Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3631459 A
Publication typeGrant
Publication dateDec 28, 1971
Filing dateAug 8, 1969
Priority dateAug 8, 1969
Also published asCA920283A, CA920283A1, DE2039089A1
Publication numberUS 3631459 A, US 3631459A, US-A-3631459, US3631459 A, US3631459A
InventorsMarvin L Morris Jr, Hermon L Pope Jr, Edward M Ruggiero
Original AssigneeTexas Instruments Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Integrated heater element array and drive matrix
US 3631459 A
Abstract  available in
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventors Marvin L. Morris, Jr. Primary Examiner-John W. Caldwell Assistant Examiner-David L. Trafton Dallas;

Attorneys-James 0. Dixon, Andrew M. Hassell, Harold Hermon L. Pope, Jr., Houston; Edward M. Ruggiero, Dallas, all of Tex. Levine, Melvin Sharp, John E. Vandigrifl, Michael A. Sileo,

Jr. and Gary C. l-loneycutt ABSTRACT: Thermal display including an air-isolated integrated semiconductor circuit forming an array of semicon- %9mx 1 n rm s .w 8 Wm u MA TD 0 de N m m 1." D8 Wmmn Ua AFPA HUM UUHW.

ductor heater elements having different heights, widths and shapes joined by a metallic connecting pattern which extends out over the heating elements to interconnect selected ones of them and a PN-junction isolated integrated semiconductor drive matrix for the heating element array positioned in the same plane as the heating element array. The PN-junction isolated integrated semiconductor drive matrix and the semicon- [54] INTEGRATED HEATER ELEMENT ARRAY AND DRIVE MATRIX 5 Claims, 11 Drawing Figs.

Gosh 5/36 ductor heating element array are concurrently formed in the 340/324 same semiconductor substrate and the heating element array 178/30, 219/216, 317/101 A, 340/324 R [51] Int. [50] Field is air isolated to provide a high degree of electrical and thermal isolation for the heating element array while both are located in the same plane on a larger support. The thermally sensitive material on which a dynamic display is formed or on which a permanent display is printed is in direct contact with [56] References Cited UNITED STATES PATENTS the monocrystalline semiconductor material of the heating element array and can be passed over the heating element array and the drive matrix.

3,501,615 3/1970 MerrymanetaL.

Patented Dec. 28, 1971 5 Sheets-Sheet 2 a i, 454/ Z40 7 741 97 2V W 4 5 Sheets-Sheet 4 II I III- II l'l 1 ll ll hllll n u "II I III i I !'I" II I LI IA IIIA Paten tecl Dec. 28, 1971 INTEGRATED HEATER ELEMENT ARRAY AND DRIVE MATRIX The present invention relates to thermal displays having an array of heater elements selectively energized to provide an information display on thermally sensitive material, and more particularly to an integrated semiconductor array of heater elements having different heights, widths and shapes, and a drive matrix therefor.

An object of the present invention is to provide an improved and simpler thermal display.

An object of the present invention is to provide an integrated semiconductor circuit tailored to meet different electrical and thermal requirements useful for a thermal display.

Still another object of the present invention is to provide an improved and simpler method of fabricating an integrated semiconductor circuit useful for a thermal display.

A more particular object of the invention is to provide a display font or printing head that is capable of producing more clearly legible printouts or read-outs. Specifically, it is an object to improve the continuity of diagonal lines and curved lines in alpha-numeric and graphic read-outs, printouts, or other information displays.

Other objects, features, and advantages of the invention may be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings in which like reference numerals indicate like parts and in which:

FIG. 1 illustrates an integrated semiconductor heater element array and drive matrix;

FIG. 2 illustrates an intermediate structure in the fabrication of integrated semiconductor heater element array and drive matrix of FIG. 1;

FIG. 3 illustrates the interconnection pattern of the heater elements and drive matrix on the surface of the structure of FIG. 2;

FIG. 4 illustrates the interconnection pattern for external connection to the heater elements and drive matrix of FIG. 1;

FIG. 5 illustrates the electrical circuit embodied in the integrated heater element array and drive matrix of FIG. 1;

FIG. 6 through 10 illustrate the printouts obtained with various print head configurations, including a standard 5X5 rectangular array compared with four examples of print heads illustrating the invention;

FIG. 11 is a plan view of a preferred thermal print head of the invention.

