Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3628829 A
Publication typeGrant
Publication dateDec 21, 1971
Filing dateJul 8, 1969
Priority dateMar 9, 1966
Publication numberUS 3628829 A, US 3628829A, US-A-3628829, US3628829 A, US3628829A
InventorsHeilig Morton L
Original AssigneeHeilig Morton L
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Experience theater
US 3628829 A
Abstract  available in
Images(13)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] lnventor Morton 1.. Heilig -60 Riverside Drive, New York, N.Y. 10024 [21] Appl. No. 870,852 [22] Filed July 8, 1969 [45] Patented Dec. 21, 1971 Original application Mar. 9, 1966, Ser. No. 533,017, now Patent No. 3,469,837. Divided and this application July 8, 1969,

Ser. No. 870,852

[54] EXPERIENCE THEATER 6 Claims, 39 Drawing Figs.

[52] U.S. C1 297/217, 297/180 [51] Int. Cl A47e 1/12 [50] Field of Search 297/217, 180, 186, 184

[56] Relerences Cited UNITED STATES PATENTS 1,370,832 3/1921 Mollberg 297/ 180 1,615,615 1/1927 297/217 1,618,158 2/1927 297/217 1,719,940 7/1929 297/217 2,031,643 2/1936 297/217 (/10 fin) I04 1 M40 r Primary Examiner- Francis K. Zugel Attorney-Hopgood and Calimafde ABSTRACT: The combination of a viewing chair and sensestimulating means for use in motion picture or television theaters is provided comprising a seat with armrests and having a back which terminates into a hood over the chair, support means for the chair including means adapted to rock the chair in various directions, means for vibrating said chair, odor-producing means associated with said chair, odor-conducting conduits associated with said odor-producing means, means for moving air through the odor-producing means and the odor-conducting conduits towards the face of a spectator seated in said chair, air passageways associated with the chair having exit ports for directing air towards various portions of the spectators body, means for feeding air to the air passageways, exhaust means associated with the hood of the chair for removing said fed air and odors, and a loudspeaker associated with the hood of said chair.

pn mwg gmm, 3528.829

SHEET UlUF 13 INVENTOR. MUR ro/v L. HE/L 6 'ATTORNEYS- PATENTEU EH22] ml SHEET [20F 13 INVENTOR. MORTON L. HElL/G W 9 ATTORNEY$ PNENTEO mm mm 3628.829

SHEET 0 3 OF 13 INVENTOR. MOP TON L HE/L/G ATTORNEYS.

mmmm 3.628.829

. SHEET [1 0F 13 INVENTOR. MORTON L HE/L /6 mmmm 'slezsxazs SHEET CSUF13 INVENTO MORTON L. NEIL/6' PATENTEnniczmn 3628,8329

SHEET [60F 13 y,. 1 m 3 INVENTOR.

MORTON L. HE/L/G A 7' T ORA/EYE "1mm an SHEET USUF 13 INVENTOR. MORTON L. HEM/6 W k A TTORNFYJ.

mmmmm 3628.829

SHEET llUF13 U] 1 mvamoa.

F IG. 2 W

ATTORNEYS.

EXPERIENCE THEATER This is a division of application Ser. No. 533,017, filed Mar. 9, 1966 now Pat. No. 3,469,837.

This invention relates to the art of motion picture or television and the enjoyment thereof. More particularly, the invention relates to an improved form of motion picture or television entertainment in which the spectator is enabled, through substantially all of his senses, to experience realistically the full effect or illusion of being a part of or physically responding to the environment depicted by the motion picture. For the sake of brevity, the invention is referred to herein as the experience theater and is meant to include any form of animation whether produced by the passage of light through a moving motion picture film or produced electronically as, for example, by the technique commonly employed in television, magnetic tape recording, or even the relatively new techniques of hollography or laser beam projection.

Thus, insofar as the invention is concerned, the experience theater is a new and improved type of theater designed to completely involve a mass audience into a new and exciting world of experience.

All other existing theater systems, even the most advanced, such as Cinerama and Circarama, feed only parts of mans sensory apparatus with information. Thus, the spectator viewing a film or television program in these theaters is constantly reminded that he is not really in the world being depicted on the screen, but rather in a theater looking at an image of it on the screen.

By feeding almost all of mans sensory apparatus with information from the scenes or programs rather than the theater, the experience theater makes the spectator in the audience feel that he has been physically transported into and made part of the scene itself.

Accordingly, it is the object of the invention to provide an experience theater system which gives to an observer or spectator a desired realistic experience by utilizing sensing elements and conditions which enable the spectator to respond fully .to the illusion of being part of the created environment and thus receive the full dramatic impact portrayed by the scene.

Another object is to provide a new and improved viewing screen having a concave configuration adapted to full peripheral viewing, the screen being formed of a mosaic of reflective elements.

A still further object is to provide the combination of viewing chairs and associated sense-stimulating elements together with a concave viewing screen adapted for full peripheral viewing.

Still another object is to provide a viewing chair having associated sense-stimulating means including mechanical articulating means for applying controlled movement to the chair to promote awareness of body position conforming to body attitude portrayed by a particular motion picture scene.

These and other objects will more clearly appear when taken in conjunction with the following disclosure and the ac companying drawings, wherein:

FIGS. 1 and 2 are illustrative of one embodiment of a concave viewing screen provided by the invention;

FIGS. 3 and 4 depict another embodiment of a concave viewing screen which may be employed in carrying out the invention;

FIGS. 5 to 16 show concave viewing screens and surface portions utilizing mosaic elements employed in the construction of the screens; 7

FIG. 17 is illustrative of one means for arranging viewing chair in accordance with the carrying out of one embodiment of the invention;

FIGS. 18 to 21 relate to chair arrangements and manipulation;

FIGS. 22 and 23 show in detail two embodiments of a viewing chair provided by the invention;

FIG. 220 shows means for tilting the chair.

FIGS. 24 and 25 are illustrative of means which may be employed in producing aromas;

FIG. 26 depicts an air-distributing system employed in combination with the viewing chairs;

FIG. 27 shows another arrangement of chairs which may be employed in the invention;

FIG. 28 is illustrative of a pair of peripheral Polaroid 3D glasses for use in the experience theater;

FIGS. 29 to 34 are illustrative of various forms of seating arrangements which may be employed in the experience theater; and

FIGS. 35 and 36 are block diagrams coordinating signal producing stimuli on a film with sense-stimulating elements.

