the case of dry development of the toner particles, other additives may be desirable. Thus, the buildup of static charges between toner particles and the image-bearing magnetic film can lead to high-toner pickup in background or nonimage areas. This can be controlled by use of conductive recording media and conductive toner particles or carriers; conductive carbon particles, for example, added to the toner help to dissipate the electrical charges. Carries, e.g., polystyrene or glass beads, which give a preferred charge orientation, are also useful in preventing agglomeration as a result of static in dry development systems.

The liquid used for preparing toner dispersions in wet development systems plays an important role. Preferably, it should be of high density, low viscosity and low-surface tension, nonfiammable or with a high-flash point to minimize fire hazards, nontoxic, easily volatile with a low heat of vaporization, cheap and readily available, nonreactive with and exerting no undesired solvent action on the image-bearing magnetic storage medium or with the toner binder or the toner pigments, and polar to aid in dissipating static charges induced by the cyclical processes in a copier or duplicator. Compromises, of course, must be made in selecting a liquid to meet as many of these conflicting requirements as possible. Liquids that have been used successfully include Freon ll3 (l,l,2- trichlorotrifluoroetl-iane, b.p. 47.6 C.), certain alcohols (methanol), saturated hydrocarbons such as hexane or higher boiling petroleum fractions, e.g., Isopar-G" (Humble Oil Co.) or Du Pont No. 71] odorless paint thinner and water. Especially preferred among these liquids are water or highboiling hydrocarbon fractions containing minor amounts of dissolved species such as methanol or antistatic agents.

Water-based toner slurries, which contain nearly 50 weight percent solids, were used for developing magnetic images in the majority of the examples below. In such systems, the role of the dispersing agent used with the toner is of great importance. investigation of a number of commercially available dispersants including representative soaps, anionic, cationic, and nonionic surfactants, both pure and in so-called buitl" formulations showed that most of these were operable, but most presented difficulty after aging for ca. 10 days in that the toner tended to stick to the image-carrying magnetic film, making cleaning difficult. An especially preferred dispersing agent for aqueous systems is the commercially available built detergent laboratory glass cleaner sold under the name of Lakeseal discussed below. "Lakeseal" dispersions of the preferred toners have been found to function satisfactorily after long periods of use and storage times in excess of 6 months.

The type of toner used will vary depending on the nature of the ultimate copy sheet, i.e., where the image is to reside finally. Thus, as described in detail in the examples, if the final residual copy sheet contains an, or is, adhesive, the image can be successfully transferred from the imaged magnetic surface by simple pressure after the image is developed using suitable magnetic toner powder. On the other hand, if it is desired to transfer the image to a nonadhesive copy support e.g., conventional white bond paper or a clear film for projection, a different type of toner particle may be used. In such a permutation, the magnetic particles, whatever their nature, will have been previously coated with a thermoplastic material, such as a relatively low-melting polymer or copolymer which will be inert to magnetic fields. Thus in this permutation, the developing toner powder will be imagewise attracted to the imagewise recorded magnetic record and then can be transferred by pressure, fusion, or a combined pressure/fusion step to white bond paper or clear plastic film, or the like, thereby resulting in a fixed or permanent image, the fixing being due to the thermoplasticity of the coating on the developing toner particles on heating.

Image resolution, uniformity and quality are functions of the magnetic and electrostatic properties of the toner and also of its particle size and size distribution. For high resolution the toner particles should be small (3-5 microns in longest dimension), but there should be, and normally will be, larger particles present also. The response of the toner to the magnetic fields of the image will be controlled in part by proper adjustment of the range of coercivity and saturation magnetization of the toner particles as well as the electrostatic properties which may be used as a bias to aid in development and in the final toner transfer step.

if toner particles are smaller than about i micron in diameter, they are attracted to surfaces with or without magnetic images and adhere tenaciously by Van der Waals forces or electrostatic attraction. Particles much larger than 20 microns in size are too easily removed by fluid drag forces or gravity. Further, magnetic forces drop off approximately as the cube of the separation, and appreciable magnetic signal fields from the image areas extend no more than 25-40 microns from the surface of the film. Furthennore, in the case of large particles, much of the magnetic material on the side of the particle farthest removed from the magnetic image is beyond the range of effective magnetic attraction. Accordingly, the optimum particle size for image development should be in the range 3-20 microns.

Particle size distribution as reported herein is based on a 200 particle count of toners dispersed in aviscous liquid, using an optical microscope at 400K. The average size reported is the arithmetic mean based on this count.

Microscopic examination of a number of spray-dried toners has shown them to consist of nearly spherical particles, occasionally with a somewhat roughened or wrinkled surface. Photomicrographs of particle cross sections have shown a major number of particles to contain one to several iron particles surrounded by a relatively uniform oxide/binder matrix.

Throughout this specification, values in the more conveniently measured electromagnetic units/gram (emu/g.) are Reflection optical density=log. =10

log.

EMBODIMENTS OF THE INVENTION There follow some nonlimiting examples illustrative of the invention in detail. in these examples, spray-drying operations were carried out below the lower explosive limit of the mixtures involved. Caution, of course, is necessary when mixtures of metals and/or oxides, especially when finely divided, and organic materials are exposed to high temperatures.

The designation, source, identity, and properties of iron, iron oxide, binders, and other materials used in the examples are given immediately hereinafter.

