Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3629383 A
Publication typeGrant
Publication dateDec 21, 1971
Filing dateMay 6, 1970
Priority dateOct 14, 1963
Publication numberUS 3629383 A, US 3629383A, US-A-3629383, US3629383 A, US3629383A
InventorsHigashi-Machi, Shun Koizumi, Yutaka Kometani, Kazuo Kubota, Takeaki Nakazima
Original AssigneeHigashi Machi, Kazuo Kubota, Shun Koizumi, Takeaki Nakazima, Yutaka Kometani
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for making paper and airpervious cardboard or boardlike structures predominantly of polytetrafluoroethylene
US 3629383 A
Abstract  available in
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 3,629,383 PROCESS FUR MAKING PAPER AND A- PERVIOUS CARDBOARD 0R BOARDLIKE STRUCTURES PREDOMINANTLY 0F POLY- TETRAFLUOROETHYLENE Yutaka Kometani, 7-7, l-chome, Midorigaoka, Toyonalra-shi; Shun Koizumi, A22-104, 2-5 Shinsenri; Higashi-machi, Toyonaka-shi; Kazuo Kuhota, C-59- 305, 1-3 Aoyamadia, Suita-shi; and Takeaki Nakazima, B8-305, 2-41 Shinsenri, Kita-machi, Toyonaka-shi, all of Osaka-fa, Japan No Drawing. Continuation-impart of application Ser. No. 403,367, Oct. 12, 1964. This application May 6, 1970,

Ser. No. 35,285

Int. Cl. 331d 1/00 US. Cl. 264112 8 Claims ABSTRACT OF THE DISCLOSURE A process of making air-previous sheets of polytetrafiuoroethylene and such sheets so produced in the form of thin paper, cardboard and boardlike structures, which comprises dispersing polyetetrafiuoroethylene fibrous powder in an aqueous medium having a surface tension at 25 C. of below 40 dynes per centimeter, forming a web therefrom, and thereafter sintering the web. The polytetrafiuoroethylene fibrous powder is one having an average fiber length of 100 to 5,000 microns, an average shape factor of not less than 10 and an anisoptropic expansion factor of 1.30 to 7.00. A thermographic powder may also be present in the dispersion.

This application is a continuation-in-part of copending application Ser. No. 403,367, filed Oct. 12, 1964, and now US. Pat. No. 3,528,879.

This invention relates to a process for making strong, air-pervious sheets, i.e., paper having a thinness of less than 200 grams per square meter, and pliable cardboard or boardlike structures, consisting of polytetrafluoroethyl ene or polytetrafluoroethylene with other additives, e.g., thermoplastic resins, glass fiber, asbestos, etc. More particularly, the invention relates to a process for making from polytetrafluoroethylene fibrous powder having an average fiber length of IOU-5,000 microns, an average shape factor of not less than 10 and an anisotropic expansion factor of 1.30-7.00, strong, air-pervious sheets, which are suitable as filter material.

Although a number of inventions have been made concerning the process for producing filter material of polytetrafiuoroethylene, each has its drawbacks and none has come to be widely practiced.

Of the prior art processes, that being practiced most frequently is the process in which polytetrafluoroethylene is mixed with either a crystalline salt powder or metallic powders of copper, iron, aluminum, etc., the mixture then preformed by compressing in a metallic mold, followed by sintering the preform at above 327 C. and thereafter dissolving and removing the admixed salt or metallic powders. Another process is that in which naphthalene powder is mixed in, then after vaporizing the mixture at below the melting point of the resin, sintering is carried out. The molding step in either of these processes is complicated, and not only is there the drawback that additives are not completely eliminated but such processes also have the defect that their strength, especially flexural strength, is small. Further, because of their complexity, such processes of necessity become expensive. It is also known to make filter cloth by weaving into a fabric the polytetrafluoroethylene fiber obtained by the process disclosed in US. Pat. 2,772,444. A filter cloth such as this is very expensive, however, and can only be used for special purposes.