As one preferred embodiment of the experience theater the invention provides a projection screen of concave configuration of substantially hemispherical sweep which embraces substantially the entire normal field of vision of a spectator, in combination with a centrally located projection system, a plurality of loudspeakers spaced in predetermined positions on the convex side of the screen, a plurality of specially arranged viewing chairs, with the plane of support of the chairs steeply inclined to the ceiling of the theater such that the plane of support subtends the concave screen much as a cord subtends an arc of a circle, and sense-stimulating means associated with each of the chairs.

The sense-stimulating means are employed in a manner to stimulate the natural range of mans major senses, to wit: (1) vision which involves moving colored imagery which may be depicted in three dimensions and which may have a horizontal angle of 185 and a vertical angle of 150; (2) hearing involving dimensional sound that comes from all points around the head; smell based on aromas and taste; (4) tactile sensations of heat and/or cold with pressure; and (5) kinesthetic sensations involving awareness of body position.

The experience theater utilizes sense-stimulating means to feed sensory information to approximately percent of this system, in the following manner: (a) a hemispherical or marshmallow or obloidal-shaped screen to reflect moving, colored images with three-dimensional effect that fills I70 percent of the spectators horizontal vision and percent of his vertical vision; (b) the use of 5 to 30 speakers to provide directional sound from all points in the screen and one small speaker in each chair provides sound from behind the spectators head; (c) the feeding of aromas through the arm of each chair with immediate evacuation through the hooded space above the spectators head; these aromas can be changed instantly according to the needs of the film; (d) the application of tactile sensations by blowers that blow air of controlled and varying temperatures to the head and hands of the spectator and the use of a vibrating oscillator in each chair which conveys the appropriate vibrations (motorcycle, train, automobile, etc.) to the entire body of the spectator; (e) and the simulation of body attitude by tilting the spectators chair to various angles as might occur in a banking airplane or a speed boat.

The advantages of the invention are achieved by utilizing the foregoing effects or sensations in combination. If any of the above sensations are provided alone, the psychological effect is completely unnatural and therefore ineffective and unsatisfying. But when provided together in a properly programmed manner, the effect is completely natural, therefore very convincing and enjoyable.

For example, three-dimensional imagery is not satisfactory without substantially full use of peripheral vision, and aromas are unnatural unless objects are portrayed with a three-dimensional effect, etc. The natural and necessary unity of all these sensory stimuli is the key idea of the experience theater, but the invention goes much further in that it solves the many problems that immediately arise when the traditional means of supplying one sensation conflict with these necessary to provide another; and when its desired to provide these multiple stimuli to a mass audience rather than to one individual.

In this connection, the shape of the concave screen is very important, several embodiments of which are shown in FIGS. 1 to 4. In order to take full advantage of the peripheral field of vision made possible by the screen, the viewing chairs are supported on a plane P steeply inclined to an imaginery plane V extending vertically downward from the ceiling C. As will be noted, the plane of support of the chairs subtends the concave screen S. In effect, the audience is closed in by the screen itself, with the concave portion facing the audience, the plane of support of the chairs making, for example, an angle of about 65 with the floor of the theater.

The concave screen 8" shown in FIGS. I and 2 (FIG. 2 is a top view of FIG. 1), while substantially hemispherical has a somewhat marshmallow or obloidal shape. That is to say, the central portion 10 of the concave screen and the sides 10b are partly flattened. In the embodiment of FIGS. 3 and 4, the central and side concave portions 10a are more spherically shaped.

While it is appreciated that planetariums and some recent theater developments use a hemisphere above the audience with the audience on the ground floor looking up, this position is physically tiring so the spectator and psychologically unnatural, since the spectator is used to looking ahead at the world, while walking or driving; rarely up at it. In order for the spectator to look ahead, and yet to have a completely free horizontal visual field requires a special arrangement whereby the spectators sit substantially above one another.

Both the hemispherical and obloidal screens completely fill the spectators free visual field with imagery 170 horizontally and 120 vertically, the only limitations being those imposed by the other spectators, his own body, and the evacuation hood above his head.

The concave screen depicted by FIGS. 1 and 2 is advantageous in that it allows the entire audience to be further away from the central and most important part of the screen, thus providing better definition and more comfortable eye focusing. Additionally, it frees the key central part of the image from the serious spherical distortion that necessarily accompanies spherical screens. Thus, in the key central part of the picture where the screen is flattened, buildings, telephone poles and horizon lines are straight rather than curved.

Referring to FIG. I, steeply rising steps 111 are shown for supporting viewing chairs. A projection system 12 is located centrally and in front of concave portion 10 of the screen. Loudspeakers 13 are strategically placed and spaced about the back or convex portion of the screen. As shown in the drawing, the front or concave screen is made up of a plurality of facets or mosaic elements 14 (to be described in more detail later) shaped and disposed at a predetermined angle of reflection, such that rays of light directed to any of said faces from the projection system 12 by means of a wide angle lensc are caused to reflect back to the viewing audience without bounding from one section of the screen to the other. Thus, ray 150 (FIG. I) is shown reflected via ray 15b to the top of the viewing stand, while ray 16a is shown reflected to the bottom but away from the screen. The same is true of rays 17a, 17b and 18a, 18b, etc.

By using a screen of the foregoing type with substantially full peripheral vision, new and improved 3D effects can be achieved.

Peripheral imagery without 3D is not usually satisfactory because the spectators natural binocular vision can immediately sense that the films monocular image is lying flat on a deeply curved surface.

Equally unsatisfactory is 3D without peripheral imagery because the 3D images which appear to be floating in space seem unnaturally truncated by the edges of the conventionally rectangular screen. For example, a man whose head and shoulders are floating in the space before a viewer appears as if some giant sword has sliced off his trunk and legs at the point where it touches the edges of the frame.

Three-dimensional pictures may be obtained with the invention by projecting a leftand right-eyed image from two motion picture or television projectors 19 and 20 (FIG. 2) through polarized filters, each angled at 90 from each other.

The surface of the screen should advantageously be aluminized in order for the light reflected from it to maintain its polarization. But if the surface of either the hemispherical or obloidal screen are aluminized without special precautions serious problems may arise. First, hot spots may appear to the spectator wherever the angle of the incident is the same as the angle of the reflected light and, secondly, light will bounce from one surface to another, causing a serious washing out or graying of image contrast. Hence the surface of the aluminized screen should preferably be constructed of a mosaic of elements each disposed relatively to impinging rays such that the rays are evenly reflected back to the audience while none of the rays is reflected to the other screen surfaces. Examples of various mosaic elements which may be employed are shown in FIGS. 5 to 16.