The term carbonyl iron" refers to essentially pure iron powder produced commercially by the General Aniline and Film Corporation by pyrolysis of iron carbonyl:

Aver. Particle Black magnetic oxide of iron (ferroso-ferric oxide, Fe O,) employed had a modified cubic crystal structure and the properties:

1 Specific gravity=4.80. 2 Specific gravity=4.95.

ifredon inant particle size; cubicslparticle sh apg.

reported rather than B values in gauss. Thus, a- Oe or a, is used to denote magnetization of the toner particles in a 4,400 0e field, corresponding to magnetization in a saturating field, often designated as B,. Remanence values, cr,., correspond to remanence magnetization values designated as B, in induction units.

The sigma values employed herein are defined on pp. 5-8 of Bozorths Ferromagnetism, D. Van Nostrand Co., New York (195 l These sigma values are determined in fields of 4,400 oersteds on apparatus similar to that described by T. R. Bardell on pp. 226-228 of Magnetic Materials In The Electrical industry," Philosophical Library, New York (1955). The definition of intrinsic coercive force is given in Special Technical Publication No. 85 of the American Society for Testing Materials entitled Symposium on Magnetic Testing 1948), pp. l9l-l98. The values for the intrinsic coercive force given herein are determined on a DC ballistic-type apparatus which is a modified form of the apparatus described by Davis and Hartenhiern in the Review of Scientific instru- "is -s 119 r a- As noted above, one advantage of the present invention is the improvement in optical reflectance obtained when the toners are developed. Reflection optical density of toner images transferred to paper gives a measure of the darkness or blackness of an image. Reflection optical density is the logarithmn of the reciprocal of the fraction of incident light reflected from a given area. For example, for a reflection optical density of 1.0, one-tenth of the incident light is reflected:

Carbon blacks used in the examples were:

l. Raven 30, a product of the Columbian Carbon Company, is an all purpose carbon black of high-tinting strength and lowvehicle demand. it has an arithmetic mean particle diameter of 2S millimicrons, a surface area of 82 square meters per gram, an oil absorption by the Venuto method of gallons/lOOIbs, a pH of 8, a fixed carbon content of 99 percent, and a covering power of 102 (tinting strength index.

2. Statex R, also produced commercially by the Columbian Carbon Company, is a high-abrasion furnace black with an arithmetic mean particle diameter of 26 millimicrons, a surface area of 100 square meters per gram, and an oil absorption of 14 gallons/ 100 pounds.

3. Darco carbon black refers to Grade 6-60, produced commercially by Atlas Chemical industries, lnc., as a premium grade of powdered activated carbon used for decolorizing, purifying and refining. It is made by activation lignite with heat and steam.

4. Permanent Black, made by the General Aniline and Film Corporation is a finely divided carbon black pigment.

A description of other previously undescribed mater materials used in the examples follows immediately hereinafter.

Versamid 930 is a low-molecular weight polyamide resin with molecular weight of about 3,100, an inherent viscosity of 0.24, and a softening (stick") temperature of [05-115 C. available from the Chemical Division of General Mills. Polyanide resins of this type are described in US. Pat. No. 2,450,940, J. C. Cowan, L. B. Falkenburg, H. M. Teeter, and

P. S. Skell to the U.S.A., in the Handbook of Material Trade Names by Zimmerman & Levine, p. 257, Supp. I, in Polyamide Resins, D. E. Floyd, Reinhold Plastics Application Series (1958), and in General Mills Bulletin No. 1 1-D-3. They are prepared by condensing polyamides such as ethylene diamine with polymeric fatty acids, e.g., dilinoleic acid, derived by polymerization of nature, oleaginous materials of animal and vegetable origin.

Tween 20 made by Atlas Chemical Industries, Inc. is a polyoxyethylene sorbitan monolaurate, a nonionic surfactant with approximately 20 polyoxyethylene units in the chain and a hydrophilic-lipophilic balance of 16.7 [Emulsions: Theory and Practice," Amer. Chem. Soc. Monograph, p. 238 (1966)] "450 H is a coumarone/indene resin with a stick temperature of 90-100 C. marketed by the Pennsylvania Industrial Chemicals Corporation.

Lakeseal," sold by Pecks Products Company of St. Louis, Missouri for use as a laboratory glass cleaner, is an especially preferred agent for dispersing toners in aqueous systems. Lakeseal" is a built detergent consisting of sodium phosphates, sodium carbonates, and biodegradable anionic and nonionic surfactants; the detergent contains appreciable quantities of inert materials resulting from its method of manufacture.

EXAMPLE 1 A. Preparation of Pigment/Binder Dispersions A preferred magnetic toner was made up from 40 weight percent of carbonyl iron (particle size approximately 2-5 microns), 39 weight percent of Fe Oparticle size 0.03-0.06 micron), 1 weight percent of carbon black and 20 weight percent of a polyamide resin with molecular weight of ca. 3,100. Carbonyl iron powder, type 68-6 or type SF, was used as the soft magnetic material. The black Fe O pigment was grade 4,000. The carbon black was Raven 30 carbon black, and the polyamide resin was Versamid 930.