Another known process is that in which the colloidal particles of polytetrafluoroethylene to which has been added a lubricant are extruded from a fine nozzle to produce rods or tubes, following which these are cut into pieces 6-25 mm. long, then an abrasive force is applied to render them fibrous, after which this fibrous product is pulped by placing in water or water to which a surfactant has been added and thereafter made into a paper product (U.S. Pat. 3,003,912). In this process, however, it should be self-evident that thin paper cannot be made, since the length of the fibers used is long. Even when thicker sheets are to be made, it is necessary to run the sheets through a calender roll several times to remove the non-uniformity in the thickness of the sheets. At times, however, an unnecessary amount of interlacement between the fibers occurs which results in the density becoming too excessive, with the consequence that air-permeability is lost. In addition, since the so-called paste extrusion is carried out during the course of producing the fibers, this results in setting up in the fibers molecular orientation to a high degree, which orientation is relaxed at above the melting point causing undesirable shrinkage to take place during the sintering step. This shrinkage not only increases the thickness of the paper but becomes the cause of non-uniformity in thickness as well. Further, since extrusion is carried out during the fiber-making step according to this process, the product becomes an expensive filter material.

Strong paper of a thinness less than 200 grams per square meter and air-pervious, pliable cardboard or boardlike structures of polytetrafiuoroethylene could not be made economically to advantage by these prior art proc esses. Further, a filter material predominantly of polytetrafiuoroethylene, which has good properties and is of low cost, was not known.

As a result of extensive experimentation, we found that the thin paper and cardboard or board like structures of polytetrafiuoroethylene, as contemplated by the present invention, could only be made by using as the starting material the polytetrafluoroethylene fibrous powder having an average fiber length of IOU-5,000 microns, an average shape factor of not less than 10 and an anisotropic expansion factor of 1.30-7.00; and further that this special fibrous powder could be made into paper and cardboard or boardlike structures by the process hereinafter described.

The terms average fiber length and average shape factor, as used herein, denote, respectively, the arithmetical average of the lengths of 200 or more fibers observed optically when said powder is examined under a microscope and an arithmetical average of 200 or more shape factors which is obtained by dividing the fiber length by its width. In measuring the fiber lengths from the photomicrographs, those of fiber length not exceeding microns are excluded. Since the average according to this measurement method is a number average, should those fibers not exceeding 80 microns, the proportion by weight of which are very small, be added to the number average, it will result in evaluating unjustifiably low the fiber length obtained, thus becoming a value far different from the actual fiber length.

The term anisotropic expansion factor is determined by the following method: Four and one-tenth grams of powder is weighed into a 0.5 inch square metallic mold where it is subjected at 23 C. to a pressure raised to 2,000 psi. during one minute, after which it is held at this pressure for two minutes. The length, width and height of the resulting roughly cubical preform are measured (i.e., the X, Y and Z axes, respectively, where Z axis is the direction in which the preforming pressure was applied). The measured preform is sintered for 30 minutes at 380 C.:0.5 C., followed by allowing the resulting sintered product to cool in air to room temperature, after which it is remeasured. The anisotropic expansion factor is then the value of X /Z divided by (X +Y /X +Y where X Y Z are the respective axial measurements of the preformed product, while X Y and Z are the axial measurements of the sintered product.

Unless the particles are fibrous, the interlacement that occurs between fibers does not take place and hence, good quality paper cannot be made. Namely, the powder which heretofore was readily available commercially was in nearly all cases not fibrous, with the consequence that paper and cardboard could not be made. Since the average shape factor is a factor which numerically expresses the extent of the fibrous state, the interlacement does not occur to a substantially full extent when this factor is less than 10.

However, even though the powder may be of fibrous form, if its fiber length is less than 100 microns, the length of the fiber is too short and hence, in this case also it cannot be made into paper, as the interlacement between the fibers is insufiicient. As commercially available powders of this grade, there is one which has an average particle diameter of 35 microns, a shape factor of 8-12 and an anisotropic expansion factor of 1.18. As a practical matter, a paper cannot be made from this powder, however. While this is due to the fact that its shape factor is small and the extent of its fibrousness is small, there is also the following reason, namely, since the average fiber length of this powder is less than 100 microns, when paper is made from its dispersion, it does not become paper-like because of the lack of interlacements between the fibers.