FIG. 1 illustrates a three by five heater element array of semiconductor mesas located within the window 3 and the drive matrix 4 over which thermally sensitive material is positioned to form a dynamic information display of the type described in US. Pat. No. 3,323,241 by .l. W. Blair et al. in which the described thermochromic materials are used or over which is passed a specially treated thermally sensitive material to form a permanent information display or printer of the type described in copending U.S. Pat. application Ser. No. 492,l74 by Emmons et al. filed Oct. 1, I965, and assigned to the assignee of the present application.

A monocrystalline silicon semiconductor wafer 2 is mounted on a larger insulating support 1 which may be any suitable material, for example, ceramic, glass or sapphire, by way of an insulating adhesive having good thermal and electrical insulating properties such as epoxy.

Each heater element of the array comprises a monocrystalline semiconductor body in a mesa shape and contains a heater element formed therein at the underside of the mesa adjacent the support 1 so that when the heater element is energized, a hotspot is formed at the top surface of the mesa to provide a localized dot on the thermally sensitive material above it. A group of selectively energized heater elements forms a group of dots on the thermally sensitive material defining a character or information representation displayed on the thermally sensitive material.

The mesas comprising the heater element array are air isolated from each other and joined by a metallic connecting pattern underneath the mesas between the semiconductor wafer 2 and the support 1 which pattern interconnects the heater elements in the mesas in the desired circuit configuration. The drive matrix for selectively energizing the heater elements and supplying the desired power to the heater elements is located in the semiconductor wafer 2 in the area generally designated as 4. The circuit elements forming the drive matrix are integral within the semiconductor wafer 2, PN-junction isolated from one another and interconnected in the desired circuit configuration by a metallic connecting pattern underneath the wafer 2 between the wafer 2 and the support 1. The heating element array and the drive matrix are also interconnected in the desired circuit configuration by the metallic connecting pattern between the wafer 2 and the support 1.

The semiconductor wafer 2 is integral or solid except within the window 3 in which are located the air-isolated heater elements and consequently the top surface of the semiconductor wafer 2 presents a good, more uniform support for the positioning or passing of the thermally sensitive material over the heater element array.

The metallic connecting pattern located between the semiconductor wafer 2 and the support 1 extends out into bonding pads located above the openings 5, 6 and 7 in the support 1 so that external connection can be made to these bonding pads through the openings at the underside of support 1. Whereas, the external connections are formed at the underside of support I and are removed from the thermally sensitive material located above the mesas. The metallic connecting pattern located between the semiconductor wafer 2 and the support 1 mechanically and electrically joins the air-isolated mesas and electrically connects them to the circuit elements of the drive matrix and is supported in the epoxy adhesive resting between the semiconductor wafer 2 and the support 1.

Each mesa contains a transistor-resistor pair which is selectively energized so that the power dissipated by the resistor causes the hotspot at the top surface of the selected mesa. The transistor in each mesa provides an active control or amplifying function in the manner that the heat generated by it facilitates the creation of the hotspot Moreover, an active element in each mesa lessens the need for amplification of signals that would otherwise have to be provided externally to the heating element array and allows the heating element array to operate directly from low power dn'ving sources.

The transistor-resistor pair in each mesa is illustrated in FIG. 5, transistor T14 and resistor R-for example along with its associated drive circuitry, transistor T29, resistor R 29, resistor R 29 and resistor R 29 for example. Each transistor-resistor pair is interconnected in the manner that one end of the resistor is connected to the collector of the transistor, the other end of the resistor being connected to a positive voltage source V the emitter of the transistor being connected to ground and the base of the transistor being connected to the drive circuit (i.e. the emitter of the associated transistor in the drive circuit).

Upon the simultaneous application of positive pulses at the input terminal T29 and the terminal PG, the transistor T29 is turned on, causing the voltage at the emitter of transistor T29 29 to become more positive and trigger the transistor T14 causing the hotspot at the surface of the mesa in which the transistor T14 and resistor R14 are located. The line PG is connected to all the transistors T29, T30 through the resistors R 29, R,,30 in the manner that the simultaneous appearance of a positive pulse at PG and a selected one of the inputs I29 or I30 causes the selected transistor T29 or T30 to turn on and in turn trigger the selected heating element In the example given, a three by five heating element array, there are 15 mesas, a corresponding l5 transistor-resistor pairs (TM-R14, TlS-RIS), a corresponding 15 drive transistors T29, T30) and a corresponding 15 inputs I29, I30).