The low-molecular weight polyamide resin was dissolved in a 1:1 mixture by weight of n-propyl alcohol and toluene to give a moderately viscous (100-200 centipoise) solution. The specified ingredients were mixed in proper quantity to give the weight ratio of nonvolatiles shown in table 1. A ceramic ball mill was selected of such a size that when the ball-mill was about one-half to two-thirds full of high-density stone balls, the above ingredients including the solvent just covered the balls, and the mixture was ball-milled at 60 percent nonvolatiles to break up agglomerates. Ball-milling was carried out for 17 hours. After discharging the ball-mill and diluting with more solvent to reduce the total solids (pigments plus resin) to approximately 20 weight percent, the dispersion was ready for spray drying. B. Preparation of Magnetic Toner Particles by Spray Drying Spray-drying apparatus manufactured by Bowen Engineering, Inc. of North Branch, New Jersey, was used. Precautions were taken to stir the pigment/binder solvent dispersions and maintain a unifonn feed composition. The procedure consisted in atomizing a dispersion (prepared as described under Part A) by dropping it onto a disc rotating at 30,000 rpm. into a chamber through which heated air was swirling at a high velocity. [Bifluid nozzle atomization in which a stream of slurry containing the pigments, binders, and solvents is atomized by a second stream of air as it leaves the nozzle, or other wellknown means may also be used for atomization.) The exact temperature and air velocity depend mainly on the stick point of the resin and boiling point of the solvent. In the following toner preparation involving use of a rotating disc, the inlet gas temperature was 350-363 F., obtained by combustion of natural gas in air. Total gas volume was 250 standard cu. ftJminute. Under appropriate conditions, the solvent was quickly removed from the dispersed droplets, leaving discrete toner particles of pigmented resin. The particles were classified to some extent by a cyclone collection system. Toner adhering to the sides of the chamber and that from the first or bottom cyclone separator were removed by brushing into a bottle, combined, air dried a few days to remove residual solvent, designated as main fraction, and evaluated.

The main fraction of nearly spherical spray-dried particles had an average particle size of approximately 10 microns with a range of from 5-20 microns. The magnetic properties of the final encapsulated pigment were as follows: H Oe; saturation magnetization, o', measured at 4,400 0e, 1 10 emu/g; and remanent magnetization, 0,. 9 emu/g.

Magnetic toners prepared by the above procedure and with the specified composition are designated by the letter .A" in table 1. For comparison, samples of the same carbonyl iron were dispersed in the same polyamide resin and spray dried by the same procedure, these samples are designated by the letter B". In addition, an iron oxide toner was prepared in a similar fashion except that coumarone/indene resin of stick temperature -100 C., commercially available as 450 H from Pennsylvania Industrial Chemical Corporation, was used as binder; the toner is designated by the letter C" in table I.

C. Preparation of Thermomagnetic Recorded Images Toner evaluation comparisons were made on chromium dioxide magnetic tapes prepared as described in Cox, U.S. Pat. No. 3,278,263. A 1,500-cycles/second sine wave signal was recorded on this Va inch wide tape at 7-% inch per second using a full width recording head. This is equivalent to 1,500/7.5 or 200 cycles/inch or 400 flux reversals or bits/inch of tape. The flux reversals were recorded at various levels from near saturation to a small fraction of saturation. The signal level was determined in arbitrary units by playing back the recorded tape at 7- /inch/second on a tape recorder and amplifying the signal from the playback head; the signal level is given in volts as a subheading in table l immediately above optical density date discussed hereinafter.

The signalled tapes were then heated to 85 C. and exposed through a photographic transparency bearing printed text to a xenon flash lamp discharge as taught by Belgian Pat. No. 672,018. The flux reversals recorded on the Cr0 tape were erased by the flash exposure in areas corresponding to the clear areas of the transparency but remained as recorded where protected by those opaque areas of the transparency bearing the text. The magnetic images thus created by thermomagnetic recording were developed by the magnetic toner particles as discussed below.

D. Preparation of Magnetic Toner Particle Dispersions The toner particles were dispersed in a liquid medium for most of these tests. The toner dispersions were made from 0.75 g. of the magnetic toner particles in 150 m1. of a nonsolvent liquid, that is, hexane, methanol or water containing a small amount of Tween 20 surfactant. Ultrasonic agitation using a 10-minute exposure on a laboratory unit (General Ultrasonic Company, Model 400 operated at 22-52 kilohertz tuned to give maximum coupling was used in all cases. The resulting dispersions could be maintained by gentle stirring.

E. Development of Magnetic Images The chromium dioxide tapes bearing the thermomagnetically recorded images were mounted on slides and immersed for 6 seconds in the stirred dispersion from above. This 6- second time was found to be sufficient to permit the magnetic image to attract an equilibrium amount of toner. The slides were then carefully removed from the toner slurry and allowed to drain and dry. The dry toner particles were then stripped from the chromium dioxide tape by using an adhesive-coated, transparent tape that was subsequently transferred to ordinary bond paper. The reflection optical density of the transferred image was then determined using a standard device for measuring optical density, i.e., a Welch Densichron.

