Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3628347 A
Publication typeGrant
Publication dateDec 21, 1971
Filing dateApr 13, 1970
Priority dateApr 13, 1970
Publication numberUS 3628347 A, US 3628347A, US-A-3628347, US3628347 A, US3628347A
InventorsMccoy Donald G, Puckett Lawrence J, Teague Marion Warfield
Original AssigneeUs Army
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Refrigerating vapor bath
US 3628347 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [721 inventors Lawrence J. Puckett Churchville; Marion Warfield Teague, Aberdeen; Donald G. McCoy, Baltimore, all of Md. [21] Appl. No. 27,928 [22] Filed Apr. 13, 1970 [45] Patented Dec. 21, 1971 [73] Assignee The United States of America as represented by the Secretary of the United States Army [54] REFRIGERATING VAPOR BATH 1 Claim, 2 Drawing Figs.

[52] 11.8. C1 62/208, 62/50, 62/399, 62/216, 62/217, 62/268, 62/100, 62/56 [51] lnt.C1 F25b 41/00 [50] Field of Search 62/52, 53, 50, 51,216, 217, 169, 268, 100, 208

[56] References Cited UNlTED STATES PATENTS 2,996,893 8/1961 Goodenough 62/52 3,245,248 4/1966 Ritter 62/217 3,346,718 10/1967 Cooley 62/50 3,398,549 8/1968 Zobel 62/268 3,053,054 9/1962 Vignier.. 62/52 3,062,017 11/1962 Bolcor... 62/50 3,080,725 3/1963 Cowley 62/50 Primary Examiner-William J. Wye Attorneys-Harry M. Saragovitz, Edward .1. Kelly and Herbert Berl ABSTRACT: In the laboratory, or for other limited refrigeration purposes, the cooling effect of a liquid refrigerant may be used for a limited period of time without recompressing and reliquifying the refrigerant. The present disclosure teaches how to accomplish this feat with maximum efficiency by placing the specimen to be cooled in proximity to the liquid, thereby permitting heat transfer directly to the gaseous refrigerant which is vaporizing from the liquid. Further, the rate of cooling is variable, in accordance with the need for cooling, by warming the liquid to vaporize more liquid, thereby increasing the vapor density above the liquid. With greater vapor density (or, we 'might say, by making the fog thicker) the heat exchange rate (cooling rate) is increased. Conversely, when heat is not supplied to the liquid, and the vapor density is decreasedfthe rate of heat exchange (cooling rate) is decreased. The rate of cooling, and the minimum temperature obtainable, may be varied further by adjustable pressure relief means to control the boiling point of the refrigerant. Vacuum may be applied to the container ifdesired to lower the boiling point even lower to achieve a lower temperature.

Va rlb/e pressure Ya ve 1 P vrome/Er -1 /0 REFRIGERATING VAPOR BATH The invention described herein may be manufactured, used, licensed by or for the Government for governmental purposes without the payment to us of any royalty thereon.

BRIEF SUMMARY The state*of-the-art method of achieving low stabilized temperatures [below C (32 F.)] in the laboratory has not been significantly advanced in many years. The most practical means available of obtaining known temperatures below 0 C. was to make a slurry of some appropriate chemical with a cooling agent, e.g., dry ice or liquid nitrogen. The cooling agent served to lower the temperature of the chemical to its melting-freezing point, at which temperature it would remain over a wide range of heat transfers.

There are several disadvantages associated with that procedure. First, one must maintain the proper amount of cooling agent in the chemical; if too much is used, all the chemical will freeze, thus lowering the temperature below the transition point; if the cooling agent is not replenished frequently (typically at l-hour intervals), the chemical will warm above its melting-freezing point and the temperature will increase. Therefore it can become very tedious and timeconsuming to maintain a given temperature in a slurry. A second disadvantage is that the temperatures (below 0 C.) are limited to the precise melting points of the available chemicals. Further disadvantages associated with chemical slurries involve fire hazards and toxic vapors.

A technique has been developed recently that is superior in some respects to the one previously described. The sample is cooled by cold-flowing vapor from nitrogen or other refrigerant and the vapor is passed to the sample location through a transfer line.

