Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3628881 A
Publication typeGrant
Publication dateDec 21, 1971
Filing dateApr 20, 1970
Priority dateApr 20, 1970
Publication numberUS 3628881 A, US 3628881A, US-A-3628881, US3628881 A, US3628881A
InventorsHerrmann Arthur J Jr
Original AssigneeGen Signal Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Low-noise impeller for centrifugal pump
US 3628881 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventor Arthur .1. Herrmann, Jr.

Batavia, 111. 21 Appl. No. 29,842 [221 Filed Apr. 20, 1970 [45] Patented Dec. 21,1971 [73] Assignee General Signal Corporation [54] LOW-NOISE IMPELLER FOR CENTRIFUGAL PUMP 4 Claims, 4 Drawing Figs.

[52] U.S.Cl 415/119, 415/204, 415/213, 416/186 [51] Int. Cl ..F04h 39/00, P04d 17/08, F04d 29/26 [50] Field oISearch 415/204, 206, 219, 212, 213,119, 98; 416/186, 178, 188

[56] Reierences Cited UNITED STATES PATENTS 353,994 12/1886 Walker et a1. 415/219 1,017,215 2/1912 11g 415/204 1,075,120 10/1913 Rogers... 416/188 1,156,118 10/1915 Warg 416/178 1,350,927 8/1920 Gomborow 415/1 19 2,160,666 5/1939 McMahan 415/212 FOREIGN PATENTS 691,676 7/1930 France 416/186 Primary Examiner-Henry F. Raduazo Attorney-Dodge & Ostmann ABSTRACT: A practical scheme for reducing the amplitude of fluidborne noise produced by a centrifugal pump which comprises an improved impeller in which the vanes are arranged in a single row and are skewed with respect to the shrouds so that the tips of adjacent vanes overlap in the circumferential direction. The arrangement results in a substantially continuous interaction between the vanes and the cutwater.

mama m: an


ATTORNEYS LOW-NOISE IMPELLER FOR CENTRIFUGAL PUMP BACKGROUND AND SUMMARY OF THE INVENTION Most conventional centrifugal pumps employ impellers having a small number of vanes e.g., two to six vanes) whose tips are normal or slightly skewed with respect to the supporting shroud or shrouds. As the impeller rotates in its casing, the tips of the vanes pass by the stationary cutwater in succession and produce pressure pulsations in the output stream. These pulsations give rise to fluidborne noise having a frequency equal to the product of the number of vanes and the rotational speed of the impeller, and an amplitude which is a function of various design parameters. A useful theory for predicting noise level in terms of these parameters was developed by Dr. H. C. Simpson (see Hydraulic Noise Generation in Pumps," Report 512, Weir Research Laboratories, Glasgow, Scotland, June 7, 1963) and is expressed by the equation:

To Z-l-t (R) H2 z+1)(manna-mm where p, is the fluidborne noise level, in pounds per square inch, root mean square K is an empirical constant having a value of 2.66Xl

H is the developed head of the pump, in pounds per square inch N is the operating speed, in radians per second 2 is the number of vanes p is the fluid density, in pounds-square seconds per square inch per square inch R, is the cutwater radius, in inches R is the maximum radius of the volute, in inches r, is the radius of the impeller eye, in inches r, is the outer radius of the impeller, in inches.

Inspection of this equation reveals that the factor having the greatest influence upon noise level is the quantity (r /R Both the equation and experience teach that noise level decreases as the ratio r,,/R is made smaller, and this knowledge has been used for some time in designing pumps for application, such as installations aboard surface ship and submarines, where low noise levels are required, However, since the cutwater-impeller clearance cannot be made too large without adversely affecting pump performance, this approach obviously can afford only limited gains.

Since the ratio r lR always is less than one, the exponent z+l in the quantity (r /RJ manifestly has a pronounced effect on noise level. However, although noise level can be reduced by increasing Z, it also is true that use of a very large number of vanes will impair the capacity of the pump and make it impractical, it not physically impossible, to cast the impeller. Therefore, if the noise problem is to be solved by increasing the exponent Z-H, it is essential to find some way of giving the quantity 2 an effective value greater than the actual number of vanes in the impeller. U.S. Pat. No. 3,478,69l to John W. Henry IV discloses one possibility. According to this patent, the impeller employs a relatively large number of vanes which are arranged in several axially spaced, staggered rows so that the waterways between vanes in the various rows overlap each other in the circumferential direction. Tests of a specific embodiment of this design, which employed 26 vanes in two rows, show that the scheme is effective to reduce the amplitude of fluidborne noise below the level predicted by the noise equation. In spite of this significant reduction in noise level, the patented impeller has limited utility at the present time because it cannot be cast reliably in the small sizes normally needed for low-noise applications using standard foundry techniques.

The object of this invention is to provide a low-noise impeller for centrifugal pumps which is economical to manufacture. According to the invention, the impeller employs a single row of vanes which are skewed relatively to the supporting shroud or shrouds so that the leading and trailing ends of the tips of each vane circumferentially overlap the trailing and leading ends, respectively, of the tips of the adjacent vanes.