For dry development, 1 g. of the magnetic toner was mechanically mixed with 5 g. of commercially available polystyrene beads (-150 mesh, Koppers Company) containing 0.01 g. of Darco carbon black to improve powder flow characteristics. In this case the thermomagnetically recorded image was developed by pouring the toner mixture containing T5 the polystyrene beads over the chromium dioxide tape g a mounted in a trough at a 35 angle to the horizontal. ,2 g g g F. interpretation of Table l g E 4 Comparison of optical densities at corresponding tape out- 5 S o g gfiafifiagfi fi put voltages shows a definite advantage, particularly at inter- E U 2% E Q? mediate output levels, for the A-l or A-2 toner formulations 5 containing both iron and iron oxide over the corresponding 2% j i l l 2 8-1 or 8-3 formulations containing only. iron as the magnetic g E; o 5 5 E 5 so pigment at the same resin concentration, whether dry or in a lo a I. i l liquid system. Higher iron concentration (8-5) or lower iron a 5 5% gap}; 5 a concentration (8-2, 8-4, 8-6) were also inferior. The carbong g g 3 5 5 5 5 yl iron used made comparatively little difference. f l E l 5 EXAMPLE a a; 3 se se; ii as A cured, filled, magnetized CrO, line pattern film embossed g g N o E 5 Q in the surface of polyurethane coated on S-mil polyester film '5 E61 f f and prepared according to the copending coassigned applicago g Z ggg-ggggg 3 l tion of Nacci Ser. No. 636,955, filed May 8, i967, now abane 5;"; e5 o'c'ddo'co'o'd a do doned was reflex-imaged to an original containing representa- 20 1, g g E E tive line text, including both type and graph forms. The image g i; 5 N on W a was developed using a machine simplified as described in ex- 2!: g 3 3 2 220 U n o H ,-r H O o c O c o O ample 4. The toner employed was a plastic-coated particulate m 3 E magnetic composition (average size 10 microns) composed, a, g m; S H N N by weight, of 40 percent of a commercially available carbonyl a '3 E3 or in HHOHHHHOOOH :0 Iron (GS-6), 39 percent of a commercially available iron O .5 oxide (Fe O -Mapico Black), 20 percent of Versamid 930 E a 5,5 and 1 percent of a commercially available Raven carbon Q E z gnasgagggga 5% black, which formulation was prepared in the desired particu- 5 3g 5% :5 d c; late form by spray drying from a 50:50 blend by volume of 30 E :3 E3 xylene and n-propanol. The spray-dried toner had an 2 E g a3 3 5 a arithmetic mean particle size of 9.2 microns, coercivity ,l-l, of H a ,3 8 PM .4 {a dd 85 0e, 0', measured at 4,400 0e of 107 emu/g, and 0', of 5.8 :5 5 1?, emu/g. Q g; i The slurry or dispersion used in the printing machine was 2 2% Ni prepared by mixing 170 parts of the above toner, 8 parts of a E Aa if: i commercially available laboratory detergent (Lakeseal" 5 +50 g g; E Laboratory Glass Cleaner), and 400 parts of warm (50 C.) P 5 g? water, which mixture was finally dispersed by 10 minutes of 5 E2? 2' 3 5"" ultrasonic agitation with stirring. Two such dispersions were 40 z O E combined and allowed to settle, and 520 parts of toner-free O E5 l 2;? l2 l supernatant liquid was decanted therefrom for later use. The g f g l developer tank of the printing machine was charged with the 52 a? m l E remainder of the above slurry (dispersion) after agitation, and 52 5E ff 1 5; h H law a the reflex film described in the initial paragraph of this exam- E g a g a j f ple was used as the printing master. Five thousand copies were 9 Kg 2 E f 3 run oflat the rate of 12 per minute, at a transfer pressure of 44 O ,g B2; i m c N n E 5 lbs/linear inch using apparatus similar to that depicted in the g 5; a 3g E E $9 f 5 drawing. g 15 g :r f During the printing run the operating level of the developer E '5 i E f f slurry was maintained by readding the 520 parts of superna- 5 g RESE tant liquid previously decanted from the original dispersion ya i E f E preparation, 290 ml. of an aqueous solution containing 1 perg g i 3 t 5 cent LakeseaF' and 0.5 percent aryl alkyl sulfonate (63,300 g 3 i f E E of Atlas Chemical Industries, inc.) dispersing agent and 100 E= E f E E E E ml. of water. The following tabulation shows the reflection 0p- 2 tical density of the printed images as a function of the number 5 5 a of copies printed versus that of the first: a 3 Q a g g g g E m 2; 1 :1 E li I I ,8, if; 9444.. H1. Copies. 1 600 1, 200 1, 800 2,400 3, 000' 3, 600 4, 200 5, 000 1;; O.D 1.0 1.07 1.05 0.94 0.95 0.92 0.87 0.88 0.79 g a During the F5, 155g oftoner was consumed in printing an 5 c l I I I i I image recorded on an area 9%X2% inch. 5 g lg a: Q vi 1 1 The decrease in copy density during the run was the result 3 ag t ta a of slight loss of chromium dioxide form the film. This was 5 cfiez l l 5 i 32 demonstrated by checking the development and transfer with 3 i 1 i a separate but similar imaged film at the start and end of the l f 'igiwwwqq w 00 5,000 copy run; the reflection optical density of the printing E f gg from this film was 0.85 at both times showing substantially no fffffffffff f loss in printing properties of the toner slurry. 5 I l E i i E 5 E l l l i EXAMPLE3 5 naaeaesesa 22 E A 480-line per inch chromium dioxide pattern incised in the E I surface of a5-m il thjc l polycarbonate (General Electric 's g g s lp gq g d 1 Raven 30 (Columbia Carbon Company)- 5 Versamid 930 (General Mills) low molecular weight polyamide added in suificient quantity to make 2 Arithmetic mean for single number is used; otherwise, particle size range. total sum of ingredient 3 45011 Coumarone/indene resin (Pennsylvania Chemical Corporation). 6 Dry development-cascade development using 1 g. of toner mixed with 5 g. of polystyrene beads containing 4 Dispersi0n-0.75 g. toner in ml. liquid given 10 minutes ultrasonic agitation. Chromium dioxide tapes were 0.01 g. of Darco carbon black. Chromium dioxide tape mounted at a 35 angle with the horizontal. pcrsion. After draining and drying, toner image T Aqueous dispersion containing 0.75 g. of toner. 1 ml. 20% Tween 20 solution diluted to 150 mil. transferred to paper using Scotch tape. Optical densities read and plotted as function of output voltage.