The construction of the heater element array and the drive matrix of FIG. I may be better understood from the process of fabricating it.

Referring to FIG. 2, there is illustrated an integral monocrystalline semiconductor wafer 2 of P-type silicon. The

3 transistor-resistor pairs for the heating elements comprise diffused regions in the surface of the wafer 2 and are illustrated as T1 through T15 and respectively R1 through R15 located in the area designated 3. 8 illustrates the area which is to be a mesa shape. Whereas, each transistor T15 for example comprises a diffused N-type collector region 9, a diffused P-type base region 10, and a diffused N-type emitter region 11. Resistor R15 for example comprises a diffused N-type region made at the same time as the N-type collector diffusion and is integral therewith so that one end 'of the resistor 15 is ohmically connected to the collector 9 internally of the semiconductor material.

The drive transistors Tl6-T30 each comprise an N-type diffused collector region, P-type diffused base region and an N- type diffused emitter region. Each drive transistor T16-T30 has associated therewith a collector resistor respectively R 16-R 30. The collector resistors R M-R 30 each comprise an N-type difi'used region made at the same time as the respective collector diffusion of the drive transistor in the manner that one end of the collector resistor is integral with the collector of its associated drive transistor. Whereas, one end of the collector resistors R 16R 30 are respectively connected internally of the semiconductor material to the collectors of the drive transistors Tl6-T30. The diffused resistors R 2lR 25 have one end internally connected in the semiconductor material respectively to one end of the diffused resistors R 30, R 29, R 28, R 27 and R 26. The base resistors R M-R 30 are diffused P-type regions in the surface of the semiconductor wafer 2. These base resistors are to be connected to the base electrodes of the respective drive transistors T16-T30. The emitter resistors R M-R 30 are diffused P-type regions in the surface of semiconductor wafer 2 and are to be connected to the emitter electrodes of the respective drive transistors T16-T30. A diffused N-type region in the surface of the semiconductor wafer surrounds each of the P-type diffused regions comprising the base and emitter resistors R,,16R,,30 and R,, 16-R 30 in order to provide the desired PN-junction isolation between the circuit elements in the semiconductor material. Heavily doped N-type regions Lil-T 15 comprise conductiveltginnels in the semiconductor.

wafer 2 for providing ohmic electrical connection Between the base electrodes of the respective transistors Tl-TlS and the various circuit elements in the drive matrix. A heavily doped N-type diffused region TiC provides a conductive tunnel in the semiconductor material. Three heavily doped N-type diffused regions PG are provided in the surface of the semiconductor wafer 2 respectively near the three groups of resistors R M-R 20R l6-R 20, R 21R 25R 21 R1 25 and R 26R 30R 26R 30. The PN junction formed between an N-type tunnel and the subjacent P-type substrate isolates the tunnels from each other and from the other circuit elements.

The transistors,,resistors, tunnels and isolating junctions are fonned in the surface of wafer 2 utilizing the planar process in which an oxide film is thermally grown on the P-type silicon wafer of the desired resistivity by placing it in a furnace at an elevated temperature and passing an oxidizing agent over it. The resulting silicon dioxide film acts as a masking medium against the impurities which are later difi'used into the wafer. Holes are produced in the oxide film to allow subsequent diffusion processes to fonn the transistor, resistor, tunnel and isolating functions. These holes which are patterns of the desired circuit elements, tunnels and isolating regions are produced by photolithographic techniques. Contacts and interconnections between the circuit elements are made by similar photolithographic techniques using, for example,

I evaporated aluminum over the oxide to fonn a metallic pattern connecting the circuit elements together and terminating in bonding pads for external connections. The connecting pattern comprises conductive strips on the oxide film extending into openings in the oxide film for providing the desired con-' nections and can be formed in the manner described in copending application Ser. No. 645,539 filed June 5, 1967 entitled :Method of Making Semiconductor Devices" by Jack S.

Kilby which is assigned to the assignee of the present application.