Preferably, the degree of overlap is such that there is a substantially constant vane area abreast the cutwater in all angular positions of the impeller. Since the blade tips in this scheme move gradually past the cutwater, and the overlap of the tips produces a substantially continuous tip-cutwater interaction, the noise level of the impeller should be lower than that predicted by the noise equation for a conventional impeller having the same number of vanes. In other words, the arrangement of the vane tips, in effect, makes the factor Z in the noise equation somewhat greater than the actual number of vanes in the impeller. Moreover, since the new impeller necessarily employs at least a few more vanes than a conventional impeller intended to provide the same hydraulic characteristics, and the head produced at a given impeller diameter increases with the number of vanes, it follows that the new design can produce a given head with a smaller impeller diameter. This means that the ratio r,,/R can be reduced, thereby effecting a further reduction in noise level. Actual comparison tests conducted with a 26-vane, dual row henry impeller and an ll-vane version of the new impeller have shown that the two designs, run in the same casing and affording substantially the same head and flow characteristics, had comparable, low noise levels, And, since the new impeller has a simpler structure, it can be, and in fact was, cast without difficulty using normal foundry techniques.

BRIEF DESCRIPTION OF THE DRAWINGS The preferred embodiment of the invention is described herein with reference to the accompanying drawings in which:

FIG. I is an axial sectional view of a portion of a centrifugal pump incorporating the new impeller.

FIG. 2 is a perspective view of the pump, with the front cover removed and a portion of the casing broken away.

FIG. 3 is a sectional view, on reduced scale, taken on line 3-3 of FIG. I, but showing only six vanes.

FIG. 4 is an enlarged developed view of a portion of the periphery of the impeller.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT As shown in FIGS. 1 and 2, the improved impeller II is incorporated in an otherwise conventional centrifugal pump which includes a casing 12 containing a volute-pumping chamber 13 provided with a discharge passage 14 and a stationary cutwater 15. The front end of casing 12 is closed by a cover 16 containing a suction passage 17 which leads directly into the eye l8 of impeller ll. The impeller is driven by a shaft 19 to which it is connected by a lock screw 2! and a key 22, and is provided at its front and rear ends with wear rings which cooperate with stationary wear rings 24 and 25 to seal the pumping chamber.

Impeller It includes front and rear shrouds 26 and 27, respectively, and a single row of II equiangularly spaced pumping vanes 28. The impeller is basically of the Francis type, consisting of an integral, mixed flow inducer portion, and a radially arranged diffuser. However, in contrast to the conventional Francis impeller, each vane 28 is skewed with respect to the shrouds 26 and 27 over its entire length so that, as shown in FIGS. 2 and 4, its tip 29 has leading and trailing ends 31 and 32, respectively, which overlap the opposite ends of the tips of adjacent blades.

The tip overlap is indicated in FIG. 4 by the dimension X, and its size is important. Ideally, the overlap is such that, in all angular positions of the impeller 11 relative to cutwater IS, the tip area lying abreast the cutwater is the same. This is illustrated in FIG. 4 wherein the area A, of a single tip 29 lying beneath the cutwater in position equals the sum of the areas A, and A, of two tips lying beneath the cutwater in position 15b. This arrangement minimizes noise because the outwater 15 sees" a continuous vane. In other words, the arrangement approximates the tip-cutwater interaction effect of an infinite number of vanes. As the overlap is progressively increased or decreased from this ideal, the tip area lying beneath the cutwater will fluctuate between wider and wider limits during rotation of the impeller, and, as a result, the fluidborne noise level will increase.

it should be noted that indiscriminate use of the invention can produce a marked decrease in the head versus capacity curve of the pump. The reason for this is that the pronounced skewing of the vanes 28 required to achieve the desired overlap at the tips inherently creates very acute comers 33 at the leading and trailing ends of the waterways between vanes. The boundary layer buildup in these comers restricts flow and leads to separation which adversely affects the hydraulic performance of the pump. In view of this situation, intelligent use of the invention requires that the exit area of each waterway be made larger than in a conventional impeller having waterways which are substantially rectangular in cross section, and that the inlet areas be sized to insure against detrimental th rottling in this region.

While most, if not all, pumps intended for present-day lownoise applications will use closed impellers, i.e., impellers having two shrouds, it will be evident that the invention can be incorporated in the open or single-shroud type of impeller.


1. In a centrifugal pump for liquids including a casing (12) containing a pumping chamber (13) provided with an outlet passage (14) and an adjacent cutwater (l), and a rotary impeller (11) in the chamber and including at least one supporting shroud (27) which carries a circumferential series of vanes (28) arranged to guide fluid outward from a central inlet zone (8) to the periphery of the impeller, the improvement which comprises impeller vanes (28) having tip (29) which are skewed with respect to the shroud (27) to provide each tip with leading and trailing ends (31, 32) referenced to the direction of impeller rotation, the trailing end (32) of each tip being so positioned circumferentially relatively to the leading end (31) of the next succeeding tip that portions of both of said ends can lie abreast the cutwater (15) in one angular position of the impeller.