mounted on slides and immersed for 0.1 minute in stirred dis Lexan film in the manner described in the above-mentioned copending application of Nacci, Ser. No. 636,955, was magnetized by passing it over the pole pieces of a bar magnet of approximately 1,500 gauss average field strength. The film did not have a transparent drum. instead, the CrO containing reflex film was magnetized by passing it over the pole pieces of a permanent magnet, exposed using a Xenon flash lamp through an image-bearing photographic transparency, and afwas next imagewise demagnetized by reflex imaging against a fixed to the film drum using a double-sided adhesive tape. printed text using multiple flashes about 0.72 second apart of The magnetic image on the CrO film was developed by a xenon lamp operating at 1,790 volts and 128 microfarads padding on toner by means of the flock-covered padding roll while both the original and the magnetized copying member 26 of the figure. The particles were carried by the flock coverwere passing in intimate contact over a 5-inch diameter ing and elevated to the nip with the film drum where they were polymethyl methacrylate driven drum with the xenon lamp in lo squeezed between the surface of the flock-covered roll and a reflector inside with intimate pressure being maintained by the film drum. Both the roll and the film drum were driven at an external polyurethane foam beltas in the drawing. the same surface speed. Excess toner was removed and the The resultant magnetic image was developed with an aquedeveloped image was transferred to PY ous slurry containing a magnetic igment mixture of ave e The toners in table ll were tested as nearly as possible under particle size microns composed of 25 percent ofacommeridentical conditions. Some minor variations were made in cially available low-melting polyamide (Versamid 930), 43,8 operating conditions to optimize performance for each inpercent f a i ll il bl F 0 "3,000"), 291 dividual toner. The compositions, magnetic properties, partipercent of a commercially available carbonyl iron (GS-6), 2 C16 Sized, and l'efleclance Optical l' of the copies are percent of Raven 30 carbon black and 0.4 percent by total 20 Efitfilitfilwuw weight of a commercially available stearamide, which formulation was prepared by spray drying the above ingredients EXAMPLE 5 from a 50:50 by weight blend of xylene and n-propanol. The thus developed sheet was washed gently in water to remove toner from the background and air dried. Using a reflex film and apparatus similar to that of example in another case the toner was applied to the CrC) film, 4, but without the flock-covered padding roll a magnetic mounted on a rotary drum, by a fountain and excess toner imagewas developed by pouring or cascading toner onto the from the background was removed by wiping means. These film drum at 2 o'clock position withthe machine running at toner images on the CrO films were transferred to and fused 1.5 inches per second. Excess toner fell of at the 6 o'clock by pressure and heat (150 onto the urface ofa standard 3 position. The toner was that coded A-Z in table 1 [O which, imaging paper normally used in A.B. Dick duplicators. The however, P y weight w a finely divided imaging papers having the fused toner on them were placed on ica Of about miilimici'ons particle size SOId the Cabot an AB. Dick Litho-Offset duplicator, washed with the Corporation. had been added to improve its flow P p prescribed etchant to remove the protective coating and to After transfer m Paper the developed image had an average make the background hydrophilic. Printing was with regular refleciance optical density litho ink, offset-blanket, and water roll. The to-be-printed areas were wet with the oil-based ink and the background, kept moist by the hydrophilic surface, was free of ink. The EXAMPLE 6 imaging obtained on a good commercial grade of lithopaper gave printings of the text of the original positives showing 40 good resolution and fidelity for all the letters. A magnetic toner was prepared by spray drying a mixture containing 22.5 percent of carnauba wax, 33.75 percent EXAMPLE 4 Mapico Black Pe o 33.75percent GS-6 carbonyl iron and 10 percent of the cationic modifier Aliquat 207 Toners were prepared by balLmilling the ingredients and dimethyldistearylammonium chloride, (percentage by spray drying the dispersion as described in example 1. The weight). The spray-dried product was sieved through a 400 compositions of the final toner particles were as shown in mesh screen after adding 0.5 Cab-O-Sil silica to render the table ll. These toners were prepared under closely similar contoner free flowing. The particles were predominantly 5-10 ditions, and were dispersed in water using Lakeseal" micron spheres. This toner was tenned JCS-l. Another toner dispersing agent and ultrasonic agitation as described in examtermed JCS-2 was prepared, which was identical in preparaple 2. in testing the toner dispersions a simplified apparatus tion and composition to JCS-l, except that the magnetic comsimilar to that of the drawing was used. The simplified apponent consisted entirely of Mapico Black, which comprised paratus had no provision for magnetization and exposure and 67.5 percent of the toner.

