Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3633245 A
Publication typeGrant
Publication dateJan 11, 1972
Filing dateApr 28, 1969
Priority dateApr 28, 1969
Publication numberUS 3633245 A, US 3633245A, US-A-3633245, US3633245 A, US3633245A
InventorsPartos Frank
Original AssigneePackaging Research Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for making and dispensing coherent masses of a bulk material
US 3633245 A
Abstract
A machine for forming a bulk product into coherent masses, and more particularly to a machine for making meatballs and depositing the meatballs in a can or container. The ground meat is pumped into a fixed feeding head and a turret, having a series of cavities in its under surface, is mounted for rotation above the head. Plungers are slidable within the cavities and as each set of cavities is rotated to a position above the feeding head, meat is discharged upwardly into the cavities. A stop is located above the turret and the upper ends of the plungers engage the stop to accurately measure the amount of meat fed into each cavity.
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventor Frank Partos Milwaukee, Wis.

[211 App]. No. 819,891

[22] Filed Apr. 28, 1969 [45] Patented Jan. 11, 1972 [73] Assignee Packaging Research Corp.

Wauwatosa, Wis.

[54] APPARATUS FOR MAKING AND DISPENSING COHERENT MASSES OF A BULK MATERIAL 18 Claims, 12 Drawing Figs.

[52] US. Cl 17/321 107/17 [51] Int. Cl A22c 7/00 [50] Field 01' Search... 17/32' 18/16E, 16 F, 16 M,20T; 107/17 Primary Examiner-Lucie H. Laudenslager Att0rney-Andrus, Sceales, Starke & Sawall ABSTRACT: A machine for forming a bulk product into coherent masses, and more particularly to a machine for making meatballs and depositing the meatballs in a can or container. The ground meat is pumped into a fixed feeding head and a turret, having a series of cavities in its under surface, is mounted for rotation above the head. Plungers are slidable within the cavities and as each set of cavities is rotated to a position above the feeding head, meat is discharged upwardly into the cavities. A stop is located above the turret and the upper ends of the plungers engage the stop to accurately measure the amount of meat fed into each cavity.

As the turret rotates, the upper end of the plungers ride against a cam that acts to move the plungers downwardly to eject the meatballs into cans located beneath the cavities.

A knife is mounted to wipe against the lower surface of the turret and aids in separating the meatballs from the turret and depositing the same in cans.

PATENTEDJMI I H?! SHEET 1 [1F 5 SHEET 3 OF 5 PATENTEU Jun 1 m2 Jm m/or frank @drlo' K404 K434 flffamqs' APPARATUS FOR MAKING AND DISPENSING COHERENT MASSES OF A BULK MATERIAL meatball machine which functions to place one or more meatballs into the cans and the cans are then conveyed through a unit which introduces a predetermined quantity of food in each can, after which the cans are sealed. The more rapidly the cans can be filled and sealed, the more economical the operation, and the overall speed of production is limited by the speed of the slowest machine in line, unless multiple machines of a particular type are provided in the production line. In the past it has been found that the machine which normally limits the production capacity of the line is the machine for making and depositing the meatballs in the cans. The conventional machines have been unable to receive the ground meat, form it into masses or balls of accurate weight, and dispense the meatballs into the cans at a rate sufficient for high-speed production purposes and this has decreased the overall efficiency of the production line.

As a further disadvantage, the machines used in the past have required accurate temperature control in that it was necessary to maintain the ground meat at a very close temperature tolerance in order to form the ground meat into coherent masses or balls. Therefore, it has been the customary practice to adjust the temperature of the ground meat to the necessary temperature range by storage in rooms at the desired temperature or by the use of steam jackets.

Problems have also arisen in the past in accurately controlling the weight of the meatballs dispensed. Since the meat is among the most expensive ingredients of the canned food product, this has resulted in unnecessary and undesirable expense. In order to get the proper amount of weight of meat in each can, it has been the practice in the past to measure and dispense slightly overweight meatballs to compensate for any slight discrepency in the weight.

It is normally desired to have a specified amount of fat in the ground meat used to make the meatballs. With the machines used in the past, the meat could not be held together in the form of a coherent mass or ball with a high percentage of fat. In some cases, the meatballs, after forming, were conveyed through a fryer in order to provide a crust on the outside of the meatball in an attempt to prevent the meatball from falling apart.