The advantage in this technique is that the sample temperature can be continuously varied by regulating the flow rate of the cold refrigerant vapor. There are, however, two major disadvantages to this procedure. The first is that even with wellinsulated transfer lines a considerable amount of heat loss occurs between the cold nitrogen vapor and the walls of the transfer line. Thus, a large flow rate must be used in order to achieve the required amount of cooling at the sample location. The second disadvantage is also associated with the consumption rate of liquid nitrogen. Due to the heat transfer to the flowing vapor from its environment the vapor is warmed above its vaporization temperature and in this state it is not practical to store the vapor. Therefore one has two options available. The warmed nitrogen vapor may be exhausted from the cooling system, with the requirement that additional nitrogen must be added to replace that which was lost. Or, a refrigeration plant may be employed to cool or compress and cool the warmed vapor to the liquid form so that it can be returned to the liquid nitrogen reservoir. The first choice is not desirable because it leads to a very large consumption rate of liquid nitrogen. For example, on a simple system it was found that about 1.5 liters per hour of liquid nitrogen were required to maintain a sample temperature of l 60 C. The alternative is impractical in most laboratories because of the economics associated with purchasing and operation of an adequate (high pressure) refrigeration plant. For the above reasons, the flowing vapor system described above is seldom employed for cooling purposes.

The stationary vapor bath described hereinafter was devised to reduce the consumption rate of liquid nitrogen and, hence, make the use of vapor cooling more practical. When a comparison was made between the consumption rate of liquid nitrogen in the present system and that of a flowingvapor system it was found that the present system was more than 25 times as efficient. The high efficiency is achieved through the elimination of a vapor transfer line and other features as will become more evident hereinafter. Furthermore, the dangers from fire hazards and toxic vapors are negligible in this system. IN THE DRAWING P10. 1 illustrates the principles of the invention;

P10. 2 illustrates a modification.

A charge of liquid refrigerant 1 (e.g., nitrogen or other refrigerant) is placed in container 2 preferably surrounded by insulation 3 and closed by a member 4. Amaterial to be refrigerated, a gas for example, may be passed continuously through tubing 5, or allowed to remain for a period of time and then removed in its refrigerated condition. Of course, bulk material, solid articles or other items to be cooled could be placed inside of container 2 above liquid 1.

The liquid refrigerant begins to boil or vaporize and forms a gas or vapor 6 above the liquid. Adjustable valve 7 is provided in passageway 8 leading from the interior of container 2 to the atmosphere.

A heating device 9 may be provided in proximity to or directly in the liquid refrigerant 1. The heating device may be energized by electricity, for example, introduced through a known type of pyrometer 10 controlled by manual switch 11 and automatic temperature switch 12. An indicator telltale lamp l3 lets the attendant know when the apparatus is energized. The electrical apparatus is of a type well known to those skilled in the art. It may be of the on off type or of the variable supply type whereby the rate of heat supply may be varied to obtain differing heating-cooling rates.

OPERATION A charge of liquid refrigerant 1 is placed in container 2 and the closure member 4 is inserted. (If it is desired to contain high bursting pressures the container, closure member, fittings and so on will be appropriately designed.) lf very low temperatures are to be produced, the refrigerant may be liquid nitrogen or such with a very low boiling point. If intermediate cold" temperatures are desired a refrigerant with a higher boiling point may be used, e.g., R-l2, boiling point 2l.6 F. at atmospheric pressure. If the cooling" is to be from "hot" (e.g., 212 F.) to warm" e.g., F.), R-ll could be used, boiling point 74.7 F.

Valve 7 may be used to bleed off air originally trapped inside and the valve may then be set for a desired pressure buildup. After that pressure is reached valve 7 will release gas to maintain the preselected pressure. Or, the valve may be completely closed to allow the pressure to rise to its maximum value for the particular liquid gas and the ambient temperature, e.g., R-l2 will rise to a pressure of 77 lbs/sq. in. at an ambient room temperature of 75 F. This would extinguish the cooling action and preserve the refrigerant until further cooling is desired at which time the pressure would be partially or completely released. Or, valve 7 may be opened to permit the liquid to boil or vaporize at its lowest temperature at the prevailing ambient or atmospheric pressure; e.g., R--] l boils at atmospheric pressure (14.7 lbs/sq. in. absolute) when at a room temperature of 74.7" F.

The gas 6 will be at approximately the same temperature as the boiling liquid. Therefore, almost any desired temperature of gas 6 may be obtained by selecting a refrigerant with a boil ing point lower than the temperature sought, and by permitting pressure to escape via valve 7' to maintain that pressure on the chosen refrigerant which corresponds with the temperature desired. If desired, a partial vacuum may be ap plied to container 2 in order to achieve an even lower temperature with a particular liquid.