The mosaic elements making up the concave screen may comprise aluminized metal, plastic or glass elements formed so that individual squares or hexagonal surfaces or faces are each individually aimed to reflect the rays coming from the projector to the audience. The mosaic element should be capable of being angled in different planes, for example, by being adjustably mounted on ball sockets as in FIG. 13. There, it will be noted that various methods of mounting the mosaic element are depicted. The supporting base of the screen 21 is shown to be perforated with holes 22 through which sound from mounted loudspeaker 23 passes. Attached to supporting base .21 are elements 24a to 2401, all of which illustrate various methods of locking the element. Thus, element 24a illustrates a ball-socket mounting using a rear screw 25; element 24b a side screw 26; element Me a front screw 27; and element 24d a biasing spring 28.

Another embodiment employing the same principle is to form plastic or glass elements having a front or rear coating of silver to form hundreds of tiny (one-half to one-sixteenth inch) convex mirrors 29 or semimirrors as in FIG. 12. Each of the mosaic surfaces may either be an actual mirror, or a metallized reflective surface having a matte finish which reflects a light with more diffusion than a true mirror, but less diffusion than reflection from a white surface (a white paper surface). Each mirror is set at a specific angle such as the plates described above, but in addition, each mirror has a particular vertical and horizontal curvature that reflects a specific light pattern which exactly covers the audience from that position (note FIGS. 6 and 7). Holes 30 for sound are provided at the comers. Thus, referring to FIGS. 6 and 7, the central mirrors reflect the widest patterns (60) while the side mirrors (6b, 6c) reflect narrower and narrower patterns. The advantage of this mirror system, squarish mirrors, FIGS. 60., lb, c, for the obloidal screen (FIG. 9) and round mirrors, FIGS. 70, b, c, for the spherical screen (FIG. 8) is: (l) maintenance of polarization; (2) minimizing of hot spots; (3) maximum utilization of available light energy.

Thousands of mirrors (or semimirrors) may be pressed into one plate as shown in FIGS. 10, ll, l2and 15. These mirrors can be either square or hexagonal (note FIGS. 14 and 16), and curved or flat (note FIGS. 12 and 15), depending on their position in the overall screen. At the juncture of the small convex mirror surfaces tiny holes 30 are provided to allow sound to pass through the screen as shown in FIGS. 10 and 12. The panels are numbered in the back for proper locating, and fitted with a female thread (31) and key slot 32 for quick mounting onto a rear support frame.

Another form of concave screen is that shown in FIGS. 8A and 8B which depict a spherical screen made up of alurninized surfaces in the form of concentrically located annular segments 29a, each angled to reflect the light back to the audience while none is reflected to other parts of the screen.

Two projectors 33a and 33b (FIG. 5) are mounted at the center of the plane of support of the viewing chairs. The projectors are adapted to be synchronized mechanically or electrically and equipped with wide angle -180 lenses and polarizing filters.

Either a separate 5 to 30 channel tape playback synchronized to the projection system or magnetic tracks on the film itself (see FIGS. 35 and 36) may feed 5 to 30 speakers located behind the screen and small speakers placed behind the head of each spectator (note FIGS. 22 and 23).

To keep the spectators vertical field free of obstruction, it has been found advantageous to place them one above the other. This can be directly one above the other in very small theaters (of three or four rows), but in larger theaters a completely vertical placement of the audience would result in a real physical danger from falling and a frightening psychological sense of insecurity for those on the upper levels.

These problems are solved by supporting the audience in a plane P, 65 from the horizontal (FIGS. 1 and 17). This offers safety as well as a greater sense of security. Referring to FIGS. 17, six levels 34 to 39 are provided for supporting chairs 34a to 3911. With regard to FIG. 17, safety can be further enhanced by having a transparent or glass or plastic sheet 40 extend at an angle of approximately 38 from the horizontal. The spectator can be held back by this and yet see through it. Safety may be provided, however, by the manner in which the spectator gets to and from his seat and by the safety features of the seat itself.

In the embodiment shown in FIG. 17, the spectators rise to the appropriate level by escalator or elevator and then approach their seats from the rear of the spectator plane P." The chairs are adapted to swivel at a point 41 just beneath the seat, so that the empty seat is facing away from the screen toward the approaching spectator. He sits in the chair then lowers the safety crossbar 42 shown in FIG. 19 which locks automatically. Only when this bar is down can the spectator pull finger loops 43 which via cable 44 cause pin 45 (note pull against biasing spring 46 out of hole 47 and allow the chair to spin around and face the theater. The pin then drops in to hole 48 setting the chairjn the forward looking position. Solenoid 49 is provided to prevent the safety bar from being reopened until the chair is spun back to the rear facing position.

Chairs 50 are spaced in couples (note FIG. 18) with a space of approximately 1 foot between each couple. This allows the spectator in a chair on either side of the space ,note 51) to spin in that direction and get his knees and feet through. The spectator rotates the chair by pushing with his feet against the base which does not turn. Thus, the spectators approach their chairs from the rear, lock the crossbar, spin around, watch the show, then spin back, raise the crossbar and get out with complete safety. This system is desirable for shows of 40 minutes or longer where spectators must be able to leave their chairs at will to go to the rest room.

In a less elaborate form of the experience theater shown in FIGS. 20, 21 and 27 which would be used for shows under 40 minutes, the spectators approach and leave their seats from the front much as in a normal theater, except that they do so during intermission when the lights are on. The safety is provided in the following manner:

All crossbars 52 (FIG. are electrically locked by a spring-biased solenoid 53 while the show is on. When the last scene of the film fades into darkness, hydraulic arms 54 (note FIGS. 20 and 27) located at each side of a bank of chairs that comprise each row (note FIG. 29) rises to a height of about 4 feet and 7% inches by means of telescoping members 54a, 54b and 54c which raise a bar 55 up to a height of about 3 feet 9 inches. The rising bar unravels a thick yet flexible plastic sheet 56 from a roll 57 (hidden by jack 54 but shown at other levels) thus creating a wall to protect the spectator. Once the plastic wall is up, the solenoid is actuated to free safety bar 52 (note FIG. 21), allowing each spectator to raise his safety bar. The spectators can then stand and exit single file in both directions, holding on to raised bar 55 (FIG. 27) for balance. When the theater is empty, new spectators enter from either side, sit in their seats, and lower their safety crossbars. Once the theater is full, all crossbars are locked by switch actuated means (not shown), and the lights go down. In the darkness, hydraulic arms 54 lower and the plastic wall is pulled back on roll 57 by means of a spring coiled mechanism (not shown) completely freeing the spectators field of view for the show which then starts. The wall behind each chair in FIG. 20, shows the grid 52a of an evacuation channel for removing previously supplied fragrances, a loudspeaker 52b, and a recess 52c for holding Polaroid glasses 52d and a germicidal lamp 52c.