The present invention is directed to a machine for automatically making meatballs and dispensing the balls into cans, and not only has an increased speed of operation but overcomes the disadvantages of prior meatball-making machines. More specifically, the apparatus of the invention includes a fixed feeding head into which the ground meat is pumped, and a turret having a series of cavities in its lower surface is mounted for rotation above the feeding head. Plungers are mounted for sliding movement within each cavity and as each set of cavities is rotated to a position above the feeding head, a quantity of ground meat is forced upwardly into the cavities. The amount of meat introduced into each cavity is accurately metered by means of a stop which is located above the turret and is engaged by the plungers as they move upwardly within the cavities.

As the turret rotates, the upper ends of the plungers ride against a cam which moves the plungers downwardly to eject the meatballs into cans moving beneath the turret. A knife or wiping blade is mounted to ride against the lower surface of the turret and aids in separating the meatballs from the turret and discharging the balls into the cans.

To counterbalance the force exerted on the turret by the ground meat being discharged from the feeding head, a roller is located above the feeding head and is adapted to ride on the upper surface of the turret as the same rotates. The roller acts to counterbalance the upward force exerted through the feeding head and thereby balances the forces acting on the bearings for the turret drive shaft.

As an additional feature, the upper ends of the plungers are mounted for sliding movement in openings in a bushing that is removably clamped to the turret. The clamps can be readily disengaged so that the meat-receiving cavities and plungers can be removed for cleaning and maintenance.

The apparatus of the invention provides a very precise measurement of the amount of meat introduced in each of the cavities in the turret, and the amount of meat introduced can be readily adjusted by raising or lowering the stop which is engaged by the upper end of the plungers. With this adjustment it is possible to precisely control the quantity of meat introduced into each cavity to a minute fraction of an ounce.

To increase the overall efficiency of the operation, a provision is made to vent the air in each meat-receiving cavity as the plunger is moved upwardly by the force of the ground meat. Venting of the air increases the rate at which the plunger can be lifted and thereby increases the uniformity of compression of the meat product.

The knife, or wiping blade, which rides against the lower surface of the turret aids in separating the meatballs from the turret when the plungers are moved to their lowermost position and also serves to remove any particles of meat which may adhere to the turret surface.

Other objects and advantages will appear in the course of the following description.

The drawings illustrate the best mode presently contemplated of carrying out the invention.

In the drawings:

FIG. 1 is a side elevation of the apparatus of the invention;

FIG. 2 is a section taken along line 22 of FIG. 1 with parts broken away in section;

FIG. 3 is an enlarged vertical section showing the turret, plungers, bushings and stop plate;

FIG. 4 is a view taken along line 4-4 of FIG. 3;

FIG. 5 is a fragmentary side elevation showing the counterbalancing roller;

FIG. 6 is a horizontal section showing the feeding head;

FIG. 7 is a vertical section showing the attachment of the blade to the under surface of the turret;

FIG. 8 is a section taken along line 8-8 of FIG. 7;

FIG. 9 is a fragmentary plan view of a modified form of the invention using a knife plate to divide the masses of material into a series of parts;

FIG. 10 is a vertical section of the apparatus shown in FIG.

FIG. III is a fragmentary plan view of a second modified form of the invention using replaceable inserts; and

FIG. 12 is a fragmentary side elevation of the apparatus of FIG. Ill, with parts broken away in section.

The drawings illustrate a machine for forming meatballs or other coherent masses of food products and for depositing one or more of the meatballs into cans. The machine, in general, includes a supporting structure or frame I and a series of open-topped cans 2 are conveyed to the machine by a conveyor 3 on frame 1. Each can is successively transferred from conveyor 3 to a star wheel conveyor 4 and subsequently transferred to a second star wheel conveyor 5. A filling unit, indicated generally by 6, is located above the star wheel conveyor 5 and the ground meat is introduced through a feeding head 7 to the filling unit 6 where it is formed into coherent masses or balls and one or more balls are deposited in each can 2 being conveyed by the star wheel conveyor 5. AFter the meat balls have been deposited in the cans 2, the cans are transferred to a discharge conveyor disc 8 for subsequent transfer to a conveying system leading to a can-sealing unit.

The supporting structure or frame 1 comprises a base 9 and a series of vertical legs 10 support a horizontal table 11 above the base 9.

The conveyor unit 3 includes an endless chain conveyor 12 which moves in a path of travel flush with the table 11 and the cans are guided in movement along the conveyor 12 by a pair of guide rails 13. As shown in FIG. 2, a worm screw 14 is mounted for rotation alongside the conveyor 12 and serves to engage and space the cans 2 apart as the cans move toward the star wheel conveyor 4. The worm screw 14 is secured to a shaft 15 joumaled for rotation in bearings 16 mounted on table 11.