2. The improvement defined in claim 1 in which the trailing end (32) of each tip (29) overlaps circumferentially the leading end (31) of the next succeeding tip.

3. The improvement defined in claim 2 in which the area (A or A +A of the vane tips abreast the cutwater (15) remains substantially constant throughout a complete revolution of the impeller (11).

4. The improvement defined in claim 3 in which the vanes (28) are formed in one piece with and extend between a front shroud (26), which encircles said inlet zone (18), and a back shroud (27); and in which the leading and trailing ends (31, 32) of the vane tips are joined to the front and rear shrouds, respectively.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US353994 *Dec 7, 1886 walker
US1017215 *Oct 2, 1909Feb 13, 1912Robert A IlgCentrifugal fan or pump.
US1075120 *Jul 5, 1912Oct 7, 1913Mathis Brothers CompanyImpulse-fan.
US1156118 *Apr 13, 1914Oct 12, 1915Robert WargCentrifugal fan.
US1350927 *Nov 26, 1918Aug 24, 1920Gen ElectricCentrifugal compressor
US2160666 *Jun 1, 1936May 30, 1939Gen ElectricFan
FR691676A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4108570 *Nov 23, 1976Aug 22, 1978Hitachi, Ltd.Francis-type runner for pump-turbine
US4131386 *May 5, 1977Dec 26, 1978Sundstrand CorporationSealing system for centrifugal pump
US4533294 *Jun 20, 1983Aug 6, 1985Dresser Industries, Inc.High speed centrifugal pump and method for operating same at reduced noise levels
US4826402 *Dec 14, 1987May 2, 1989Nachtrieb Paul WHigh-capacity centrifugal pump
US5127800 *Apr 12, 1990Jul 7, 1992Baker Hughes IncorporatedFlow-stabilizing volute pump and liner
US5595473 *Oct 17, 1994Jan 21, 1997Hitachi, Ltd.Centrifugal fluid machine
US5857834 *Oct 31, 1996Jan 12, 1999Hitachi, Ltd.Centrifugal fluid machine
US5971705 *Oct 28, 1998Oct 26, 1999Hitachi, Ltd.Centrifugal fluid machine
US6139266 *Sep 16, 1999Oct 31, 2000Hitachi, Ltd.Centrifugal fluid machine
US6290460Aug 11, 2000Sep 18, 2001Hitachi, Ltd.Centrifugal fluid machine
US6312222Mar 23, 2000Nov 6, 2001Hitachi, Ltd.Centrifugal fluid machine
US6364607May 14, 2001Apr 2, 2002Hitachi, Ltd.Centrifugal fluid machine
US6371724May 23, 2001Apr 16, 2002Hitachi, Ltd.Centrifugal fluid machine
US6799943Jan 25, 2001Oct 5, 2004The Gorman-Rupp CompanyCentrifugal pump with multiple inlets
US6953321Dec 31, 2002Oct 11, 2005Weir Slurry Group, Inc.Centrifugal pump with configured volute
US7156614Aug 9, 2004Jan 2, 2007The Gorman-Rupp CompanyCentrifugal pump with multiple inlets
US8967971Oct 11, 2010Mar 3, 2015New Fluid Technology Pty Ltd.Fluid pump
DE3607789A1 *Mar 8, 1986Sep 17, 1987Mitsubishi Heavy Ind LtdSchaufelrad fuer eine zentrifugalpumpe oder dergl. und verfahren zur herstellung desselben
DE3704360A1 *Feb 12, 1987Aug 25, 1988Klein Schanzlin & Becker AgCentrifugal pump for pumping liquids containing solids
DE19509255A1 *Mar 15, 1995Sep 21, 1995Klein Schanzlin & Becker AgRotary impeller pump with profiled flow channels
EP0648939A2 *Oct 14, 1994Apr 19, 1995Hitachi, Ltd.Centrifugal fluid machine
EP0795688A2 *Oct 14, 1994Sep 17, 1997Hitachi, Ltd.Centrifugal Fluid Assembly
EP0984167A2 *Oct 14, 1994Mar 8, 2000Hitachi, Ltd.Centrifugal fluid assembly
EP1199478A1Oct 14, 1994Apr 24, 2002Hitachi, Ltd.Centrifugal fluid assembly
WO2001055601A1 *Jan 25, 2001Aug 2, 2001Gorman Rupp CoCentrifugal pump with multiple inlets
WO2009124339A1 *Apr 7, 2009Oct 15, 2009New Fluid Technology Pty LtdFluid pump
U.S. Classification415/119, 416/186.00R, 415/204, 415/214.1, 415/228, 415/211.1, 415/227
International ClassificationF04D29/22, F04D29/18, F04D29/66
Cooperative ClassificationF04D29/2216, F04D29/669, F04D29/2261
European ClassificationF04D29/66P, F04D29/22D, F04D29/22B3