Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3632443 A
Publication typeGrant
Publication dateJan 4, 1972
Filing dateApr 18, 1969
Priority dateApr 27, 1968
Also published asDE1920940A1, DE6916586U
Publication numberUS 3632443 A, US 3632443A, US-A-3632443, US3632443 A, US3632443A
InventorsKitamura Tomosaburo, Kodera Yoichi, Sawaguchi Etsuro
Original AssigneeSony Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of making polypropylene electrets
US 3632443 A
Abstract
An electret which comprises a polypropylene film having a high volume resistivity and having been permanently electrically polarized.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent METHOD OF MAKING POLYPROPYLENE ELECTRETS 4 Claims, 5 Drawing Figs.

U.S. Cl 117/227, 307/88 ET, l17/93,117/l38.8 E

Int. Cl C23c 13/00 Field of Search 307/88;

[56] References Cited UNITED STATES PATENTS 3,449,094 6/ 1 969 Baxt et al 307/88 3,458,713 7/1969 Perlman et al. 307/88 3,301,786 1/1967 Klass 252/632 3,316,620 5/1967 Stewart, Jr 29/592 OTHER REFERENCES Miller: Persistent Polarization in Polymers. l; J. Polymer Science: Part A-2 V01. 4 685- 695 (1966) Kresser, Polypropylene, 1960 Reinhold Publ. Corp., Pgs. (SO-61,209

Primary Examiner-Kathleen H. Claffy Assistant Examinerlhomas L. Kundert AltomeysAlbert C. Johnston, Robert E. lsner, Lewis H.

Eslinger and Alvin Sinderbrand ABSTRACT: An electret which comprises a polypropylene film having a high volume resistivity and having been permanently electrically polarized.

Pmm M 4m SHEET 1 m: 3

YOICH WfiriA TOMOSABURO K I RA PATENTEB JAN 4m SHEET 2 [IF 3 mmmwm m E U Cw fi MWMWW a W m wm J I A r I R O a ,L O U R %m y W mmw 1? 6 O7 m H w W m T A B A Z O 2 -O 9 m 0 -w w A 5 MW. 0 0 W. O MEE g i w 3% g SHEET 3 OF 3 I'.l .v fl

wAA z mRRHm WE M M W mOAGw K A IKAm H S CU RO OUR YBU AS 5T GE PATENTED JAN 4812 METHOD OF MAKING POLYPROPYLENE ELECTRETS BACKGROUND OF THE INVENTION l. Field of the Invention This invention relates to an electret and a method of making the same, and more particularly to a polypropylene electret for electromechanical conversion devices.

2. Description of the Prior Art It is well known in the art that a permanently polarized dielectric material, commonly referred to as an electret can be utilized as a bias power source for condenser microphones, speakers, electrometers and so on. In the prior art the fabrication of the electret usually takes place by the following method. This is, a polar molecule dielectric such as carnauba wax or like natural organic compound or polymethyl metacrylate, polyethylene terephthalate, nylonlike synthetic organic compound having a dipole radical in the molecule is heated up to a temperature exceeding'its melting point or secondary transition temperature so as to facilitate rotation of the dipole radical and ion migration; a high DC voltage such as having an electric field intensity of kv./cm. to 50 kv./cm. cm. is impressed to metal electrodes on both surfaces of the dielectric to effect dipole radical orientation and ion polarization; the dielectric is cooled down to room temperature while being subjected to the voltage; and the electric field is removed from the dielectric after cooled down to room temperature to fix the dipole radical orientation and ion polarization, thus achieving permanent electrification of the dielectric. However, the camauba wax is low in volume resistivity and synthetic high-molecular materials such as polymethyl metacrylate, polyethylene terephthalate, nylon and so on which are composed of polar molecules are high in hydroscopicity, and when they are kept in open conditions decay of electric charge is great, so that they are not suitable for industrial use.

SUMMARY OF THE INVENTION In view of the foregoing, the present invention is to provide a polarized polypropylene electret for conversion devices which has stable surface charge lasting for a long period of time unaffected by humidity and a method of making the polypropylene electret.

One of the features of this invention resides in that the electret is formed of polypropylene which is a nonpolar high molecule and has a secondary transition temperature of approximately 35 C. Polypropylene has no dipole radical, has high volume resistivity, so that in the electret of this invention decay of the surface charge resulting from the internal electric field is small and; in addition, since polypropylene has substantially no hygroscopicity, decay of the surface charge is small. Accordingly, the electret of this invention can be expected to have a long service life.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a schematic diagram showing in cross section one example of a method of making an electret for conversion devices accordingto this invention;

FIGS. 2A and 2B are graphs showing changes of the surface charge density of the electret with the lapse of time;

FIG. 3 is a graph showing the relationship between voltage and the surface charge density of the electret; and

FIG. 4 is a graph showing the relationship between temperature and the surface charge density of the electret.

I DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1 there is illustrated a method of making an electret in accordance with one example of this invention, in which a relatively thin polypropylene high-molecular dielectric film is sandwiched between two metal electrodes, the resulting structure is placed in an atmosphere held at a temperature of 65 C. to 120 C. and a voltage of 50 v. to 600 v. is applied across the metal electrodes, thus providing an electret for conversion devices.

A description will be given first in connection with one embodiment of this invention as applied to a diaphragm of condenser microphones.

The first step is to prepare a'pol-ypropylene film 2, commercially known under the trademark TORAYFAN." which is of binary orientation and has a thickness of 15 microns. The next step is to coat an aluminum electrode 3 on one surface of the film 2 by means of vacuum vapor deposition and the resulting assembly is polarized. In this case the adhesion of the electrode to the polypropylene film 2 is poor, and "hence the material of the electrode is desired to be excellent in adhesion and not to be deteriorated by gas in the air.lt has been found by experiment that aluminum, palladium, silver and a goldsilver alloy exhibit excellent adhesion but that since silver and the gold-silver alloy are chemically affected by gases in the air such as hydrogen sulfide and so on, aluminum and palladium are the best for the purpose in practical use.

Subsequent to the polarization of the polypropylene film 2 having the aluminum electrode 3 deposited thereon, the film 2 is sandwiched between metal electrode plates 4a and 4b and the resulting assembly is immersed in a thennostat 5.

The thermostat 5 is held at a temperature of 90 C. and a DC voltage is impressed between'the electrode plates 4a and 4b, under which conditions the sandwiched film 2 is placed for 2 hours, thereafter being cooled down to room temperature-in 30 minutes while being exposed to the electric field.

As indicated by a curve 6 in FIG, 2B, the surface charge density of the electret thus produced undergoes less changes in the air but stably lasts for a longer period of time, as compared with that of g a conventional electret formed of polyethylene terephthalate (indicated by a curve 1 in FIG. 2A).

Generally, the charge of the electret consists of heterocharge and homocharge and the surface charge appears in terms of the difference between the heterocharge and the homocharge. Polypropylene used in this invention is a nonpolar high molecule and its secondary transition temperature is -35 C. and the motion of the molecular chain is not frozen at room temperature. Accordingly, in the fabrication of the electret the heterocharge is not produced due to the orientation of the dipole radical but instead the homocharge is generated by ions which are yielded by the voltage impressed the electrodes 4a and 4b orby discharge between the surface of the film 2 and the electrode 4b which results from discharge of the charge stored on the film surface when the electrode 4b is peeled ofi' from the film surface. However, the hygroscopicity of polypropylene is as low as less than 0.005 percent and its volume resistivity is as high as GXIO II cm., so that decay of the surface charge is hard to occur and this appears to suppress the variations in the surface charge density with the lapse of time as described previously.

In the conventional polyethylene terephthalate electret great decay of its surface charge density indicated in FIG. 2A was caused on damp days. This is considered to be due to the fact that polyethylene terephthalate has a hygroscopicity of 0.8 percent and a volume resistivity of ZXIOWI cm. and that these factors are inferior to those of polypropylene.

In FIG. 3 there is indicated by curve 7 the relationship between the voltage impr'essed across the electrode plates'4a and 4b and the surface charge 'density of the electret mentioned above. The curve 7 became substantially hump-shaped one such that the surface charge density reached amaximum value in the vicinity of approximately 400 v., as indicated. It has been found that, with the impressed voltage being lower than about 50 v. or exceeding about 600 v., the surface charge density of the electret was too low to be used for industrial purposes.

Further, there is indicated by a curve 8 in FIG. 4 the relationship between the surface charge density of the electret and the varying temperature of the thermostat 5 when the impressed voltage across the electrodes 40 and 4b was held at a value of 200 v. The curve 8 became substantially humpshaped one such that the surface charge density reached a maximum value in the vicinity of approximately C. It has been found that temperatures lower than about 65 C. and exceeding about 120 C. result too low a surface charge density of the electret and that temperatures exceeding 120 C. are not preferred from a viewpoint of the thermal resistance of polypropylene, too.

Where the electret of this invention is applied to a conversion device such as a condenser microphone, the thickness of the polypropylene film must be determined in view of the following points.

Namely, the polypropylene film is desired to be as thin as possible in order for the film to readily respond as a transducer to the driving force. However, too small a thickness of the film introduces lowered mechanical strength of the film and a fatal defect such that the both surfaces of the film are electrically short-circuited by a pinhole which might be produced in the manufacturing processes.