The star wheel conveyor 4 is secured to the upper end of a vertical shaft 17 joumaled within an opening in the table 11. The outer periphery of the star wheel conveyor 4 is provided with a series of generally semicircular pockets 18 which receive the cans 2 and a curved guide rail 19 is disposed outwardly of the star wheel 4 and aids in transferring the cans to the star wheel conveyor 5.

The star wheel conveyor 5 is connected to a vertical shaft 20 joumaled within an opening in the tabZe 1 1. As in the case of conveyor 4, the conveyor 5 is provided with a series of semicircular pockets 21 which receive the cans 2 and a guard rail 22 extends partially around the periphery of the star wheel conveyor 5 and serves to guide or transfer the cans to the discharge conveyor disc 8. The disc 8 is mounted on a vertical shaft 23 which is joumaled within an opening in the table 11.

The filling unit 6, which serves to form and dispense the meatballs into the cans 2 that are being moved by the star wheel conveyor 5, includes a rotatable turret or turntable 24 mounted on the shaft 20 above the star wheel conveyor 5. The lower surface of turret 24 is provided with a series of recesses or cavities 25 into which the ground meat is introduced by the feeding head 7. The cavities 25 are normally positioned in groups or sets depending on the number of meatballs to be introduced into each can. For example, if it is desired to insert four meatballs into each can, four cavities 25 will be grouped together within a circle slightly smaller than the diameter of the can to be filled.

As shown in F [05. l and 3, a series of bushings 26 are mounted on the upper surface of the turret 24 and each bushing 26 is provided with a series of vertical bores 27 aligned with a set of cavities 25 in the turret. For example, if there are four cavities 25 in each group or set, each bushing 26 will have four corresponding bores 27.

The lower peripheral portion of each bushing 26 is provided with a circumferential flange 28 and clamps 29 are employed to clamp the bushings to the upper surface of the turret 24. As shown in FIG. 2, each clamp has a generally triangular configuration and is adapted to engage the flanges 28 of adjacent bushings 26. More specifically, the lower edges of each clamp 29 are provided with undercuts or recesses 30 which receive the flanges 28 on the bushings. Studs 31 extend through radially extending slots 32 in each clamp and are threaded within openings in the upper surface of the turret. With this construction, each clamp 29 engages two adjacent bushings 26, and the clamps, in combination, prevent both upward and radial displacement of the bushings. The slotted connection of clamps 29 to turret 24 enables the clamps to be moved radially after loosening the studs 31 so that the bushings 26 can be removed without completely disengaging the clamps from the turret.

A plunger 33 is mounted for vertical sliding movement within each cavity 25 and aligned bore 27. As best illustrated in FIG. 3, the lower end of each plunger 33 is provided with an enlarged head 34 and in its original position, before filling the cavity 25 with ground meat, or other food products, the lower surface 35 of head 34 is flush with the under surface of the turret 24.

To prevent relative rotation between the plungers 33 and the bores 27, each plunger is provided with a vertically extending slot 36 and a key or set screw 37 extends through an opening in the bushing 26 and slides within the slot 36. Downward movement of each plunger 33 within the corresponding cavity is limited by the engagement of the snapring 33a with the upper surface of the bushing 26. Snapring 33a is mounted within a peripheral recess in the plunger, and engagement of the snapring with the bushing serves as a stop to position the lower surface 35 of plunger head 34 flush with the under surface of the turret.

To vent the air from the cavity 25 as the head 34 of the plunger 33 moves upwardly within the cavity, a radially extending bent opening 38 is provided in the lower surface of the bushing 26 and communicates with the bore 27. As the plunger 33 is moved upwardly by the introduction of ground meat into the cavity 25, the air above the head 34 will be exhausted through the vent 38 and this aids in providing uniformity of compression of the ground meat or other product within the cavity 25.

A ball 39 is mounted for rotation within a socket in the upper end of each plunger 33. As the plungers move upwardly as the meat is introduced into the cavities 25, the balls 39 engage a stop or metering plate 40 which is suspended from the fixed upper plate 41. Engagement of the balls 39 with the metering plate 40 limits the upward travel of the plungers 33 and thereby accurately meters the amount of meat or other food product introduced into the cavities 25.