On the other hand, when the powder has an average fiber length exceeding 5,000 microns, it is not suited for making thin but strong paper and cardboard that are uniform, even though the other properties, including the shape factor and anisotropic expansion factor, are within the limits prescribed by this invention, namely, when it exceeds 5,000 microns, the irregularity in the surface of paper made therefrom is pronounced. That is to say, when the fiber length is great, the diameter of the fibers becomes large, thus making it impossible to make thin and uniform papers. A process for producing this type of fiber is disclosed in the previously mentioned US. Pat. 3,003,912. However, while the fibers obtained by this process can, with some entailing difficulty, be formed into air-pervious cardboard and sheets, they could not be made uniform since the fiber length of the powder was greater than 5,000 microns, and hence there was spottiness in the strength of the products obtained. Further, it was not at all possible to make thin papers of less than 200 grams per square meter.

Further, the powder becomes unfit for making uniform thin paper, cardboard and sheets when its anisotropic expansion factor is not less than 7.00, even though its other properties fall within those prescribed by the present invention, namely, the anisotropic expansion factor is a measure of the molecular orientation in the fiber. Hence, as the molecular orientation increases, the anisotropic expansion factor becomes greater. If the molecular orientation is great, the shrinkage of the fiber at above the mel ing point of polytetrafluoroethylene is inevitably great, and in consequence spottiness in the thickness of the product results because of the great shrinkage in the paper during its sintering step.

When the anisotropic expansion factor is less than 1.30, the form of the powder is either nonfibrous or not completely fibrous, and thus, since interlacement does not take place between the particles of the powder, it cannot be made into paper.

According to the process of the present invention, a polytetra fluoroethylene fibrous powder having an average fiber length of l00-5,000 microns, an average shape factor of not less than 10 and an anisotropic expansion factor of 1.30-7.00 is weighed, to which is then added on a weight basis fivefold or more of an aqueous medium whose surface tension at 25 C. is 40 dynes per centimeter, and preferably below 35 dynes per centimeter as through the use of a suitable surfactant, e.g., alkylaryl-ethylene glycol.

The reason why the surface tension must be below 40 dynes per centimeter, and preferably below 35 dynes per centimeter, is because the specific surface area of the fibrous powder used in this invention is ten times that of the fiber according to the conventional processes. For example, the specific surface area, as obtained by nitrogen adsorption, of the fibers used in making the two hereinbefore described conventional filter materials is 0.05-1.0 m. /g., whereas that of the present invention is 0.5-3 m. g. Hence, since the invention powder is more susceptible as a whole to surface tension than the other fibers, it is difficult wetted with liquids. Therefore, if a liquid of great surface tension is used, the fibers would float and it would be impossible to form a uniform paper web.

When using water as the dispersion medium by lowering its surface tension by adding a surfactant thereto, it was found that instead of using it as such, still better results could be obtained by using it mixed with 05-40% by weight of either polytetrafluoroethylene particles or tetrafiuoroethylene-perfluoroolefin (CF CFR where R is a radical consisting of a carbon atom and fluorine atom) copolymeric particles whose average particle diameter is 0.05-0.5 micron, or the mixture thereof, as hereinafter described.

In making paper using the so obtained dispersion, the conventional paper-making machines, particularly the paper-making machines which are manually operated such as the TAPlPI type can be used without change or with only minor modifications.

The paper web which has been merely dried cannot be used in this state, since the bonding between the fibers is not sufficiently strong. But by heating this dried web, a paper product having sufiicient strength can be obtained. As there is a tendency toward shrinkage occurring in the fibers as the sintering temperature becomes higher, a temperature of below 360 C. is preferably employed.