The seats or chairs of the experience theater are important in carrying out one embodiment of the invention by providing many of the sensory stimuli.

Referring to FIGS. 22 and 23, a preferred embodiment of a viewing chair 60 is shown supported by a double-acting swivel along two axes 61, 62 disposed at right angles to each other. Arm 63 which may be gear or hydraulic driven, controls the front-back pitch in relationship to the scene of the screen. Arm 64 (not shown here) similarly controls sideways tilt (note FIG. 22A). Thus, the spectators watching scenes taken from a motorcycle or-airplane will pitch and tilt just as the vehicle does, thus strongly reinforcing the spectators feeling that he is physically on the vehicle. The rest of the chair floats on a bed of springs (or optionally, foam rubber). A vibrator or oscillator 66 is provided to vibrate the rest of the chair in the rhythm appropriate to the scene, such as the varying speeds and surges and bumps of a speedboat. These vibrations are communicated to every part that touches the chair, i.e. the feet, the legs, the buttocks, the arms and the back, just as would happen if the spectator were actually sitting in a speedboat. The oscillator is variable and controlled by either pitch or volume variations on one channel of the magnetic guide track on the film.

FIG. 22A shows one method of tilting the chair using a pair of reversible motors M-l, M-2, which are activated by a sensed signal (note FIG. 35). Thus, motor M1 causes gear G-l to rotate and in turn meshing gear G-2. Coaxially mounted with gear G-2 is an internally threaded worm gear W-l which rides on driven worm gear 63a, worm gear 63a being driven in either direction as shown by the arrows, which gear in turn actuates pivotally mounted arm 63 for tilting the chair back and forth about axis 6l (FIG. 22). Motor M-2 similarly actuates arm 64 via gears W-3 and W4, internal worm gear W-S and worm gear 64a.

Aroma systems without 3-D have been attempted in the past but they have always failed because of the psychological paradox of smelling a flat two-dimensional image. Odor implies a physical reality-a palpable presencethus, the object providing the aroma should preferably be three-dimensional, if a satisfactory natural impression is to be made on the spectator.

Aromas are provided in one of two ways, either from a central, electronically controlled fragrance system, FIG. 26 (note 67) through a fixed tube 68 and then flexible tube system 69. The aromas are carried into one or both arms of the chair and directed upward, towards the face through a small slotted hole 70. One of the serious problems with other attempts to add aromas to films has been the contamination of the theater air with one odor and the inability to clear the air of this aroma before the next one arrived.

The experience theater chair solves this problem by placing a hood 71 (FIGS. 22 and 23) over the spectators head, and by applying mild suction through hole 72 so that the fragrance laden air is immediately evacuated once it passes the face. This air is evacuated through flexible tube 73 then rigid tubing 74 system and expelled from the theater.

- Another way of providing aromas is to put individual aroma cartridges 75 (FIGS. 24 and 25) into the arm of each chair (FIG. 22). The cartridge may comprise a plastic box with, for example, 12 fragrance slots 76. An appropriate wire mesh containing solid aroma pellets 77 is placed in each chamber. The top cover 78 is put on and then the two holes 79 in the side of each chamber 80 are plugged by a side cover 81 with protruding plugs on the inside. A door 82 located on the spacious side of chair is opened, the side cover removed and the cartridge put in.

The system works in the following manner. Blower 83 is activated whenever-a fragrance is desired. This creates a negative air pressure. One channel on the films (84 in FIG. 35) magnetic track carries specific frequencies which are related to specific odors. Note channels C--1 (front tilt), C-2 (side tilt), C-3 (vibrations) and C-4 (aromas) in FIG. 35. Whenever the film calls for a given odor, the appropriate signal on channel C4 activates magnetic head 85 which through electronic filters and amplification (not shown) causes a signal to be sent to solenoids in all of the chairs corresponding to odor stimulation 88 in FIG. 35. The solenoid 89 (FIG. 24) raises bar 90 to a position where the two holes 79A (FIG. 24) in the bar (which normally act as closed gates) and allows air to pass through it.

Odorless air is sucked into the chamber now heavily saturated with fragrance through holes 911, 92 and sucked out again through hole 92A and then blown gently up toward the face through latticed hole 93. The whole system may be easily removed for servicing and repair.

Breezes of varying velocities to produce tactile sensations can also be provided in the experience theater in several ways. A central air system shown in FIG. 26 takes air in through a filter 94 from the outside, heats it or cools it in a temperature control chamber 95 depending on the scene (i.e. steel mill hot; water skiing-cool, etc.) and then applies pressure from one large blower 96 whose speed is controlled by either the varying pitch or volume of one channel on the magnetic soundtrack (note FIG. 35). This air is then led through a fixed 97 and flexible duct 98 to four points of all chairs (FIG. 23); the furthest point of each arm 99 blowing breezes back on to the hand, the central front part of hood 100 blowing breezes down on to the face and back over the hair and the rear of head and behind the head 1011 blowing forward. Each of these exits are open or closed by solenoids 99a, 100a and 101a controlled by the films magnetic track in such a way that breeze blows either from the front or the back or only on the head to produce the tactile sensation indicated generally by the numeral 102 (FIGS. 35 and 36).

Another way of supplying breezes to the same points of the body is to have very small electrically controlled blowers 103, 104 and 105 placed at these points in the chair shown in FIG. 22. In this case, a signal turning the motor on and off and governing the velocity of the motor eliminates the screen need for solenoid gates as in the first breeze system.

Each blower has its own air intake from the theater air and each one is also equipped with tiny heating and cooling units to vary the temperature of the air according to the scene.

A soft plastic sheet 106 (FIG. 22) with holes for the passing of sound and air is placed behind the head so the spectator can lean back if he desires. This is important for the seats in the lower rows which may be tilted slightly back to allow their occupants a more comfortable view of the screen. The leftand right-eyed images reach the appropriate eye of the spectator through the use of Polaroid glasses 107 (FIGS. 22, 23 and 28).

The glasses are contained in small container 108 shown in FIG. 23 on the roomy side of the chair, and attached by fine supply chain I09 to prevent their getting lost or stolen. The box contains a germicidal lamp 110 to disinfect the glasses. This lamp is adapted to light up during intermission.