To provide an adjustment for the location of metering plate 40, a stud 42 extends through the plate 41 and the lower end of the stud is joumaled within a recess in metering plate 40. To prevent relative axial movement between the stud 42 and plate 40, a pair of retaining members 43 are secured to the upper surface of metering plate 40 and are received within a groove 44 formed in the periphery of the stud 42. The retaining members 43 prevent axial movement of the stud 42 with respect to the metering plate yet permit the stud to rotate relative to the plate 40 to adjust the vertical height of plate 40.

The upper end of the stud 42 is threaded within a locknut 45 and the upper end of the stud is provided with a knob 46. By loosening the locknut 45 and turning the knob 46, the stud 42 will move relative to the plate 41 to thereby adjust the vertical position of the metering plate 40.

To guide the metering plate in vertical movement, a series of guide rods 47 extend upwardly from the metering plate and are guided for vertical movement within bushings 48 secured within openings in the upper plate 41.

By adjusting the vertical position of the metering plate 40, the degree of upward travel of plungers 33 can be correspondingly varied to thereby adjust the quantity of meat or other food product being introduced into the cavities 25. This adjustment provides a precise and accurate control of the amount of the meat introduced into each cavity and is accurate to a minute fraction of an ounce.

The meat-feeding unit 7, which introduces the meat or other food product into each group of the cavities 25, includes a pipe 49 through which the ground meat is conveyed by a conventional pressure system. Pipe 49 terminates in a discharge head 50, and side plates 51 are secured to the head 50 and to a base plate 52. Spaced upwardly from the base plate 52 is an upper plate 53 and a layer of a self-lubricating material, such as Teflon 54, is secured to the upper surface of plate 53 and is adapted to ride against the lower surface of the turret 24 as the turret rotates.

As best shown in FIG. 6, the discharge head 50 is provided with a generally rectangular outlet opening 55 and as the turret 24 rotates, each set of cavities 25 is moved into registry with the outlet opening 55 and the ground meat is discharged through the opening 55 into the cavities 25.

in order to accurately position the discharge head 50 with respect to the turret 24, a pair of aligning studs 56 extend upwardly from the table 11 and are received within grooves 57 formed in the baseplate 52. Nuts 58 can be threaded onto the ends ofstuds 56.

The discharge head is forced upwardly against the lower surface of the turret 24 by a series of levelling studs 59 which are threaded within openings in the baseplate 52. The lower ends of the studs 59 bear against the table 11 and by threading down the studs 59 the baseplate 52 as well as the discharge head 50 will be forced upwardly into tight bearing engagement with the lower surface of turret 24. Thumbscrews 50 are threaded on the leveling studs 59 and serve to lock the studs in position. In addition, the inner pair of studs 59 also threadedly receive locknuts 61.

As the ground meat being discharged from head 50 into the cavities 25 exerts a substantial upward pressure against the turret 24, a holddown unit 62 is employed to counterbalance the force exerted through the discharge head 50. As best shown in FIG. 5, the holddown unit 62 includes a roller 63 which is joumaled within a carriage 64 and is adapted to ride on the upper surface of turret 24 as the turret rotates. The roller 63 is located in vertical alignment with the discharge head 50 and exerts a downward thrust which counterbalances the upward force of the meat being introduced into the cavities 25.

The carriage 64 is pivotally connected to a bracket 65 which extends downwardly from the fixed upper plate 41. To urge the roller 63 downwardly against the turret 24, a stud 66 is threaded within a sleeve 67 secured to the under surface of plate 41 and the lower curved end 68 of the stud bears against the upper surface 69 of carriage 64. Locknut 70 serves to lock the stud in any given position to adjust the force applied through roller 63 to the turret 24.

As shown in FIG. 4, the roller 63 rides on the upper surface of the turret 24 and the roller is spaced inwardly from the peripheral edge of the turret, and located between the path of travel of the roller 63 and the edge of the turret is a groove 71. Any oil, grease or foreign material which may accumulate on the upper surface of the turret 24 will lodge in the groove 71 so that this material will not fall off of the peripheral edge of the turret 24 into the cans 2 beneath.

After each set of cavities 25 passes over the discharge head 50 and is filled with the meat or other product, rotation of turret 24 causes the cavities to move out of registry with the discharge head 50. As the plate 54 extends circumferentially from the discharge opening 55 to a location adjacent and generally beneath the end of a cam plate 72, the plate 54 will prevent the release of the meat from the cavities 25 until the plungers 33 engage the cam plate and the ejecting operation begins.