As hereinbefore described, in making paper and airpervious cardboard or boardlike structures, predominantly of polytetrafiuoroethylene, although basically the process comprises dispersing a polytetrafiuoroethylene fibrous powder having an average fiber length of 5,000 microns, an average shape factor of not less than 10 and an anisotropic expansion factor of 1.30-7.00, in an aqueous medium of below 40 dynes per centimeter, then forming a web using this dispersion and thereafter heating the formed web with or without application of pressure, the present invention comprehends several more valuable embodiments. For example, paper and air-pervious cardboard or boardlike structures predominantly of polytetrafluoroethylene can be made by dispersing a polytetrafluoroethylene fibrous powder having an average fiber length of 1005,000 microns, an average shape factor of not less than 10 and anisotropic expansion factor of 1.30-7.00, and 02-50% by weight of a thermoplastic resin powder, in an aqueous medium having a surface tension at 25 C. of below 40 dynes per centimeter, and preferably below 35 dynes per centimeter, then after forming a web using this dispersion, either heating the web formed to above the melting or softening point of the thermoplastic resin incorporated or heating the web after pressing or hot pressing the web.

The thermoplastic resin preferred for dispersing with the ,polytetrafiuoroethylene fibrous powder include the polytetrafluoroethylene powders having a wet-sieve size of less than 500 microns, tetrafluoroethylene-hexafluoropropylene copolymer powder, polyethylene powder, polyvinyl chloride powder, polypropylene powder, trichlorotrifluoroethylene powder, polyacetal powder, the various polyamide resin powders, tetrafiuoroethylenevinylidene fluoride copolymer powder, polyvinylidene chloride powder, vinyl chloride-vinylidene chloride copolymer powder,

ethylenepropylene copolymer powder, or the particles of polytetrafluoroethylene and/ or copolymers of tetrafiuoroethylene-perfiuoroolefin whose particle diameter is 0.05- 0.5 micron, as hereinbefore noted. Particularly, when the polytetrafluoroethylene powder of a wet-sieve size less than 500 microns or the tetrafluoroethylene-hexafiuoro propylene copolymer powder is used, since it is possible to make paper and cardboard or boardlike structures having great strength without impairing whatsoever the various properties of the predominant polytetrafluoroethylene, such as its excellent heat resistance and resistance to chemicals, the use of these powders give especially remarkable results. On the other hand, in the case of thin paper and air-pervious cardboard or boardlike structures predominantly of polytetrafluoroethylene for use in making articles not requiring heat resistance and resistance to chemicals, for example, speaker cones, the conjoint use of a resin of low melting or softening point makes possible the production of boardlike structures economically.

While, as the polytetrafluoroethylene powder to be conjointly used, any will do as long as it is powder of a wet-sieve size less than 500 microns, particularly preferred are such as the finely divided powders obtained by grinding in the Ultramizer (a product of Fuji Electric Works Co. Ltd., Japan) either the fine powder obtained by coagulating an aqueous dispersion of colloidal polytetrafluoroethylene obtained by emulsion polymerization, the commerical grade polytetrafluoroethylene powder, or the powder obtained by the polymerization in the vapor phase of tetrafiuoroethylene at 3-10 atmospheres and 040 C. in the presence of water containing a reaction initiator of free radicals; or the finely divided powder obtained by grinding the commercial grade polytetrafiuoroethylene molding powder (normally of particle diameter 300l,000 microns) in the Micron Mill (product of Hosokawa Iron Works Ltd., Japan) or Jet-O- Mizer.

While it may seem strange that the strength is increased when, as in this case, granular powder of the same type of substance is added and mixed with polytetrafluoroethylene fibrous powder, this fact has been made known for the first time by means of this invention.

The fibrous powder having an average fiber length of IOU-5,000 microns, an average shape factor of not less than 10 and an anisotropic expansion factor of 1.30-7.00 differs in its melting temperature of the crystals and shrinkage temperature of fibers, the latter being higher. The melting point of the polytetrafluoroethylene granular powder is the same as that of the melting temperature of the crystals of the fibrous powder, and since the powder becomes completely gelled at above the melting point, the intimate bonding between the fibrous powder is effected to increase the strength of the product if it is sintered above the melting temperature of the crystal but at a temperature which does not change the form of the fibrous powder. Further, since the melting point of the tetrafiuoroethylene-hexafluoropropylene copolymer is lower than that of polytetrafluoroethylene, it becomes a good binder, with the consequence that the strength of the molded product is enhanced. Thus, even tthe fibrous powder having an anisotropic expansion factor of above 1.30 and below 7.00, which could not have been molded by the prior art processes unless much care was exercised in its sintering can now be readily molded into thin paper and cardboard or boardlike structures by its conjoint use with the various thermoplastic resin powders, and particularly with the polytetrafluoroethylene powder having an average particle diameter below 500 microns or the tetrafiuoroethylenehexafluoropropylene copolymer powder.