SOLUTION TO THE PROBLEM liquid 1 boils or vaporizes to produce gas 6 to a point of equilibrium or a saturated state of the gas above the liquid. Further evaporation of the liquid is equaled by reentry of some of the gas back into the pool of liquid. The liquid and gas are at the same temperature, that is, the boiling temperature of the liquid for the surrounding pressure conditions (e.g., at atmospheric pressure, approximately: 212 F. for water; 117 F. for R-113; 75 F. for R-l 1; 38F. for R-l 14; --22 F. for R-12' 4l F. for R22; 1 15 F. for Rl3; and 3 19 F. for nitrogen).

Adding heat to the liquid produces only minor warming of the liquid andgas and a pressure buildup in the container. Therefore, the principal effect of the additional heat is that the liquid vaporizes faster and adds more of the relatively cold steam or fog to the gas space. For example, at liquid nitrogen temperature of l96 C. a temperature change of approximately 3.5 percent will change the vapor pressure by 100 percent. More specifically, in a system of fixed geometry, the rate of heat transfer, dQ/dl", from the sample to the refrigerant is proportional to the vapor pressure, P, of the refrigerant and the difierence between the sample temperature, T,, and the refrigerant temperature, T Hence,

crease the lower temperature limit of the sample by the same amount, but the rate of sample cooling at intermediate temperatures will be increased by approximately 100 percent. Ex-

pressed in other words, the rate of heat transfer is increased between the gas and the item being cooled and the cooling action is accentuated despite the slight increase in temperature of the gas.

By way of contrast, previous systems increased the rate of heat transfer by flowing or blowing" more of the vapor around the item to be cooled. This required much more of the vapor and used much more liquid to accomplish the desired cooling. The vapor in contact with the liquid was not saturated and therefore there was not as much reentry of the gas to the liquid as in the present system when the vapor is saturated. In the present system much of the saturated vapor returns to the liquid even while heat is being supplied.

In a modification, illustrated in H6. 2, the sample 5' is placed in the liquid refrigerant and the sample temperature is regulated directly with the liquid refrigerant temperature which in turn is controlled through evaporative cooling. For example, the liquid refrigerant temperature will rise to the value characteristic of the refrigerant at the given pressure within the container. Therefore the liquid and the sample temperature can be controlled by regulation of the vapor pressure thereabove by means of valve 8. Almost any desired temperature of the sample may be obtained by selecting a refrigerant with a boiling point lower than the temperature sought and by regulating the rate of vapor release. It may be noted that the heat originally contained in the sample to be cooled causes a portion of the liquid to evaporate and the evaporating liquid, in turn, helps cool the sample. Thus heat is conserved in this modification thereby reducing the requirement for heat from the heating element 9.

The method of cooling embodies the following;

Pressure inside of the container is normally held above atmospheric pressure. This keeps the vapor pressure higher and keeps the fog" or vapor thicker thereby increasing the rate of heat transfer or cooling of the item being cooled. The adjustable pressure release valve is set to determine the vapor pressure and density of the vapor for the desired cooling rate. A higher cooling rate is obtained as heat is added, the pressure is increased, and the vapor becomes thicker. However, if it is necessary to obtain the lowest possible temperatures, the pressure must be lowered to permit the liquid to evaporate more freely at a lower temperature.

A two-step or a three-step method may be followed. First,

the pressure release valve may be set for a relativel high vapor pressure with consequent high vapor density an cooldown of the item. Secondly,-after the initial cooldown or rapid prechilling, the pressure may be lowered toward, or to, atmospheric pressure. This permits the liquid to boil at a lower temperature level (say -.196 C. for liquid nitrogen at atmospheric pressure) and therefore yields colder liquid and vapor. Therefore, in either FIG. 1 or FIG. 2 the item canbe cooled to a very low temperature. If an even lower temperature is required, as a third step, a vacuum can be applied to the container to achieve a lower boiling point of the liquid with a lower consequent temperature of the liquid and vapor and the item being cooled.

Thermostat or temperature sensor 12, and control 10 associated therewith, may be adjustable to supply more heat when greater cooling is desired, or less heat when less cooling is desired. The net result, as pointed out hereinabove, is that the present system is more than 25 times as efficient as a flowing vapor system tested. Thus, the present apparatus and method of operation are very simple, low in cost, long lived, easy to maintain and highly efficient. The rate of cooling is controlled by very simple apparatus which simply adds a small amount of heat as necessary to increase vapor density above the liquid.