Cam plate 72 is mounted beneath the plate 41 by a series of supports 73. The cam plate 72 is provided with a lower inclined cam surface 74 and as the turret rotates, the balls 39 located on the top of the plungers 33 ride against the inclined surface 74 and move the plungers downwardly within the bores 27 and aligned cavities 25, thereby ejecting the meat or other food product from the cavities into the cans 2 beneath. While the masses of meat ejected from cavities 25 are referred to as balls" they normally are not spherical, but instead are in the form of cylindrical plugs, with the particular shape depending on the shape of the cavities.

As best shown in FIG. 2, the cam plate 72 extends through an arc of approximately 170 and as each set of the cavities 25 reaches the end of the cam plate, the plungers 33 have been lowered to their original position wherein the lower end 35 of each plunger is substantially flush with the lower surface of the turret 24.

To aid in removing the plugs or balls of meat from the cavities, a blade assembly 75 is utilized which is located between the end of the cam plate 72 and the discharge conveyor 8. The construction of the blade assembly 75 is best shown in FIGS. 7 and 8 and includes a sharp edge blade 76 which rides against the under surface of the turret 24 and acts as a wiping member to wipe away each meat plug if it has not separated completely from the turret as the plunger returns to its lowermost position. The blade 76 is connected to a hub 77 and shaft 78 extends outwardly from the hub and is mounted for rotation within a boss 79. The boss 79 is connected to one of two clamping blocks 80 which are clamped around one of the vertical supporting posts 81 which connect the table 11 and the upper fixed plate 41. Bolts 82 serve to clamp the blocks 80 together to firmly position the blade assembly 75 with respect to the fixed, nonrotating structure.

As the shaft 78 is freely rotatable within the boss 79 a setscrew 83 is employed to lock the blade 76 at any desired angle or attitude with respect to the under surface of the turret 24.

The opposite, or inner end of blade 76 carries a plate 84 and the plate 84 is spaced above a block 85 by a stud 86 which extends through a bore in the block 85 and is threaded within an opening in the plate 84.

The plate 84 and the blade 76 are urged upwardly away from the block 85 and against the lower surface of the turret 24 by a spring 88, the ends of which are received within recesses in the plate 84 and block 85.

A shaft 89 extends inwardly from the block 85 and is mounted for rotation within an opening in carriage 90. Carriage 90 carries a roller 91 that rides on a horizontal ledge 92 attached to the hub 93 of the turret 24. The shaft 89 can be rotated with respect to the carriage 90, similar to the engagement of shaft 78 with boss 79, to permit adjustment of the angularity of the blade 76. A setscrew 94 serves to lock the shaft 89 with respect to the carriage 90.

With this construction, the entire length of blade 76 is urged upwardly into tight bearing engagement with the under surface of the turret 24.

The drive mechanism is best illustrated in FIG. 1, and includes a sprocket 95 which is attached to shaft 96. Sprocket 95 is adapted to be connected by a chain, not shown, to the drive shaft of a motor or other prime mover. Shaft 96 is journaled on the frame 1 by a pair of bearings 97 and the outer end of shaft 96 carries a hand wheel 98 which permits manual operation of the drive system.

Sprocket 99 is secured to the shaft 96 and is connected to a sprocket 100 mounted on shaft 101 by a chain 102. A gear 103 is also mounted on the shaft 101 and serves to drive the conveyor 12.

The inner end of the shaft 96 carries a bevel gear 104 which meshes with a bevel gear 105 mounted on the lower end of the shaft 20 that carries the star wheel conveyor 5 and the turret plate 24. Located above the bevel gear 105 is a sprocliet 106 that is connected to sprocket 107 on shaft 108 by a chain 109. A sprocket 110 is also mounted on shaft 108 beneath sprocket 107, and a chain 111 connects the sprocket 110 with a sprocket 112 mounted on the lower end of the vertical shaft 113. The upper end of shaft 113 carries a bevel gear 114 which drives bevel gear 115 attached to the worm screw 14, to thereby drive the worm screw and index the cans 2 in prepara tion for transfer to the star wheel conveyor 4.

The vertical shaft 108 also carries a gear 116 which drives larger 117 mounted on shaft 17 to which the star wheel conveyor 4 is secured. In addition the lower end of shaft 17 carries a sprocket 118 which is connected by chain 119 to a sprocket 120 secured to the lower end of shaft 23. The chain drive 119 acts to rotate the discharge disc 8 in accordance with rotation of the star wheel conveyor 4.