TABLE II [16 copies/minute (5 D drum)] Particle Composition (percent by weight) Magnetic properties size (of spray dried toner) (Arith- Transfer Soft 4 Raven mctic pressure, Opitical magnetic Hard magnetic 30 carbon iHc, 04400 0e. Ur, mean), lbs/linear density component 3 component Binder black 00. emu/g. emu/g. microns in. of copy Remarks Fe (40) "4000" Foot 30) Versamid930 (2o) 1 1 10 04 1.00 None. 4000 FeaOi (69) Versamid930 (90) l 137 52. 7 l4. 6 10. 4 64 0. 61 Background high. Fe (79) Versamid930 (20) l 30 153 3. 1 7 64 0. 65 None 3000" F9304 (79) Versamid930 (20). l 294 65 21. 0 9. 6 64 0. 83 Fe (40) IRN100 FeaO; (39) Versamid930 (20). 1 200 ll 10. 3 59-71 1 25-1. 3 Fe (39.4) 4000" Feaol (39.4) Ac400 (i9.7) 1.5 86 07 11.2 8.8 ii 1'1 Fe (63.4) CrOz (15.8) Versamidt .930 (198).... 1 92 136 0.3 10.9 71 1.1 Fe (40) Mapico Black (39) Versarnid 7930 (200).... 1 85 107 5.8 9.3 04 0 99,098 Fe (59) 4000" F0304 (20) Vcrsamid( .930 (200).... l 91 65 5.3 9.4 64 0 90,0. 89 Oig i i agi i Fe (20). 4000 F8304 (59) versamid930 (20.0) i 112 87 14.0 10.6 64 0. 74, 0. 71 s Do. I F0 34.7) 4000" moi 34.5 0.8 102 33.2 1.3 10.7 11 1 1-1. 2

l AC400 is Allied Chemical Corporation's trade name for its ethylene/ vinyl acetate copolymer (15% vinyl acetate).

1 Permanent black.

3 All iron is "GS-6.?

4 Elvax 220 is Du Pont ethylene/vinyl acetate copolymer containing 20 0 vinyl acetate.

5 Approximately amount of toner used in other runs.

density of 0.35 in the image area as compared to 0.05 for the toner JCS-2.

EXAMPLE 7 Spray-dried toner (120 g. prepared as described in example 1 from 40 percent GS-6 carbonyl iron, 39 percent Mapico Black Fe O 1 percent Permanent Black, and 20 percent Versarnid 930, was dispersed in 400 ml. of 2 percent Lakeseal" in water, evaporated to dryness in an oven at 50 C., and gently crushed to pass a 40-mesh screen. The resulting surfactant-coated particles dispersed easily in water and served both to prepare dispersions for use in printing machines as in example 2 and to replenish toner removed from a dispersion by image development. By additions of the powder and deionized water, a singledispersion was used to print about 55 ,000 copies.

Other surface active agents may also be employed, usually at a concentration of 2 percent or less by weight based on toner, to provide self-dispersing properties. These include Atlas G 83300" an anionic, general purpose, branchedchaln allryl aryl sulfonate surfactant, DuPont Mei-pol SE, a general purpose, nonlonlc, ethylene oxide condensate, and Du- Pont "Product BCO"a C-cetyl betaine amphoteric surfactant EXAMPLE 8 'dition of dispersant, and the resulting dispersion was successfully used in the manner described in example 4 in image development and transfer operations.

Many of the disadvantages apparent for the prior art toners do not exist for the binary toners of this invention. First of all, not only does the hard magnetic material contribute to the magnetic properties of the product, but also it is the primary color agent of toner; e.g., toners and their decorations containing only approximately one-fourth by weight of Fe o or CrO,, the rest being Fe and resin, are very black. During the resin encapsulation process the finely divided hard magnetic material, which is close to single domain in size, has sufficient magnetic moment to magnetically interlock all of the magnetic particles including the soft magnetic material into a loose resin-impregnated three dimensional network. This network effectively resists any tendency for segregation of resin from the magnetic material. Any slight tendency of the large particles of soft magnetic material to be less than uniformly distributed among the final toner particles is of small consequence because all particles uniformly contain the vary finely divided hard magnetic material and so no nonmagnetic toner particles exist.

The mixed toners possess a desirable balance of magnetic properties. Their magnetic moments in the fields close to a magnetically imaged surface are somewhat less than for soft magnetic toners but are significantly higher than the remanent moments of hard magnetic toners. The remanent moments of the mixed toners are modest. They are large enough to result in an attractive force on the toner at some distance from an imaged surface; yet, they are not large enough to make magnetic flocculation of the toner a problem. Also considerable flexibility in tailoring the magnetic properties to the needs of an application exists via adjustment of the ratios of the two magnetic materials. The superior performance of the mixed toners in a practical application which results from their desirable combination of properties, is clearly evident in the data of tables I and ll. The optical densities of visual images formed magnetically using these toners are consistently the highest obtained.

Since obvious modifications and equivalents will be evident to those skilled in the art, we propose to be bound solely by the appended claims.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

i. A flowable particulate magnetic toner substantially each particle of which comprises at least one finely divided magnetically hard material having a remanence of at least about 20 percent of the saturation magnetization, and at least one finely divided magnetically soft material having a remanence of less than about 5 percent of the saturation magnetization, said hard and soft materials being substantially uniformly dispersed in a compatible nonmagnetic thermoplastic resin present at about 20 percent to 40 percent by weight of the entire composition, the weight ratio of magnetically hard to magnetically soft material being in the range 1:6 to 4: l.

2. The magnetic toner of claim 1 whrein the particles are substantially spherical.

3. The magnetic toner of claim 1 wherein the weight ratio of magnetically hard to magnetically soft material is about 1:1.

4. The magnetic toner of claim 1 wherein the diameter of the fiowable particles ranges from about 3 to about 20 microns.

5. The magnetic toner of claim 1 wherein the resin is a polyamide.

6. The magnetic toner of claim 1 containing additionally from about 1 to 5 percent of a color control agent selected from the group consisting of carbon black, pigments and dyes.