The metallic connecting pattern formed on the oxide on the semiconductor wafer 2 is illustrated in FIG. 3. A large conductive ground plane designed G in FIG. 3 interconnects all the emitters of transistors T-Tl5 and interconnects one end of all of the emitter resistors R M-R 30. R,, 20, R -25 and R 30 are illustrated in FIG. 3 to show the place where the ground plane connects to these emitter resistors. The conductive strip V interconnects one end of all the resistors Rl-R-and one end (if the collector resistors R M-R 20. The conductive strip V interconnects the common terminals of the collector resistors R 21-R 30 (designated V in FIG. 2) and one end of the tunnel T (designated V' in FIG. 2). Conductive strip 36 connects the base of transistor T15 to one end of the tunnel T 15 and conductive strip 37 connects the other end of the tunnel T515 to the emitter of transistor T30 and to one end of the emitter resistor R 30. The conductive strip 38 connects the base of transistor T14 to one end of the tunnel T 14 and conductive strip 39 connects the other end of the tunnel T,,14 to the emitter of transistor 29 and to one end of emitter resistor R 29. In a like manner, the bases of all the transistors Tl-TlS are connected by way of the tunnels T L-T IS to the emitters of transistors T16-T30 and the emitter resistors R M-R 30. Conductive strips 21-35 respectively connect to the bases of transistors 30, 29, 28, 27, 26, 21, 22, 23, 24, 25, 16, 17, 18, 19 and 20 and to one end of their base resistors. The enlarged portions of 21-35 will later act as bonding pads for external connection and more specifically the inputs to selectively energize the heater elements. Whereas, the bonding pad 21 of FIG. 3 corresponds to the input I30 of FIG. 5 and the bonding pad 22 of FIG. 3 corresponds to the input I29 of FIG. 5.

The other ends of the base resistors R l6-R 30 are connected to the tunnels PG illustrated in FIG. 2 and the ends of these tunnels are interconnected by the conductive strip PG in FIG. 3. For example, the base resistor R 20 has its other end connected to the tunnel PG at the top of FIG. 2 by way of the conductive strip 41 illustrated in FIG. 3, the base resistor R 30 has its other end connected to the tunnel PG illustrated in the middle of FIG. 2 by way of the conductive strip 40 illustrated in FIG. 3 and the base resistor R 26 has its other end connected to the tunnel PG illustrated at the bottom of FIG. 2 by .ws fibsssiis esiivsstrivP91.Blessed i." FIG-.9 It should be mentioned that where a conductive strip connecting pathway reduced. V

Accordingly, the drive matrix being mastitis; and

requiring more circuit. elements than the heating element array occupies an area of the semiconductor wafer larger than that of the heating element array and is near the heating element array while the two are fabricated during the same process operations and subjected to the same environments. The need for external driving circuitry is eliminated and the After the semiconductor wafer is processed and includes the heater element array and the drive matrix with the desired connecting pattern as illustrated in FIG. 3, the wafer is turned upside down and mounted on a larger insulating support 1 in accordance with the procedure described in copending U.S. application Ser. No. 650,821 by Edward M. Ruggiero, filed 1 July 3, 1967, entitled Thermal Displays using Air Isolated Integrated Circuits and Methods of Making Same and assigned to the assignee of the present application. Whereas, a parting agent comprising photoresistmaterial is selectively applied over the bonding pad areas designated by points 21-35, PG, R 30, V and G in FIG. 3. An epoxy adhesive is then applied over the semiconductor wafer on the metallic connecting pattern, the silicon oxide and the photoresist material. The epoxy adhesive adheres to the silicon oxide and the metallic connecta The semiconductor wafer is then turned upside down and mounted on the insulating support 1 as illustrated in FIG. I with the bonding pads 31-35, V and G overlying the opening 5, the bonding pads 26-30 and V overlying the opening 6 and the bonding pads 21-25, R 30 and PG overlying the opening 7. These bonding pads are aligned with the openings 5-7 in such a manner that they will be accessible through the openings in the support.

FIG. 4 illustrates the bottom view of the support 1 showing the openings 5-7 with the appropriate bonding pads located above the openings.

The epoxy adhesive is then cured into a rigid solid and during the initial curing process, the viscosity of the epoxy adhesive decreases considerably prior to polymerization and hardening. This lower viscosity of the adhesive facilitates flowing of the epoxy adhesive which will not readily wet" the photoresist material thereby causing the epoxy adhesive to pull away from the photoresist material and collect in the areas around the photoresist material forming a meniscous with the wall of the openings 5-7 in the support I.