In operation of the machine of the invention, the cans 2 are supplied to the conveyor 3 by a conventional conveying mechanism. As the cans move along the conveyor 3, the worm screw 14 serves to index or space the cans apart for transfer to the star wheel conveyor 4. Each can is successively received within one of the pockets 18 of the conveyor 4 and is transferred to one of the pockets 21 of the central star wheel conveyor 5 which operates beneath the turret 24. The cans 2 are carried by the conveyor 5 through an arc of approximately 210 and are then transferred to the discharge disc 8.

The ground meat or other food product to be introduced into the cans 2 is pumped through pipe 49 and is discharged through the opening 55 into each set of cavities 25 in turret 24 as the turret rotates. As the meat is discharged into the cavities under considerable pressure, the meat will move the plungers 33 upwardly within the cavities until the balls 39 of the plungers engage the metering plate 40, and this engagement provides a stop and an accurate measurement of the quantity of meat inserted within the cavities.

As the turret 24 continues to rotate, the cavities 25 which have been filled with meat move out of registry with the discharge head 50 and due to the fact that the lower ends of the cavities are enclosed by the plate 54 the plug of meat will not fall by gravity from the cavities. After rotating through an arc of approximately 90 the balls 39 at the upper ends of the plungers ride against the cam surface 74 of cam plate 72, thereby progressively lowering the plungers 33 within the cavities 2S and ejecting the plugs or balls of meat into the cans 2 beneath. After the plungers 33 have been moved downwardly to their original position in which the lower end 35 is flush with the under surface of the turret 24, the plunger heads 34 move across the blade assembly 75 and the blade 76 wipes against the lower surface of the turret to insure that the meat plug has been completely separated from the turret. The cans which have been filled with the meat plugs or balls are then transferred to the discharge disc 8 to complete the operation.

While the above description has been directed to the formation of meat products, such as meatballs, it is contemplated that one or more coherent masses or plugs of meat or other bulk products can be formed by the apparatus of the invention and deposited in each can. While the drawings show the use of four cavities 25 in each set to thereby provide four meatballs for each can, one or more cavities can be employed with the size and number of the cavities depending on the particular product being prepared. For example, when preparing spaghetti and meatballs, four or more small meatballs may be deposited in each can, while in making stew, a single large ball or mass may be discharged into each can.

FIGS. 9 and illustrate a modified form of the invention in which the masses of meat or other food product in the cavities are divided into two parts. In this construction, a turret 121, similar in construction to turret 24, is provided with a series of horizontal recesses 122 in its peripheral edge which divides the turrets into an upper section 123 and a lower section 124. Vertical cavities 125, similar to cavities of the first embodiment, extend through the turret 121 and are disposed in alignment with vertical bores 127 in a bushing 126 similar to bushing 26. In addition, plungers 128, corresponding to plungers 33, are disposed for sliding movement within the cavities 125.

As best shown in H0. 9, a knife plate 129 is mounted for sliding movement within each recess 122, and the knife is provided with a series of holes 130 which correspond generally in size and number to the number of cavities 125 in each set and to the number of bores 127 in each bushing 126. The edges bordering the holes 130 are bevelled as indicated by 131.

To slide the knife plate 129 outwardly within the recess 122 and thereby cut the plug of meat within each cavity 125 into two parts, the outer end of the knife plate carries a roller 132 which rides in a cam slot 133 formed in the under surface of the fixed cam plate 134.

As the turret 121 rotates, the roller or cam 132 will move into the curved portion 135 of the cam slot 133, thereby drawing the knife plate 129 outwardly and severing each meat plug into two parts. Continued rotation of the turret will cause the roller 132 to ride back into the main portion of the cam slot 133 to move the knife plate 129 back into its original position.

The knife plate 129 is at its inner position while the material is being fed into the cavities 125 and is then caused to move outwardly to slice the masses of material in each cavity into two parts. Subsequently, the knife plate 129 is returned to its inner position where the holes 130 are in registry with the cavities 125, prior to the point at which the plungers 128 engage the cam plate to start the ejection of the masses from the cavities 125.

The manner of ejection of the material from the cavities 125 is similar to that previously described, utilizing an inclined cam similar to cam plate 72. As the material is ejected from each cavity, it will fall into two parts rather than one to thereby double the number of masses over the embodiment shown in FIGS. 1 to 8.

While the above description has shown the use of a single knife plate 29 for each set of cavities to divide the mass of material in each cavity into two parts, it is contemplated that one or more similarly operating knife plates can be associated with each set of cavities to divide each mass of material into any desired number of parts.