The box is divided into two compartments (FIG. 19), one to hold the smaller glass for people who don't wear glasses 111 and the other 112 a larger glass which fits easily over all pairs of prescription glasses.

The design of the polarized glasses is important in achieving the full advantages of the preferred aspects of the invention (FIG. 28). One of the main reasons why 3D movies have not been too successful has been the flimsy uncomfortable nature of the very cheap paper glasses which have been used.

The glasses employed with the experience theater, while still relatively inexpensive, are strong quality glasses that are designed in such a way that within a few minutes the spectator completely forgets that he is wearing them.

This is accomplished first by having the polarized filters 113 so large and curved as to extend beyond the widest peripheral range of the eye in both the horizontal and vertical direction and also large enough to cover any glasses worn by the spectator. As will be noted in FIG. 28, the glasses are formed of two halves which meet centrally above the nose at 114, the two halves each curving about each side of the face above the cheek bones to provide a wide angle field of view, and each polarized at to the other.

To minimize pressure points on the face and head, the edges of the polarizers are carefully rounded and the nose support broad and carefully molded at 115. The side head clasps 116 are contoured to the head and broadened to a winglike structure in order to distribute the pressure. It is perforated by holes at 117 to allow the rear and front air breezes to penetrate, thus minimizing the head's awareness of the broad clasp.

The seat design of the simpler version of the experience theater shown in FIG. 27 accomplishes substantially the same effects as those described in FIGS. 18 to 23 except that the chair does not tilt. The major difference is that the concrete structure of the theater wall 118 itself assumes many of the functions built into the more elaborate chair.

The chair floats on strips of rubber 119 and may be caused to vibrate by means of vibrator I20. Aromas are fed through a central system 121 through a tube in the arm 122,. Instead of using a breeze blower to the hand, for economy rear and upper face blowers 123, 124 are built right into the concrete. A straight concrete overhang 125 replaces the elaborate chairs hood and traps the fragrances and evacuates them through a wall channel 126. The Polaroid glasses are held in a recess 127 in the cement to the rear and side of the head. It also contains a germicidal lamp 128 which is actuated during intermission.

The experience theater is the first theater which gives its audience a total illusion of being physically carried into a completely different environment. This is achieved by combining all the sense stimuli into one unified system. Thus, the experience theater provides the art with a new and substantially broadened medium of entertainment.

As will be apparent to those skilled in the art, the novel screen and theater provided by the invention may take on various embodiments, depending upon the seating capacity desired in the theater.

Referring to FIG. 31, a view is shown in elevation looking from the screen and facing viewing chairs designated generally by numeral 130, the periphery 131 representing the outline of the somewhat hemispherically shaped screen. The height of the theater as measured across the vertical mouth of the screen is about 44 feet and the width about 5 1 feet. Six rows of seats 1300 to f are shown, providing an aggregate seating total of 90 spectators. Projection cameras 132, 133 are shown located substantially centrally of the seats, said cameras being adapted for use in 3D movies using polarized light and polarized viewing lenses.

In the more elaborate theater of FIG. 32, similarly viewed as in FIG. 31, the height of the theater as measured across the mouth of hemispherical screen 134 would be about 64 feet. the width being substantially the same. Nine rows of seats are provided having a seating capacity of about I64 spectators. A pair of cameras 135, 136 are located centrally of the seats.

FIG. 33 depicts still another embodiment similar to FIG. 32 but having a height of 74 feet and seating an aggregate of about 228 spectators. Theaters having a squarish screen 137 as in FIG. 30 but designed with the substantially hemispherical shape (i.e. having a marshmallow or obloidal contour) can be designed to provide even a larger seating capacity. Thus, in FIG. 30, nine rows of seats are provided having a seating capacity of 224 spectators.

Since the seating arrangement of the experience theater is predicated on using a height greater than the horizontal extension of the theater, a practical way of increasing the seating capacity is to place two theaters back to back as shown in FIG.

' 9 34. The double theater is characterized by an overall enclosure 138 having two hemispherical ends 139 and 140, each enclosing a substantially hemispherical screen 139a and 140a, the convex side of each screen having strategically located loudspeakers 141 and 142. Steeply inclined seats 143, 144 are provided, respectively, in each of the theaters the seats being supported along plane supports 145, 146 as shown. The two theaters can either shown the same program simultaneously, or different ones simultaneously. Or they can show the same program at staggered times so the people anxious to see the show need only wait half the time before the next show begins. in the double theater shown, which may have a capacity of 460 spectators, an entertainment lobby 147 may be provided having means shown for keeping the spectators occupied while waiting for the next show.

By using the combination of the novel chair and novel screen, the sense-stimulating devices associated with each of the chairs can be programmed or coordinated with signal means in the form of magnetic tracings or channels as shown for film 84, 84A in the block diagram of FIGS. 35 and 36. Leftand righeeye films (84, 84A) are shown by way of example for the projection of 3-D movies. Channels C-l to C-8 on film 84 are related to various senses shown in the block diagram while channels C-9 to C-l6 relate to distribution of sounds to the various loudspeakers. Of course, where 3-D movies are not involved and only one film is employed, the film may be adapted to carry all of the necessary signal responses.

While magnetic channels are shown associated with each of the films, it will be appreciated by those skilled in the art that all of the magnetic signals could in the alternative be carried on a separate reel of magnetic tape synchronized with the two picture reels. Also, where the television principle of transmission is employed using videotapes, two videotapes may be er;- ployed for transmitting the leftand right-eyed images.

Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention as those skilled in the art will readily understand. Such modifications and variations are considered to be within the purview and scope of the invention and the appended claims.

lclaim:

. l. The combination of a viewing chair and sense-stimulating means for use in motion picture and television theaters which comprises, a seat with armrests and having a back which terminates into a hood over the chair, support means for said chair including means adapted to rock said chair in various directions, means for vibrating said chair, odor-producing means associated with said chair, odor-conductng conduits associated with said odor-producing means, means for moving air through said odor-producing means and said odor-conducting conduits towards the face of a spectator seated in said chair, air passageways associated with said chair having exit ports for directing air towards various portions of the spectators body, means for feeding air to the air passageways, exhaust means associated with the hood of said chair for removing said fed air and odors, and a loudspeaker associated with the hood of said chair.

2. The viewing chair of claim 1, wherein the support means includes pivot means adapted to rock the chair in the forwardly and transverse direction, including means for actuating said pivot, and wherein the chair has vibration responsive means associated with the bottom of said chair.