After complete curing of the epoxy adhesive, the photoresist material is removed by conventional techniques leaving the bonding pads free from the epoxy adhesive and clean for making good electrical connections thereto.

The top surface of the semiconductor wafer which is-the surface remote from the heater elements and the drive matrix elements is removed to make the semiconductor wafer as this as desirable. This may be accomplished in one step or in multiple steps using lapping, sand blasting, or chemical etching. However, the integrity of the PN junctions is maintained. Since the thermally sensitive material will be positioned on or passed over the monocrystalline surface of the semiconductor wafer, it is chemically or mechanically polished.

The semiconductor material of wafer 2 around each transistor-resistor pair of a heater element is now removed to leave the 3X5 array of air isolated mesas. A photoresist layer is applied over the top surface of the wafer 2 and a photomask is applied over this photoresist layer to provide the desired exposure pattern for the photoresist layer. The photoresist layer is then exposed through the photomask, developed and selectively removed to leave exposed those areas of the semiconductor surface which are to be removed. With the photoresist layer defining the desired pattern, the semiconductor material is etched down to the silicon oxide film to leave the air-isolated mesa shapes as illustrated in FIG. 1.

FIG. 1 illustrates the resulting shape of the semiconductor wafer 2 wherein is located the 3X5 array of air isolated mesas.

Referring now to FIG. 4 and looking at the underside of the insulating support 1, a metallic pattern previously applied on the underside of the insulating support 1 is to be connected with the bonding pads on the semiconductor wafer. Connections 42 are bonded between the bonding pads and the conductive strips on the underside of the insulating support 1 through the openings 5-7 in the insulating support.

As can be seen, the terminal strips 21-35 in conjunction with terminal strip PG proyides the input terminals for selectively energizing the heating element array which was previously discussed in connection with input terminals I I and PG of FIG. 5. The power supply terminals are provided by strips V and G to provide the ground and collector voltage connections to the system.

The thermally sensitive material for display purposes is placed in direct contact with the monocrystalline silicon mesas which are very thin thereby allowing a high degree of thermal communication between the mesas and the thermally sensitive material. The heating element array has a high degree of electrical and thermal isolation between the mesas and is particularly suitable for thermal display applications while a high density of circuit elements constituting the drive matrix may be integrated therewith with adequate electrical and thermal isolation.

The 3X5 rectangular array of mesa heating elements illustrated in FIG. 1 produces printed characters having vertical and horizontal lines that are continuous; however, characters having diagonal or curved lines do not print out with equal quality. This difference is particularly noticeable in characters having both rectangular lines and curved diagonal lines, such asaBor anR".

The printing head of the invention substantially improves the quality of curved and diagonal printout lines by providing an array of heating elements of different sizes and shapes. Such an array includes an offset geometry, i.e., an overlapping relationship between adjacent elements, not only in rectangular directions but also in diagonal directions. As a result, thermal bleeding" or spreading readily occurs in the thermally sensitive material, between adjacent heated elements, in both rectangular and diagonal directions during the print step. This aspect of the invention is equally applicable to print heads having thin film-heating elements, as well as to semiconductor heating elements.

FIG. 6 is an enlarged plan view of a thermal print head, illus- I trating a standard 5X5 rectangular array of heating elements and some examples of enlarged, simulated character printouts. Actually, as pointed out earlier, thermal spreading in the printout paper would cause the rectangular lines to be continuous, and not broken as shown.

The print head of FIG. 7 includes 29 heating elements, shaped and arranged to provide overlapping boundaries between adjacent elements in diagonal and curved line directions, as well as in rectangular directions. The simulated printout characters shown in FIG. 7 illustrate such overlap, and the fact that thermal bleeding between adjacent elements is more readily achieved in the thermally sensitive paper or other printout medium.

FIGS. 8-10 illustrate other print head embodiments of the invention, and simulated printout characters. Note particularly in FIG. 8 that an added effect is readily achieved by blunting the comers of selected heating elements of the array. In the print head of FIG. 9, the embodiment of FIG. 8 is modified by omitting four heating elements, at the blacked out locations, which leaves the corresponding printouts unaffected.

The embodiment of FIG. 10 illustrates the use of heating elements having curved sides, which has obvious utility to improve the printing of B and 8.