FIGS. 11 and 12 illustrate a further modification of the invention which provides greater flexibility and enables the number and size of the masses of material to be readily changed as desired. In this embodiment, a turret 136, similar to turret 24, is provided with a series of relatively large, circumferentially spaced openings 137 and the lower end portion 138 of an insert 139 is received within each opening. The height of the lower end portion 138 of insert 139 is equal to the thickness of the turret so that the lower extremity of portion 138 will be flush with the under surface of the turret. The upper end portion 140 of insert 139 is enlarged to provide an annular shoulder which rests on the upper surface of the turret.

To secure the insert 139 to the turret 136, the insert is provided with a series of countersunk bores 141 and studs 142 are located within the bores and are threaded within openings in the turret.

The insert 139 is provided with one or more cavities 143, similar to cavities 25, with the number and size of the cavities depending on the particular process involved. Mounted on the upper surface of each insert 139 is a bushing 144 having a series of bores 145 disposed in alignment with cavities 143. Plungers 146, similar to plungers 33, are mounted for sliding movement in the cavities 143 and bores 145.

The bushings 144 are secured to the respective inserts 139 by clamps 147, having projecting side edges 148 which engage the flange 149 on the lower end of each bushing. As in the case of clamps 29, each clamp 147 is adapted to engage two adjacent bushings 144, and each clamp 147 is connected to turret 136 by a stud 150 which extends through a slot 151 in the clamp and is threaded in an opening in the turret.

The ground meat or other bulk product is introduced and ejected from the cavities 143 in the manner previously described in the first embodiment.

The use of inserts 139 provides greater versatility in that the operator can readily vary the number and size of the masses of material being formed by merely changing inserts. For example, when preparing a product such as spaghetti and meatballs, it may be desired to introduce four small meatballs into each can and thus an insert would be used having four cavities. Subsequently, if the machine is used for preparing stew in which only a single large meatball is required, the original insert can be replaced with one having a single large cavity. Therefore, the insert 139 enables the number and size of the masses to be varied without the necessity of removing and replacing the turret.

The machine of the invention is a high-speed unit capable of forming materials into coherent masses and depositing one or more masses into a can or container. The amount of material to be introduced into each cavity is precisely measured so that no overage is required in order to deposit a uniform weight of material into each container. The wiper blade acting in conjunction with the plunger insures that all of the material is removed from the lower face of each plunger.

As the bushings which contain the plungers are removably secured to the turret, they can be readily removed for cleaning and replacement.

lclaim:

1. In an apparatus for forming bulk material into coherent masses and depositing the masses into containers, a frame, a turret mounted for rotation on said frame about a vertical axis, said turret having a plurality of circumferentially spaced cavities extending therethrough, a plunger having a head mounted for sliding movement in each cavity and the upper end of each plunger projecting upwardly beyond the turret, a series of bushings mounted on the upper surface of the turret with each bushing having a bore disposed in alignment with a cavity and the upper end of each plunger being slidable within a bore, feeding means disposed beneath the turret for feeding a material into the lower end of successive cavities as the turret rotates and forming the material into coherent masses, each plunger disposed to move upwardly within the respective cavity as said material is fed into the lower end of that cavity, means for ejecting the mass from the lower end of each cavity, and clamping means for removably clamping each bushing to said turret, said clamping means including a series of clamping members with each clamping member being provided with a pair of side edges with one side edge disposed to engage one bushing and the other side edge disposed to engage an adjacent bushing.

2. The apparatus of claim 1 wherein the peripheral surface of each bushing is provided with an abutment, and each side edge of each clamping member is provided with a projection adapted to engage the abutment on the respective bushing.

3. The apparatus of claim 1, and including means for adjusting the clamping members radially with respect to the turret.

4. The apparatus of claim 1, wherein the lower portion of each side edge is provided with a recess, the peripheral por' tion of each bushing is provided with a flange disposed to be received within the corresponding recess in the clamping member.

5. In an apparatus for forming bulk material into coherent masses and depositing the masses into containers, a frame, a turret mounted for rotation on said frame about an axis, said turret having a plurality of circumferentially spaced cavities extending therethrough, a plunger having a head mounted for sliding movement in each cavity and the outer end of each plunger projecting outwardly beyond a first surface of the turret, a series of bushings mounted on the first surface of the turret with each bushing having a bore disposed in alignment with the cavity and the outer end of each plunger being slidable within a bore, feeding means disposed adjacent the opposite surface of the turret for feeding a material into successive cavities as the turret rotates and forming the material into coherent masses, each plunger disposed to move outwardly within the respective cavity as the material is fed into the end of that cavity, means for ejecting the mass from each cavity, clamping means for removably clamping each bushing to said turret, and means for preventing relative rotation between each plunger and the respective cavity.