3. The viewing chair of claim 1, wherein said chair is provided with means to enable said chair to rotate partially about its vertical axis to enable access to said chair.

4. The viewing chair of claim 1, wherein said chair is provided with a latchable safety crossbar pivotally mounted across the handles thereof.

5. The viewing chair of claim 1, wherein a central air system is provided associated with the air passageways of said chair.

6. The viewing chair of claim 1, including means responsive to signal meansassociated with a projection film for coordinating a plurality of said sense-stimulating means associated with said chair.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1370832 *Jul 9, 1920Mar 8, 1921Mollberg BrorChair with ventilating device for theaters, biographs, and the like
US1615615 *Mar 10, 1924Jan 25, 1927Michael P CannonVibrating chair
US1618158 *Aug 16, 1920Feb 22, 1927Abell Gerald LLight, color, and radiant ray bath cabinet
US1719940 *Aug 15, 1923Jul 9, 1929John GFumigated iftjblirittjbe
US2031643 *Mar 24, 1934Feb 25, 1936Albert A GranovskyCombination chair and lamp
US2420251 *May 8, 1944May 6, 1947La Foriyes FrankHair drier with air recirculating means
US2587731 *Jun 19, 1950Mar 4, 1952Frank J IrvingElectrically heated chair
US2852998 *Apr 5, 1955Sep 23, 1958Serra Jose LlobetSystem for diffusion of air in show halls for ventilation and air conditioning purposes
US3112002 *Mar 1, 1961Nov 26, 1963Lely Nv C Van DerTractors
US3131967 *Aug 28, 1961May 5, 1964Emil J Paidar CompanyAir cooled barber chair
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3865430 *Apr 24, 1973Feb 11, 1975Tanus AntonioTheater chair automatically movable by remote control
US3868107 *Feb 26, 1973Feb 25, 1975Taketoshi IchidaSimulated viewing apparatus
US3897974 *Jul 19, 1973Aug 5, 1975American Seating CoCantilevered seat for motorcoach vehicles or the like
US3923300 *Nov 29, 1974Dec 2, 1975Tanus AntonioTheater chair automatically movable by remote control
US3933326 *May 1, 1975Jan 20, 1976Schauffler Peter PInterpretation system
US4066256 *Nov 17, 1975Jan 3, 1978Future General CorporationAmusement ride
US4072346 *May 14, 1975Feb 7, 1978Ralf SchuelerSeating furniture
US4094256 *Jun 7, 1976Jun 13, 1978Voko Franz Vogt & Co.Work table having lines embodied therein
US4470631 *Dec 3, 1981Sep 11, 1984Powell Alfred JSeating structure
US4752065 *Dec 19, 1985Jun 21, 1988Showscan Film CorporationMotion picture amusement ride
US4826245 *Dec 30, 1987May 2, 1989Entratter Lynda GPrivacy chair and private viewing system
US5015933 *Nov 15, 1989May 14, 1991Ridewerks, Ltd.Seat base motion controller
US5021954 *Jan 11, 1988Jun 4, 1991The Walt Disney CompanySystem and method of providing passenger ingress and egress in an amusement ride
US5161104 *Jun 3, 1991Nov 3, 1992The Walt Disney CompanyAmusement ride having pivotable ingress-egress bridges
US5277662 *Jul 20, 1992Jan 11, 1994The Walt Disney CompanySystem and method of providing passenger ingress and egress in an amusement ride having pivotable bridges
US5301457 *Feb 22, 1993Apr 12, 1994Seely James RChair with insect repellant air jets
US5348370 *Dec 4, 1992Sep 20, 1994Fukuoka Kagaku Ltd.Apparatus for vibrating seats
US5409186 *Mar 5, 1993Apr 25, 1995Eldec CorporationUnitary seat support with integrated electronics
US5496220 *Jun 2, 1994Mar 5, 1996Brad EngstrandSystem for recording and playing back motion recorded on a medium
US5564985 *Jun 6, 1995Oct 15, 1996Brad EngstrandSensory simulator and editor and a method of using the same
US5610674 *Jun 19, 1995Mar 11, 1997Martin; David A.Precision fragrance dispenser apparatus
US5678889 *Apr 9, 1996Oct 21, 1997Purcell, Jr.; Joseph WilliamMoveable theater seats
US5700052 *Nov 14, 1995Dec 23, 1997Yamaha CorporationChair for an acoustically designed building
US5722897 *Jun 7, 1996Mar 3, 1998Engstrand; BradSensory simulator and editor and a method of using the same
US5727186 *Jan 27, 1995Mar 10, 1998The Boc Group PlcSimulation apparatus and gas dispensing device used in conjunction therewith
US5760873 *Apr 26, 1994Jun 2, 1998Wittek; Goetz-UlrichProcess and device for the synchronous addition of odours to visual and/or acoustic stimulation
US5762268 *Apr 28, 1997Jun 9, 1998The Boc Group PlcSimulation apparatus and gas dispensing device used in conjuction therewith
US5832320 *Sep 17, 1997Nov 3, 1998Wittek; Goetz-UlrichProcess and device for diffusing perfumes that accurately correspond to events or scenes during cinematographic representations and the like
US5845434 *Oct 23, 1995Dec 8, 1998Hayashi; MasahikoTheatre
US5853330 *Mar 22, 1996Dec 29, 1998Engstrand; BradSensory simulator and editor
US5949522 *Jul 3, 1997Sep 7, 1999Manne; Joseph S.Gas conducting system
US5964064 *Apr 25, 1997Oct 12, 1999Universal City Studios, Inc.Theater with multiple screen three dimensional film projection system
US5980255 *Mar 16, 1998Nov 9, 1999Cae Electronics Ltd.Seat for motion simulator and method of motion simulation
US6025902 *Jun 2, 1998Feb 15, 2000Wittek; Goetz-UlrichProcess and device for the synchronous addition of odors to visual and/or acoustic stimulation
US6039653 *Nov 16, 1998Mar 21, 2000Engstrand; BradApparatus, system and method for experiencing motion
US6042382 *Nov 20, 1996Mar 28, 2000Halfhill; RobertSustained G-force centripetal acceleration apparatus and method