7. The magnetic toner of claim 6 wherein the color control agent is black.

8. The magnetic toner of claim I wherein the magnetically hard material is a magnetic iron oxide.

9. The magnetic toner of claim 1 wherein the magnetically hard material is magnetic chromium oxide.

10. The magnetic toner of claim 1 wherein the magnetically soft material is iron.

1 1. The magnetic toner of claim 1 wherein the magnetically hard material is l e O and the magnetically soft material is iron.

12. The magnetic toner of claim 1 wherein the magnetically hard material is magnetic chromium oxide and the magnetically soft material is iron.

13. The magnetic toner of claim 1 carrying up to about 2 percent by weight of a dispersing agent.

14. The magnetic toner of claim I wherein the dispersing agent is adhered to the outside of the particle.

15. The magnetic toner of claim I wherein the dispersing agent is distributed throughout the particles.

16. A dispersion of the magnetic toner of claim 1 in an inert, liquid dispersions medium.

17. The dispersion of claim 16 wherein the dispersions medium is a polar solvent.

T8. The dispersion of claim 16 wherein the dispersion medium is water.

19. The dispersion of claim 16 wherein the dispersions medium is hydrocarbon.

20. The dispersion of claim 16 wherein the dispersions medium is a halogenated hydrocarbon.

21. A dry mixture of the magnetic toner of claim 1 with an inert solid, particulate carrier.

a -4 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Dated Decembe r 14. 1971.

Patent No. 3 ,6 21,682

Inventofls) J p Hall: and GeOI-ge Young It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 15, line 7, "0.05" should read 0.50

Signed and sealed this 11 th day of July 1972.

(SEAL) Attest:

EDWARD M.FLETCHER,JR. ROBERT GQTTSCHALK Commissioner of Patents Attesting Officer