While the strength of the resulting paper or cardboard and boardlike structure will be increased in concomitance with an increase in the amount of the conjointly used powder, the air-permeability or the filtration speed is decreased. Thus, the conjoint use of a powder such as, for example, of polytetrafluoroethylene or the tetrafiuoroethylene-hexafiuoropropylene copolymer plays the role of a regulator of air-permeability.

It accordingly becomes necessary to increase or decrease the amount of the conjointly used powder depending upon the purpose to which the resulting molded product is to be put. When a paper of great air-permeability of filtration speed is required, the conjointly used powder in an amount of l15% by weight is suitable, but, on the other hand, when one is required which is strong though its air-permeability is small, the amount suitably used is 15-50% by weight. An amount ranging between 0.2% and 50% by weight is chosen depending upon the strength and air-permeability desired in the product.

The method of making conjoint use of a powder may be that in which the powder to be conjointly used is added after the fibrous'powder has been dispersed in the aqueous medium or that in which the fibrous powder and the powder to be conjointly used are mixed in a dry type mixer, etc.

We also found that good quality paper and air-pervious cardboard or boardlike structures predominantly of polytetrafluoroethylene could be made by dispersing a fibrous powder having an average fiber length of 1005,000 microns, an average shape factor of not less than 10 and an anisotropic expansion factor of 1.30-7.00, in an aqueous medium containing 0.540% by weight of particles of polytetrafluoroethylene and/or a tetrafiuoroethylene-perfiuoroolefin copolymer (CF =CFR where R is a radical consisting of carbon and fluorine) whose average particle diameter is 0.050.5 micron, then using this dispersion to form a web, and thereafter heating the web at above 270 C. under atmospheric or superatmospheric pres sures.

The particles used in this instance consisting of that of polytetrafluoroethylene or a copolymer of tetrafiuoroethylene and perfiuoroolefin (CF =CFR where R is a perfluoroalkyl radical) of which the average particle diameter is below 0.5 micron can be obtained readily as an aqueous, colloidal dispersion by the emulsion polymerization according to customary procedures of tetrafiuoroethylene alone or as a mixture in optional proportions of tetrafiuoroethylene and perfluoroolefin in the presence of water, using an emulsifier and a polymerization initiator of free radicals. Further, the commercial grade polytetrafluoroethylene dispersion or the fiuoroethylenepropylene copolymer dispersion in which C F has been used as a copolymer constituent, are conveniently useable. These dispersions normally contain several percent of a surfactant and thus can be used as such for making the paper as contemplated by this invention; however, since their content of resin is great and as a result they yield products lacking in pores, they are preferably used diluted with water or an ion-exchanged water.

The 0.050.5 micron polytetrafluoroethylene or tetrafluoroethylene-perfluoroolefin copolymer contained in the aqueous dispersion used in the present invention can be used in any concentration provided it is between 0.5% and 40% by weight. Naturally, the paper and cardboard or boardlike structures obtained by forming the fibrous powder into a web using a dispersion containing a great amount of resin will become relatively dense and the surface of such a paper, cardboard and boardlike structure will be smooth and have a good touch. Conversely, when the web is formed using a dispersion whose content of resin is small, the product obtained will be one having great air-permeability. Hence, the choice of the concentration of dispersion will be decided in accordance with the use to which the final product is to be put.

The addition in this manner of a small amount of the aforesaid dispersion in the dispersion in which the fibrous powder has been dispersed has the effect of enhancing the luster of the surface of the paper or cardboard and of also increasing their strength somewhat. Thus, it be- 7 comes possible either to omit the step or reduce the time required for finishing the product by means of rolls following the formation of the web and heating.