US6056362 *May 13, 1999May 2, 2000Rpi Advanced Technology GroupChair assembly, in particular a chair assembly for use in virtual reality devices
US6139324 *Mar 4, 1998Oct 31, 2000D-Box Audio Inc.Multi-sense home entertainment chair transducer system
US6152829 *May 13, 1999Nov 28, 2000National Research Development Corp.Device and process for producing effects
US6169595 *Jun 7, 1999Jan 2, 2001Joseph S. ManneMultimedia linked scent delivery system
US6224491 *Jun 27, 1997May 1, 2001Kabushiki Kaisha Sega EnterprisesRide-type game machine
US6239857 *Dec 30, 1999May 29, 2001Wittek Goetz-UlrichProcess and device for the synchronous addition of odors to visual and/or acoustic stimulation
US6273865 *Jul 12, 1999Aug 14, 2001Naomi PerezMassage therapy chair
US6322250 *Jun 27, 2000Nov 27, 2001Miriam M. PrattX-ray chair
US6354954Dec 28, 2000Mar 12, 2002Disney Enterprises, Inc.Amusement apparatus and method
US6371165Oct 11, 2000Apr 16, 2002Joseph S. ManneDynamic alloy wire valve for a multimedia linked scent delivery system
US6406004 *Jun 8, 2000Jun 18, 2002Wella AktiengesellschaftMethod for imparting a certain odor impression to a person and apparatus for performing the method
US6585515 *Aug 22, 2000Jul 1, 2003D-Box Technology Inc.Multi-sense home entertainment chair transducer system
US6629724Jan 5, 2001Oct 7, 2003Johnson Controls Technology CompanyVentilated seat
US6644736Feb 1, 2002Nov 11, 2003The Boeing CompanyPrivacy seat divider for transport vehicles
US6702767Sep 25, 2001Mar 9, 2004Nelson R. DouglasMultisensory stimulation system and method
US6733293 *Jan 25, 2002May 11, 2004Provision Entertainment, Inc.Personal simulator
US6783084Nov 20, 2001Aug 31, 2004R. Douglas NelsonMethod and apparatus for olfactory stimulation
US6786541Jan 5, 2001Sep 7, 2004Johnson Controls Technology CompanyAir distribution system for ventilated seat
US6803987Jun 12, 1998Oct 12, 2004Joseph S. MannePortable scent delivery system
US6857697Jun 17, 2003Feb 22, 2005W.E.T. Automotive Systems AgAutomotive vehicle seating comfort system
US6893086May 9, 2003May 17, 2005W.E.T. Automotive Systems Ltd.Automotive vehicle seat insert
US7040710Jan 5, 2001May 9, 2006Johnson Controls Technology CompanyVentilated seat
US7052091Jan 26, 2005May 30, 2006W.E.T. Automotive Systems Ltd.Automotive vehicle seat insert
US7083227Mar 10, 2005Aug 1, 2006W.E.T. Automotive Systems, AgAutomotive vehicle seating comfort system
US7108319Jul 27, 2002Sep 19, 2006Johnson Controls GmbhAir conditioned cushion part for a vehicle seat
US7131689Jul 21, 2005Nov 7, 2006W.E.T. Automotive Systems, AgAutomotive vehicle seating comfort system
US7152842 *Jan 24, 2000Dec 26, 2006Lockheed Martin CorporationUser coupled workspace shock isolation system
US7197801Feb 17, 2006Apr 3, 2007W.E.T. Automotive Systems Ltd.Automotive vehicle seat insert
US7201441Dec 17, 2003Apr 10, 2007W.E.T. Automotive Systems, AgAir conditioned seat and air conditioning apparatus for a ventilated seat
US7213876Nov 28, 2005May 8, 2007W.E.T. Automotive System AgVehicle seat and associated air conditioning apparatus
US7229129Oct 26, 2005Jun 12, 2007Johnson Controls Technology CompanyVentilated seat
US7261371Dec 10, 2002Aug 28, 2007Johnson Controls GmbhVentilation system for an upholstery part
US7274007Sep 21, 2004Sep 25, 2007W.E.T. Automotive Systems Ltd.Control system for operating automotive vehicle components
US7338117Apr 12, 2004Mar 4, 2008W.E.T. Automotive System, Ltd.Ventilated seat
US7347815Feb 12, 2003Mar 25, 2008Razz SerbanescuMethod and apparatus for converting sense-perceived thoughts and actions into physical sensory stimulation
US7356912Apr 12, 2004Apr 15, 2008W.E.T. Automotive Systems, Ltd.Method for ventilating a seat
US7367886 *Jan 16, 2003May 6, 2008Wms Gaming Inc.Gaming system with surround sound
US7370911Oct 15, 2004May 13, 2008W.E.T. Automotive Systems, AgAutomotive vehicle seat insert
US7389943Jun 29, 2005Jun 24, 2008S.C. Johnson & Son, Inc.Electromechanical apparatus for dispensing volatile substances with single dispensing mechanism and cartridge for holding multiple receptacles
US7407385 *Apr 12, 2005Aug 5, 2008T Dot Over Uma PavelSimulation unit
US7425034Oct 15, 2004Sep 16, 2008W.E.T. Automotive Systems AgAutomotive vehicle seat having a comfort system
US7461892Dec 1, 2004Dec 9, 2008W.E.T. Automotive Systems, A.C.Valve layer for a seat
US7467823Apr 7, 2004Dec 23, 2008Johnson Controls GmbhVehicle seat
US7469844May 18, 2005Dec 30, 2008S.C. Johnson & Son, Inc.Diffusion device and method of diffusing
US7475938Apr 6, 2007Jan 13, 2009W.E.T. Automotive Systems AgAir conditioned seat and air conditioning apparatus for a ventilated seat
US7478869Aug 16, 2006Jan 20, 2009W.E.T. Automotive Systems, AgAutomotive vehicle seat insert
US7506938Aug 31, 2006Mar 24, 2009W.E.T. Automotive Systems, A.G.Automotive vehicle seating comfort system
US7578552Oct 31, 2007Aug 25, 2009W.E.T. Automotive Systems AgAutomotive vehicle seat having a comfort system
US7581785 *Jan 12, 2005Sep 1, 2009Daimler AgVehicle seat
US7585022 *Apr 7, 2005Sep 8, 2009Recaro Aircraft Seating Gmbh & Co. KgVehicle seat system, especially for aircraft
US7588288Apr 14, 2008Sep 15, 2009W.E.T. Automotive Systems AgAutomotive vehicle seat insert