Accordingly, it is preferred from a practical point of view that the thickness of the film is greater than 2 microns but smaller than 50 microns.

in the foregoing the metal electrodes 4a and 4b are provided separately from the polypropylene film 2 and it is also possible to form electrodes on both surfaces of the polypropylene film 2 by means of metal vapor deposition or the like.

.It will be apparent that many modifications and variations may be effected without departing from the scope of the novel concepts of this invention.

We claim as out invention:

1. A method of making an electret comprising the steps of sandwiching a thin polypropylene nonpolar high-molecular dielectric film between two metal electrodes and impressing a voltage of 50 to 600 v. across the metal electrodes in an atmosphere held at a temperature of 65 C. to 120 C.

2. A method of making an electret as claimed in claim 1 wherein the polypropylene nonpolar high-molecular dielectric film has a thickness of 2 to 50 microns.

3. A method of making an electret as claimed in claim 1 wherein prior to the sandwiching of said film between said electrodes, aluminum or palladium is vapor-deposited at least on one surface of the polypropylene nonpolar high-molecular dielectric film.

4. A method of making an electret as claimed in claim 1, wherein said temperature is approximately C.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3301786 *May 7, 1962Jan 31, 1967Union Oil CoSynthetic ferroelectric articles
US3316620 *Feb 28, 1964May 2, 1967Philip Morris IncProcess for the production of electrets
US3449094 *Oct 23, 1965Jun 10, 1969Philip Morris IncLaminated electrets
US3458713 *Nov 1, 1966Jul 29, 1969Northern Electric CoPolycarbonate electrets
Non-Patent Citations
Reference
1 *Kresser, Polypropylene, 1960 Reinhold Publ. Corp., Pgs. 60 61, 209
2 *Miller: Persistent Polarization in Polymers. I; J. Polymer Science: Part A 2 Vol. 4 685 695 (1966)
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3763482 *Feb 1, 1971Oct 2, 1973Gte Sylvania IncCoaxial cable transducer
US3898981 *Aug 17, 1973Aug 12, 1975Electronic Monitors IncRespiration monitoring apparatus
US3945112 *Mar 21, 1975Mar 23, 1976Bell Telephone Laboratories, IncorporatedTechnique for fabrication of foil electret
US4288584 *Oct 30, 1978Sep 8, 1981Uniroyal Ltd.Electret made of branched alpha-olefin polymer
US4654546 *Nov 20, 1984Mar 31, 1987Kari KirjavainenElectromechanical film and procedure for manufacturing same
US4871352 *Dec 7, 1987Oct 3, 1989Controlled Release Technologies, Inc.Self-regulated therapeutic agent delivery system and method
US5610455 *Jun 29, 1995Mar 11, 1997Minnesota Mining And Manufacturing CompanyElectret containing syndiotactic vinyl aromatic polymer
US5835027 *Nov 7, 1996Nov 10, 1998Tyburski; Robert M.In a vehicle sensor to be disposed on a roadway for monitoring traffic
US6130627 *Aug 31, 1998Oct 10, 2000Tyburski; Robert M.Residual charge effect sensor
US6336367 *Jan 29, 1999Jan 8, 2002B-Band OyVibration transducer unit
US6513184Jun 28, 2000Feb 4, 2003S. C. Johnson & Son, Inc.Sheet for cleaning and removing particles from surface comprising particle retention layer including electret material and outer covering layer comprising low dust retention material having plurality of apertures
US6550639Dec 5, 2000Apr 22, 2003S.C. Johnson & Son, Inc.Triboelectric system
US6759769 *May 24, 2002Jul 6, 2004Kari KirjavainenDielectric film intended for transforming electric energy into mechanical energy or vice versa
US6916979Jun 18, 2003Jul 12, 2005Emfitech OyElectromechanical transducer and method for manufacturing an electromechanical transducer
EP0041850A2 *Jun 5, 1981Dec 16, 1981Matsushita Electric Industrial Co., Ltd.A method of vacuum depositing a layer on a plastics film substrate
EP0048902A2 *Sep 18, 1981Apr 7, 1982Kabushiki Kaisha ToshibaMethod for manufacturing electret device and condenser type electro-acoustic transducer having electrets
WO1989005167A1 *Dec 6, 1988Jun 15, 1989Controlled Release TechnologieSelf-regulated therapeutic agent delivery system and method
WO2002051202A1 *Dec 19, 2001Jun 27, 2002Emfitech OyElectromechanical transducer and method for manufacturing an electromechanical transducer
Classifications
U.S. Classification427/580, 427/592, 307/400, 428/335, 427/79
International ClassificationH01G7/02, H01G7/00
Cooperative ClassificationH01G7/023
European ClassificationH01G7/02B2