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1879361 *Jul 22, 1929Sep 27, 1932Ajax Electrothermic CorpElectric induction furnace
US2758939 *Dec 30, 1953Aug 14, 1956Rca CorpElectrostatic printing
US2826634 *Apr 14, 1951Mar 11, 1958AtkinsonMethod and means for magnetic reproduction of pictures
US2846333 *Nov 1, 1955Aug 5, 1958Haloid Xerox IncMethod of developing electrostatic images
US3165420 *Jun 13, 1960Jan 12, 1965Azoplate CorpDeveloper for electrophotographic purposes and process for developing an electrostatic image
US3241957 *Jun 8, 1961Mar 22, 1966Harris Intertype CorpMethod of developing electrostatic images and liquid developer
US3246629 *Jun 18, 1963Apr 19, 1966Addressograph MultigraphApparatus for developing electrostatic images
US3345294 *Apr 28, 1964Oct 3, 1967American Photocopy Equip CoDeveloper mix for electrostatic printing
GB1108192A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3839029 *Sep 27, 1972Oct 1, 1974Xerox CorpElectrostatographic development with ferrite developer materials
US3897249 *Apr 9, 1973Jul 29, 1975Xerox CorpToners for phthalocyanine photoreceptors
US3914181 *Mar 8, 1974Oct 21, 1975Xerox CorpElectrostatographic developer mixtures comprising ferrite carrier beads
US3916038 *Feb 23, 1973Oct 28, 1975Lion Fat Oil Co LtdProcess of producing moldable magnetic powder of the ferrite type
US3922381 *Jun 14, 1974Nov 25, 1975Addressorgrap Multigraph CorpChemically treated carrier particles for use in electrophotographic process
US3958039 *Jul 16, 1974May 18, 1976Nitto Denki Kigyo Kabushiki Kaisha (Nitto Electric Industrial Co., Ltd.)Method for coating lead-attached electronic device
US4031021 *Mar 25, 1974Jun 21, 1977Deming Philip HMagnetic toner compositions
US4076640 *Feb 24, 1975Feb 28, 1978Xerox CorporationPreparation of spheroidized particles
US4082681 *Nov 4, 1975Apr 4, 1978Mita Industrial CompanyMagnetic developer for electrostatic photography and process for preparation thereof
US4099186 *Feb 25, 1977Jul 4, 1978E. I. Du Pont De Nemours And CompanyMagnetic printing process and apparatus
US4105572 *Mar 31, 1976Aug 8, 1978E. I. Du Pont De Nemours And CompanyDye and/or chemical treating agent
US4108786 *Dec 16, 1975Aug 22, 1978Mita Industrial Company Ltd.Magnetic dry developer for electrostatic photography and process for preparation thereof
US4111823 *May 20, 1977Sep 5, 1978Ricoh Co., Ltd.Blend of wax or thermoplastic resin and a magnetic powder
US4117498 *Feb 25, 1977Sep 26, 1978E. I. Du Pont De Nemours And CompanyMagnetic printing process and apparatus
US4137188 *Feb 1, 1978Jan 30, 1979Shigeru UetakeMagnetic toner for electrophotography
US4145300 *Sep 30, 1976Mar 20, 1979Sublistatic Holding S.A.Developers containing magnetic particles and a sublimable dyestuff
US4164476 *Jan 6, 1978Aug 14, 1979Konishiroku Photo Industry Co. Ltd.Developer for latent electrostatic image and process for preparation thereof
US4172722 *Apr 12, 1976Oct 30, 1979Ricoh Co., Ltd.Electrostatic copying method for forming multiple copies
US4189390 *Oct 31, 1977Feb 19, 1980Hitachi Metals, Ltd.One-component magnetic developer powder for developing electrostatic latent image and method of making same
US4256818 *Nov 5, 1979Mar 17, 1981Xerox CorporationMagnetic or electrostatographic imaging and high speed fusing method uses polyamide resin in toner
US4264698 *Oct 15, 1976Apr 28, 1981Mita Industrial Company LimitedSpherical magneto-sensitive material and flowable particles
US4271248 *Jan 28, 1980Jun 2, 1981Xerox CorporationPolymeric esterification product of a dicarboxylic acid and a diphenol
US4285801 *Sep 20, 1979Aug 25, 1981Xerox CorporationElectrophoretic display composition
US4323929 *Nov 30, 1979Apr 6, 1982E. I. Du Pont De Nemours And CompanyPrinting process using lithographic plates made from toned amplitude modulated magnetic images
US4407923 *Jun 24, 1982Oct 4, 1983Mita Industrial Co., Ltd.One component magnetic developer
US4451837 *Jun 1, 1982May 29, 1984Xerox CorporationConductive single component magnetic toner for use in electronic printing devices
US4485162 *Feb 8, 1983Nov 27, 1984Tdk Electronics Co., Ltd.Ferric, with magnesium, manganese, zinc or nickel, oxide
US4517268 *Sep 12, 1983May 14, 1985Xerox CorporationProcess for magnetic image character recognition
US4526851 *Sep 6, 1983Jul 2, 1985Trw Inc.Binder, ferrous carbon comprising carbon fibers in ferrous metal
US4540646 *Jul 9, 1984Sep 10, 1985Konishiroku Photo Industry Co., Ltd.Method of developing an electrostatic latent image
US4578337 *Apr 16, 1984Mar 25, 1986Minolta Camera Kabushiki KaishaDry process for developing electrostatic latent images with a developer comprising two kinds of magnetic carriers having different physical structure
US4599292 *May 31, 1985Jul 8, 1986Konishiroku Photo Industry Co., Ltd.Method and device of developing an electrostatic latent image
US4719026 *Jan 27, 1986Jan 12, 1988Savin CorporationElectrophoretic method of producing high-density magnetic recording media and a composition and a suspension for practicing the same
US5527657 *Nov 22, 1994Jun 18, 1996Ricoh Company, Ltd.Comprises bivalent metal and trivalent iron with specific molar ratio
US5543219 *May 23, 1995Aug 6, 1996A.B. Dick CompanyPrinting inks with coated magnetic particles, coated with ionomers and free of solvent
US5780190 *Dec 4, 1989Jul 14, 1998Xerox CorporationMagnetic image character recognition processes with encapsulated toners
US5976748 *Nov 3, 1998Nov 2, 1999Kyocera CorporationMagnetic powder in binder
US6051060 *Dec 4, 1997Apr 18, 2000Marconi Data Systems, Inc.Method of making pigment with increased hydrophilic properties
US6187439Nov 4, 1994Feb 13, 2001Marconi Data Systems Inc.Suitable for printing inks, as well as for magnetic recording systems, such as audio and video tapes and magnetic storage disks
US6605402Aug 21, 2001Aug 12, 2003Aetas Technology, IncorporatedFor electrophotographic machines that effectively reduces the impact of adhesion forces; toner is combined with large and small silica particles
US6686743 *Mar 9, 2001Feb 3, 2004Univation Technologies, LlcApparatus for measuring the static charge of flowable solids
US7014915 *Aug 20, 2002Mar 21, 2006The Boeing CompanyControlled binary macrosegregated powder particles, their uses, and preparation methods therefor
US7298157 *Apr 20, 2004Nov 20, 2007Hynix Semiconductor Inc.Device for generating internal voltages in burn-in test mode
US7537874Feb 21, 2006May 26, 2009Xerox Corporationcomprising iron oxides, cobalt ferrites and/or mixtures, having high coercivity
US20100080629 *Sep 29, 2009Apr 1, 2010Takashi HaraMethod for manufacturing toner, toner, developer, developing apparatus, and image forming apparatus
USRE33172 *May 4, 1987Feb 27, 1990Xerox CorporationProcess for magnetic image character recognition
USRE38957Aug 25, 2003Jan 31, 2006Oce Printing Systems GmbhDocument verification and tracking system for printed material
DE2313132A1 *Mar 16, 1973Sep 20, 1973Oce Van Der Grinten NvElektrofotografisches verfahren
DE2714474A1 *Mar 31, 1977Nov 3, 1977Du PontVerfahren und vorrichtung zum magnetischen kopieren
EP0033248A1 *Jan 28, 1981Aug 5, 1981Xerox CorporationMagnetic toner and method for developing using same
EP0053491A2 *Nov 26, 1981Jun 9, 1982Mita Industrial Co. Ltd.A one-component type magnetic developer
EP0136744A2 *Jan 28, 1981Apr 10, 1985Xerox CorporationMethod for developing magnetic latent images
EP1821153A1 *Jan 4, 2007Aug 22, 2007Xerox CorporationToner with high strength magnetite
WO1993023795A1 *May 7, 1993Nov 25, 1993Gen Electric Co PlcEncapsulated magnetic particles, pigments and carbon black, compositions and methods related thereto
WO1997036726A2 *Mar 17, 1997Oct 9, 1997Ultra Res CorpThermoplastic imaging system
Classifications
U.S. Classification430/106.2, 430/116, 252/62.54, 252/62.53, 430/106.3, 430/111.41, 430/115
International ClassificationG03G9/083, G03G5/16
Cooperative ClassificationG03G9/0833, G03G5/16, G03G9/0832, G03G9/083
European ClassificationG03G9/083, G03G9/083B4, G03G5/16, G03G9/083B2