US7618089Apr 18, 2006Nov 17, 2009W.E.T. Automotive Systems AgAir conditioning system for a seat
US7622073Jun 29, 2006Nov 24, 2009S.C. Johnson & Son, Inc.Apparatus for and method of dispensing active materials
US7637573Jan 17, 2007Dec 29, 2009W.E.T. Automotive Systems AgAutomotive vehicle seating insert
US7651077Mar 20, 2006Jan 26, 2010Scentair Technologies, Inc.Releasing fragrances into the air
US7691002 *Nov 30, 2007Apr 6, 2010Universal City Studios LllpAmusement ride vehicle with sensory stimulation effects
US7735932Jan 15, 2009Jun 15, 2010W.E.T. Automotive Systems AgAutomotive vehicle seat insert
US7766747 *Jul 14, 2005Aug 3, 2010Wms Gaming Inc.Gaming machine with surround sound features
US7781704Aug 21, 2007Aug 24, 2010W.E.T. Automotive Systems AgControl system for operating automotive vehicle components
US7866747 *Feb 25, 2009Jan 11, 2011Sigongmedia Co., Ltd.Theater seat providing multi-dimensional sense
US7883072 *Sep 8, 2006Feb 8, 2011Sony CorporationShaking apparatus, shaking method, and audiovisual system
US7918498Nov 6, 2008Apr 5, 2011W.E.T. Automotive Systems AgValve layer for a seat
US7971931Aug 16, 2010Jul 5, 2011W.E.T. Automotive Systems AgAutomotive vehicle seat insert
US8113517 *Jul 29, 2005Feb 14, 2012Wms Gaming Inc.Gaming machine chair
US8162391Jun 29, 2011Apr 24, 2012W.E.T. Automotive Systems AgAutomotive vehicle seat insert
US8167368Feb 15, 2010May 1, 2012W.E.T. Automotive System AgAir conditioning device for vehicle seats
US8172677Nov 5, 2007May 8, 2012Wms Gaming Inc.Wagering games using multi-level gaming structure
US8221246Dec 12, 2008Jul 17, 2012Efurn Holdings, LlcEntertainment chair
US8225555Feb 25, 2010Jul 24, 2012Falcon's Treehouse, L.L.C.Motion simulator theater with suspended seating
US8235462Mar 30, 2011Aug 7, 2012W.E.T. Automotive Systems, Ltd.Valve layer for a seat
US8309892Aug 23, 2010Nov 13, 2012W.E.T. Automotive System, LtdControl system for operating automotive vehicle components
US8320751Oct 22, 2008Nov 27, 2012S.C. Johnson & Son, Inc.Volatile material diffuser and method of preventing undesirable mixing of volatile materials
US8360517Mar 28, 2012Jan 29, 2013W.E.T. Automotive Systems, Ag.Automotive vehicle seat insert
US8474191 *Jul 23, 2012Jul 2, 2013Falcon's Treehouse, L.L.C.Motion simulator theater with suspended seating
US8545320Jun 24, 2010Oct 1, 2013Wms Gaming Inc.Gaming machine with surround sound features
US8602396May 19, 2010Dec 10, 2013Scentair Technologies, Inc.Controlling airborne matter
US8663019 *Nov 12, 2010Mar 4, 2014Wms Gaming Inc.Gaming machine chair and wagering game systems and machines with a gaming chair
US8678936Nov 12, 2010Mar 25, 2014Wms Gaming Inc.Gaming machine chair and wagering game systems and machines with a gaming chair
US8747225Jan 11, 2012Jun 10, 2014Wms Gaming Inc.Gaming machine chair
US8777320Dec 21, 2009Jul 15, 2014W.E.T. Automotive Systems AgVentilation system
US8827709May 8, 2009Sep 9, 2014ACME Worldwide Enterprises, Inc.Dynamic motion seat
US20110111839 *Nov 12, 2010May 12, 2011Wms Gaming Inc.Gaming machine chair and wagering game systems and machines with a gaming chair
US20120315983 *Jun 13, 2011Dec 13, 2012Sony Computer Entertainment America LlcAccount management of computer system
US20130100008 *Oct 19, 2011Apr 25, 2013Stefan J. MartiHaptic Response Module
US20130160768 *Feb 14, 2012Jun 27, 2013Airbus Operations (S.A.S)Oxygen supply system intended in particular for the flight crew of an aircraft
US20140084648 *Sep 25, 2012Mar 27, 2014Michael Tai-Hao WenVehicle display system
USRE29271 *Jan 30, 1976Jun 21, 1977American Seating CompanyCantilevered seat for motorcoach vehicles or the like
DE19600396A1 *Jan 8, 1996Jul 31, 1997Bernhard WeberMovement simulator for row of cinema seats
EP0385166A2 *Feb 12, 1990Sep 5, 1990Luz Industries Israel Ltd.Theater system
EP0420984A1 *Dec 18, 1989Apr 10, 1991Teatr Polifonicheskoi DramyInformation videoinstallation
EP1437165A2 *Apr 26, 1994Jul 14, 2004WITTEK, Götz-UlrichDevice for the synchronous addition of odours to visual and/or acoustical stimulation
EP2623172A1 *Feb 1, 2013Aug 7, 2013CJ 4dplex Co., Ltd.Spraying apparatus and spraying method of water and air for providing a 4D effect
WO1987003816A1 *Dec 18, 1986Jul 2, 1987Intamin IncMotion picture amusement ride
WO1998018048A1 *Oct 21, 1996Apr 30, 1998David A MartinPrecision fragrance dispenser apparatus
WO1998022004A1 *Nov 18, 1997May 28, 1998Haye Frans DeChair assembly, in particular a chair assembly for use in virtual reality devices
WO1999001793A1 *Jul 2, 1998Jan 14, 1999Joseph ManneA scent delivery system
WO2006050677A1 *Nov 12, 2004May 18, 2006Martin LainSimulation unit
WO2006065287A1 *Jul 19, 2005Jun 22, 2006Universal City Studios LlpAmusement ride vehicle with sensory stimulation effects
Classifications
U.S. Classification297/217.4, 297/217.3, 52/8, 297/180.14, 472/59
International ClassificationA63J5/00, A47C3/02, A63F13/08, G09B9/10, A47C7/62, A63J1/00, A47C1/00, G09B9/16, G09B9/32, G09B9/22, G09B9/02, A47C1/12, A63J99/00, A63J25/00
Cooperative ClassificationA63J25/00, A47C1/12, A47C7/62, A63F2300/302, A63J2005/002, G09B9/165, G09B9/22, G09B9/10, A63J1/00, A63F2300/8082, A63J2005/008, G09B9/32, A63F13/08, A47C3/02, A63J2005/006
European ClassificationA63F13/08, A47C3/02, A63J1/00, A47C1/12, G09B9/32, G09B9/10, A47C7/62, G09B9/16B, G09B9/22, A63J25/00