We claim:

1. Apparatus for refrigerating an item comprising a container in which the item is to be placed, liquid and gas refrigerant in said container in close proximity to each other, means to'produce heating of the liquid to increase the vapor density adjacent to the liquid and surrounding the item to be cooled to thereby increase the rate of cooling, means automatically responsive to an increase in the temperature of the item being cooled to increase the temperature of the heatproducing means to thereby increase the cooling rate, pressure release means to limit pressure buildup in said container, said pressure release means being adjustable whereby the pressure and boiling point of the liquid may be raised to thereby raise the vapor density and increase the cooling rate while conserving cooling liquid and vapor, and said pressure release means being completely closable to stop all loss of vapor and liquid from said container.

t t t i t rapid

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2996893 *Jul 3, 1958Aug 22, 1961Santa Barbara Res CtLow temperature liquid transfer apparatus
US3053054 *Jan 23, 1961Sep 11, 1962Boudet Et CieInstallation for the expansion of a liquefied gas
US3062017 *Sep 30, 1959Nov 6, 1962Air ReductionOxygen dispensing
US3080725 *Aug 11, 1960Mar 12, 1963Union Carbide CorpMethod and apparatus for controlled rate cooling and warming of biological substances
US3092974 *Jul 21, 1960Jun 11, 1963Union Carbide CorpMethod and apparatus for controlled freezing of biologicals
US3245248 *Nov 8, 1962Apr 12, 1966Honeywell IncCryogenic temperature control apparatus
US3282063 *Feb 24, 1965Nov 1, 1966Max Planck GesellschaftControl arrangement
US3346718 *Jul 27, 1965Oct 10, 1967Cooley Gerald JElectrically heated cryogenic liquid vaporizing apparatus
US3398549 *Feb 3, 1967Aug 27, 1968Atomic Energy Commission UsaApparatus for regulating at low temperatures
US3518591 *Sep 6, 1967Jun 30, 1970Avco CorpSuperconducting magnet and method of operation
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3910064 *Aug 1, 1974Oct 7, 1975Max Planck GesellschaftMethod and apparatus for producing variable temperature with the aid of a cryoliquid
US4537043 *May 21, 1984Aug 27, 1985Messer Griesheim GmbhProcedure for creating an inert gas atmosphere with constant composition of nitrogen and carbon dioxide in a refrigerated container
US4831846 *Apr 12, 1988May 23, 1989The United States Of America As Represented By The United States Department Of EnergyLow temperature cryoprobe
US4841969 *Jun 1, 1987Jun 27, 1989Messer Griesheim GmbhDevice for the production of a cold treatment-gas for cryotherapy
US5177974 *Jun 23, 1988Jan 12, 1993Pub-Gas International Pty. Ltd.Storage and transportation of liquid co2
US5327730 *May 12, 1993Jul 12, 1994American Gas & Technology, Inc.Method and apparatus for liquifying natural gas for fuel for vehicles and fuel tank for use therewith
US5386699 *Mar 17, 1994Feb 7, 1995American Gas & Technology, Inc.Method and apparatus for liquifying natural gas for fuel for vehicles and fuel tank for use therewith
US5471844 *Nov 18, 1994Dec 5, 1995The United States Of America As Represented By The Secretary Of The Air ForceHigh dissipation packaging for cryogenic integrated circuits
US6363728 *Jun 20, 2000Apr 2, 2002American Air Liquide Inc.System and method for controlled delivery of liquefied gases from a bulk source
US6539726 *May 8, 2001Apr 1, 2003R. Kevin GiesyVapor plug for cryogenic storage vessels
US6568194 *Jan 17, 2001May 27, 2003Superconductor Technologies, Inc.Evacuation port and closure for dewars
US6581412 *Aug 13, 2002Jun 24, 2003Praxair Technology, Inc.Gas delivery at high flow rates
US6772498Apr 22, 2003Aug 10, 2004Superconductor Technologies, Inc.Method of manufacturing dewars
US20030196311 *Apr 22, 2003Oct 23, 2003Superconductor Technologies, Inc.Evacuation port and closure for dewars
WO1994027101A1 *May 12, 1994Nov 24, 1994American Gas & Technology, Inc.Liquifaction of natural gas for fuel vehicles
WO2002090821A2 *May 8, 2002Nov 14, 2002Cryoport Systems, LlcImproved vapor plug for cryogenic storage vessels
WO2002090821A3 *May 8, 2002Nov 15, 2007Cryoport Systems LlcImproved vapor plug for cryogenic storage vessels
U.S. Classification62/208, 62/217, 62/100, 62/56, 62/48.1, 62/399, 62/268, 62/216
International ClassificationF25D3/10, F25D29/00
Cooperative ClassificationF25D3/10, F25D29/001
European ClassificationF25D3/10, F25D29/00B