Another advantage in connection with the use of the dispersion of -005 micron polytetrafiuoroethylene and/or tetrafluoroethylene-perfiuoroolefin copolymer is that when this dispersion medium to which has been dispersed the fibrous powder having an average fiber length of IUD-5,000 microns, an average shape factor of not less than 10, an anisotropic expansion factor of 1.30-7.00 is used and is formed into a web above a liquid-pervious reinforcing material layer which can retain its original form even though heated to 270-380 C., and thereafter the web formed is heated along with the reinforcing material layer at a temperature of 270-380 C. under atmospheric or superatmospheric pressure, the production of reinforced paper and liquid-pervious cardboard or boardlike structures predominantly of polytetrafluoroethylene is possible.

The paper and liquid-pervious cardboard or boardlike structures predominantly of polytetrafluoroethylene obtained from the fibrous powder thereof having an average fiber length of 100-5,000 microns, an average shape factor of not less than and an anisotropic expansion factor of 1.30-7.00 alone or in a state in which it contains a small amount of a thermoplastic resin powder by forming into a paper web and sintering exhibit excellent performance as filter material at low pressures, but when used at high pressures, for example, in separating water contained in gasoline, they encounter trouble with respect to their bursting strength.

Now, however, if in accordance with the present invention, the web is formed on top of a liquid-pervious reinforcing material layer which can retain its original form even though heated to 270-380 C., such as, for example, a wire screen, metallic wool, glass cloth and glass wool, this defect of the conventional processes can be overcome and thus it is possible to provide improved thin paper and liquid-pervious cardboard and boardlike structures predominantly of polytetrafiuoroethylene, which can be used even under high pressures.

Although the 0.050.5 micron polytetrafiuoroethylene and/or tetrafluoroethylene-perfluoroolefin copolymer contained in the dispersion may be in any concentration within the range of 0.5% to 40% by weight, an aqueous dispersion containing a greater amount of resin enhances the adhesion of the paper and liquid-pervious cardboard or boardlike structures to the reinforcing material layer. Liquid-permeability, however, declines as the content of the resin increases in the aqueous dispersion. When an aqueous dispersion containing more than 40% by weight of the particles of polytetrafluoroethylene and/or tetrafluoroethylene-perfluoroolefin copolymer whose average particle diameter is 0:05-05 micron is used, the paper and cardboard or boardlike structures will adhere perfectly to the reinforcing material layer, but will become such that it is practically without liquid-permeability, thus rendering it impossible to attain the objects of the present invention.

On the other hand, when the content of resin in the aqueous dispersion is less than 0.5% by weight, the paper and cardboard or boardlike structures will not adhere to the reinforcing material layer at all, or at most imperfectly. Thus, the objects of the invention cannot be achieved.

The following are examples to further illustrate the present invention:

EXAMPLE 1 1 part of polytetrafluoroethylene fibrous powder having an average fiber length of 950 microns, an average shape factor of 38, and anisotropic expansion factor of 5.2, was mixed with 200 parts of polytetrafiuoroethylene aqueous dispersion.

A dispersion was prepared by diluting polytetrafiuoroethylene dispersion containing about 60% by weight of 8 a commercial grade resin with ion exchange water to such a degree that the resin content became 10%. As to the said dispersion, the surface active agents of polyoxyethylene, alkylallylether type and alkyl betaine type were respectively added by about 0.3%. The surface tension of dispersion at 25 C. was 35 dyne/ cm.

The dispersion containing fibrous powder was treated with a TAPPI type paper machine having a diameter of 230 mm., and then it was peeled off from the wire net, was dried, and then sintered at 335 C. in an electric furnace for 20 minutes.

The paper of polytetrafluoroethylene obtained was 180 g./m. thick, and the tensile strength thereof was 18 kg./ 15 mm. The water permeability Was 23-25 seconds, and retension properties of precipitates were excellent. The surface of the paper was uniform and there was no unevenness.