The print head of FIG. 11 is the same as FIG. 10, enlarged further to show clearly that the heating elements are spaced apart a suitable distance, for example, about 4 mils. Note particularly that in no case does the comer of one heating element lie adjacent the comer of an element spaced diagonally therefrom, as in rectangular arrays. This arrangement enhances thermal spreading as noted, to provide continuous printout lines in diagonal lines and curved lines.

What is claimed is:

1. A thermal display comprising an insulating substrate, a semiconductor wafer having one face mounted on said insulating substrate by an insulating adhesive, said semiconductor wafer comprising a plurality of physically separated wafer parts forming an array in a first area of said semiconductor wafer, said wafer parts respectively comprising heat-dissipative elements of different heights and widths positioned at said one face to provide overlapping boundaries between adjacent elements in diagonal and curved line directions, said heat-dissipative elements being electrically and thermally isolated from each other by the physical separation of said wafer parts, said semiconductor wafer comprising a plurality of circuit elements at said one face in a second spaced area of said semiconductor wafer, the number of said plurality of circuit elements being at least as large as the number of said plurality of heat-dissipative elements, PN junctions in said second area of said semiconductor wafer electrically isolating said plurality of circuit elements from one another through the semiconductor material, said second area of said semiconductor wafer being integral throughout, conductive means located between said one face and said insulating substrate electrically interconnecting said heat-dissipative elements and said plurality of circuit elements, means connected to said plurality of circuit second area is larger than said first area and the number of elements for selectively energizing said heat-dissipative elesaid plurality of circuit elements is larger than the number of ments, and thermally sensitive means disposed near the opsaid plurality of heatdissipative elements. posite face of said Semiconductor wafer and thermally cou- 4. A thermal display according to claim 1, wherein said conpled to said array of wafer parts. ductive means comprise diffused conductive tunnels in said 2. A h l di l according to l i 1, h i id one face of said semiconductor wafer between said first and posite face of said semiconductor wafer is substantially planar second areas of silid Semiconductor f r and said thermally sensitive means is adjacent a larger area of A thermal p y system according to clalm Where"! a Said opposite f than said first area including Said second portion of the boundary of selected elements of said array is area 10 curved.

3. A thermal display according to claim 1, wherein said

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1906960 *May 12, 1930May 2, 1933Flexo Automatic Sign CompanySign
US3354565 *Feb 1, 1966Nov 28, 1967Texas Instruments IncPassive information displays
US3495070 *May 29, 1967Feb 10, 1970Zissen Murray HThermal printing apparatus
US3496333 *Sep 26, 1968Feb 17, 1970Texas Instruments IncThermal printer
US3501615 *Sep 29, 1967Mar 17, 1970Texas Instruments IncIntegrated heater element array and drive matrix
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3813677 *Feb 20, 1973May 28, 1974Matsushita Electric Ind Co LtdHeat-sensitive record
US3848245 *Jan 15, 1970Nov 12, 1974Bunker RamoQuenched photoluminescent displays and a power circuit latching means therefore
US3897643 *Oct 28, 1971Aug 5, 1975Texas Instruments IncIntegrated heater element array and drive matrix
US4010556 *Jun 4, 1975Mar 8, 1977Carolyn EllsworthElectronic mathematics trainer
US4037315 *Sep 13, 1976Jul 26, 1977Tektronix, Inc.Thermal printing head
US4651164 *Jun 30, 1986Mar 17, 1987Ricoh Company, Ltd.Thermal print head
US4922242 *Nov 12, 1987May 1, 1990Raychem CorporationApparatus exhibiting PTC behavior useful for displaying information
US5920365 *Feb 28, 1997Jul 6, 1999Touch Display Systems AbDisplay device
US20150177703 *Nov 13, 2014Jun 25, 2015Eta Sa Manufacture Horlogère SuisseArrangement of electrodes for a digital display
WO1989004532A1 *Nov 10, 1988May 18, 1989Raychem CorporationApparatus for displaying information
Classifications
U.S. Classification347/209, D18/26, 178/30, 347/204, 345/33
International ClassificationH01L23/535, H05B3/26, B41J2/34, B41J2/50
Cooperative ClassificationH05B3/26, B41J2/50, H01L23/535, H01L2924/09701, B41J2/34
European ClassificationH01L23/535, H05B3/26, B41J2/34, B41J2/50