EXAMPLE 2 By employing the same operation as in Example 1 (10% of resin contained in the dispersion was tetrafiuoroethylene-hexafluoropropylene 85 to 15) copolymer) the surface tension of the dispersion at 25 C. was adjusted to 37 dyne/cm. and the same surface active agents as employed in Example 1 were used.

The tensile strength of the paper was almost the same, namely, 1.8 kg./ 15 mm., either in air or in water.

The water permeability was 20 seconds.

The surfaces of the papers obtained in Examples 1 and 2 proved very smooth.

EXAMPLE 3 In Example 1, the amount of polytetrafluoroethylene contained in the dispersion was adjusted to 15%, and other operations were so adjusted to be equal to those of Example 1, and thereby the dispersion containing fibrous powder was prepared. In subjecting the said dispersion to the TAPPI type paper machine with a diameter of 230 mm., the dispersion was screened on the carefully placed 200 mesh stainless steel wire net so as not to cause a wrinkle on the wire net of the said paper machine, and almost all the fibrous powder was spread on the stainless steel wire net uniformly, and no powder was recognized on the wire net of the paper machine.

Then the stainless steel wire net was dried with the fibrous powder spread over the net, and when they were therafter sintered at 335 C. for 20 minutes, paper was obtained whose main component was polytetrafluoroethylene which was completely melt-adhered to the net.

The water permeability thereof was seconds, and retention properties of precipitates were excellent, and the surface thereof was smooth and uniform EXAMPLE 4 This example was substantially identical to Example 3, but in this example tetrafluoroethylene-hexafluoropropylene to 15) copolymer dispersion was employed, and the resin content was adjusted to 20%, 0%, the surface tension of the dispersion at 25 C. was adjusted to 37 dyne/ cm. by employing the same surface active agent as in Example 3. Instead of the stainless steel wire net used in Example 3, glass cloth was used, and the paper of polytetrafluoroethylene completely melt-stuck to the glass cloth was obtained.

EXAMPLE 5 The paper whose main component was polytetrafluoroethylene reinforced by the wire net obtained in Example 3 was fixed on the bottom of stainless steel cylindrical vessel so as not to have the liquid leak out from'the contact sur face of the paper and the cylindrical vessel. Then the cylindrical vessel with the paper was set perpendicularly, and a glass receiver was provided at the lower part of the cylindrical vessel.

Then when the mixture of 50 parts of carbon tetrachloride and 50 parts of Water was poured from above TABLE 1 Percent aqueous portion Before After Tested solution filtration filtration Carbon tetrachloride 50 0. 008 Gasoline 1 0.009 Tn'chlorotrifiuoroethane 30 009 The paper, cardboard and boardlike structure can be used as nonflammable excellent filter material which is free from corrosion by any chemicals. Polytetrafluoroethylene is originally water repelling, and this filter paper does not allow any substantial amount of water to pass, but in case water and aqueous solutions are filtered, the filter material is saturated with such hydrophilic solutions as methanol, ethanol, and acetone to wet the polytetrafluoroethylene well. Then the solution is replaced with water, and by so doing the filter material passes water.

Therefore, the filter paper obtained according to the present invention can be used as the conventional filter papers almost in the same manner, and the tensile strength in the water is almost the same as in air and when the precipitate is scraped, the filter paper does not break, nor does the fiber thereof go off.

The filter paper, after having been used, is washed with such solutions as to dissolve the precipitate, is dried up, and the used filter paper can restore the original state. The filter can stand repeated uses.

The thin polytetrafluoroethylene paper obtained according to the present invention is very soft, and can be used as a substitute for deerskin for cleaning lenses and precision machines and tools, and since the tensile strength thereof is high, the usages thereof as non-woven cloth can be considered.

What is claimed is:

1. A process for making air-pervious sheets of polytetrafluoroethylene which consists essentially of dispersing in an aqueous medium whose surface tension at 25 C. is below 40 dynes per centimeter, a polytetrafluoroethylene fibrous powder having an average fiber length of 100 to 5,000 microns, an average shape factor of not less than 10, and an anisotropic expansion factor of 1.30 to 7.00, using the so obtained dispersion and forming a web, and thereafter sintering said web.

2. A process for making air-pervious sheets predominantly of polytetrafluoroethylene which consists essentially of dispersing in an aqueous medium whose surface tension at 25 C. is below 40 dynes per centimeter, a polytetrafluoroethylene fibrous powder having an average fiber length of to 5,000 microns, an average shape factor of not less than 10, and an anisotropic expansion factor of 1.30 to 7.00, and 0.2% to 50% by weight, based on said fibrous powder, of a thermoplastic resin powder, using the so obtained dispersion and forming a web, and thereafter sintering said web at a temperature above the melting point of said thermoplastic resin.

3. The process according to claim 2 wherein said polytetrafluoroethylene fibrous powder is dispersed in an aqueous dispersion medium whose surface tension at 25 C. is below 40 dynes per centimeter, said dispersion medium containing 0.5% to 40% by weight of polymer particles 0.05 to 0.5 micron in diameter, selected from the group consisting of polytetrafluoroethylene particles and tetrafluoroethylene-perfiuoroolefin copolymer particles.

4. The process according to claim 2- wherein said thermoplastic resin power is a polytetrafluoroethylene powder of a wet-sieve size below 500 microns.

5. The process according to claim 2 wherein said thermoplastic resin powder is a tetrafiuoroethylenehexafluoroethylene copolymer powder of a wet-sieve size below 500 microns.

6. A process for making air-pervious sheets predominantly of polytetrafluoroethylene which have been reinforced with a reinforcing material, which comprises dispersing a polytetrafluoroethylene fibrous powder having an average fiber length of 100 to 5,000 microns, an average shape factor of not less than 10, and an anisotropic expansion factor of 1.30 to 7.00, in an aqueous dispersion medium whose surface tension at 25 C. is below 40 dynes per centimeter, said dispersion medium containing 0.5% to 40% by weight of polymer particles 0.05 to 0.5 micron in diameter, selected from the group consisting of polytetrafluoroethylene-perfiuoroolefin copolymer particles, using the so obtained dispersion and forming a web on a liquid-pervious reinforcing material layer which is capable of retaining its original form even when heated to above the melting point of said polymer particles, and thereafter sintering said web together with said reinforcing material layer.

7. The process according to claim 6 wherein said tetrafluoroethylene-perfiuoroolefin copolymer is tetrafluoroethylene-hexafiuoropropylene copolymer containing 6% to 20% by weight of hexafluoropropylene as the copolymer component.

8. The process according to claim 6 wherein is used as said liquid-pervious reinforcing material layer a member selected from the group consisting of wire screen, metallic wool, glass cloth and glass wool.

References Cited UNITED STATES PATENTS 3,003,912 10/1961 Harford 162-157 3,186,897 6/1965 Hochberg 2-64 -127 ROBERT F. WHITE, Primary Examiner J. R. HALL, Assistant Examiner US. Cl. X.R. 264-127

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3957938 *Oct 21, 1974May 18, 1976Phillips Petroleum CompanyPretreatment of polytetrafluoroethylene filter bags
US4177334 *Sep 12, 1977Dec 4, 1979Sumitomo Electric Industries, Ltd.Microporous tubes
US4277118 *May 15, 1978Jul 7, 1981Incom International Inc.Bearings with felted teflon liners
US5399307 *Jun 18, 1993Mar 21, 1995Dalton; Robert E.Methods of compression molding two or more polytetrafluoroethylene resin layers
US5670189 *Dec 5, 1994Sep 23, 1997Dalton; Robert E.Compression molding two or more polytetrafluoroethylene resin layers to form a pressure pad
US5846577 *Apr 17, 1997Dec 8, 1998Dalton; Robert E.Continuous web press with a polytetrafluoroethylene composite
WO1995000311A1 *Jun 15, 1994Jan 5, 1995Robert E DaltonComposite, method and apparatus for making same
Classifications
U.S. Classification264/112, 264/127
International ClassificationB65D65/42, C08J9/24
Cooperative ClassificationC08J2327/18, C08J9/24, D21H5/20
European ClassificationC08J9/24, D21H5/20