6. In an apparatus for forming bulk material into coherent masses and depositing the masses into containers, a frame, a turret mounted for rotation on said frame about a vertical axis, said turret having a plurality of circumferentially spaced cavities extending therethrough, a plunger having a head mounted for sliding movement in each cavity and the outer end of each plunger projecting upwardly beyond the turret, a series of bushings mounted on the upper surface of the turret with each bushing having a bore disposed in alignment with a cavity and the upper end of each plunger being slidable within a bore, feeding means disposed beneath the turret for feeding a material into the lower end of successive cavities as the turret rotates and forming the material into coherent masses, each plunger disposed to move upwardly within the respective cavity as said material is fed into the lower end of that cavity, means for ejecting the mass from the lower end of each cavity, clamping means for removably clamping each bushing to said turret, and first stop means for limiting the downward movement of the plunger head within the cavity to thereby position the lower surface of the head in substantially flush relation with the lower surface of the turret.

7. The apparatus of claim 6, and including vent means communicating with the upper end of the cavity for venting air from the cavity as the head of the plunger moves upwardly lltl within the cavity.

8. The apparatus of claim 6, and including second stop means for limiting the upward movement of said head within the cavity to thereby meter the amount of material being fed into said cavity.

9. The apparatus of claim 8, wherein said second stop means comprises a vertically adjustable member located in substantial vertical alignment with said feeding means and disposed to be engaged by the upper ends of said plungers as said plungers are moved upwardly as a consequence of the material being fed into the cavities to thereby limit the upward movement of said plungers and control the amount of material introduced into each cavity.

10. The apparatus of claim 6, wherein said feeding means comprises a conduit to convey said material and a discharge head connected to said conduit, said head having an upwardly extending discharge opening disposed in registry with the circle inscribed by said cavities as the turret is rotated, said material being discharged through said opening and into successive cavities as the turret is rotated, and a layer of selflubricating material connected to the head and disposed to ride against the lower surface of the turret.

11. The apparatus of claim 10, and including means for forcing the head upwardly toward the turret.

12. The apparatus ofclaim l0, and including aligning means connecting the feeding means and the frame for aligning said discharge opening with respect to the cavities in said turret.

13. In an apparatus for forming bulk material into coherent masses and depositing the masses into containers, :1 frame, a turret mounted for rotation on said frame about an axis, said turret having a plurality of circumferentially spaced cavities extending therethrough, a plunger having a head mounted for sliding movement in each cavity and the outer end of each plunger projecting outwardly beyond a first surface of the turret, a series of bushings mounted on the first surface of the turret with each bushing having a bore disposed in alignment with the cavity and the outer end of each plunger being slidable within a bore, feeding means disposed adjacent the opposite surface of the turret for feeding a material into successive cavities as the turret rotates and forming the material into coherent masses, each plunger disposed to move outwardly within the respective cavity as the material is fed into the end of that cavity, means for ejecting the mass from each cavity, clamping means for removably clamping each bushing to said turret, and counterbalancing means for exerting a force against the first surface of the turret to counterbalance the force exerted by said feeding means on the opposite surface of said turret.

14. The apparatus of claim 13, wherein the axis of the turret is vertical and the first surface is an upper surface, said counterbalancing means comprises a counterbalancing member disposed in engagement with the upper surface of the turret and disposed in substantial vertical alignment with said feeding means.

15. The apparatus of claim 14, wherein said counterbalancing member is a roller adapted to ride on the upper surface of the turret.

16. The apparatus of claim 15, wherein said counterbalancing means includes a bracket pivotally connected to the frame and said roller isjoumaled for rotation on said bracket.

17. The apparatus of claim 16, and including adjusting means for adjusting the vertical position of the roller with respect to the turret.

18. The apparatus of claim 15, wherein the upper surface of the turret is provided with a generally circular groove disposed between the peripheral edge of the turret and the path of rotation of said roller.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2324202 *Aug 16, 1939Jul 13, 1943Nuckolls Packing CompanyMachine for manufacturing meat balls
US2897745 *Jan 16, 1957Aug 4, 1959Rath Packing CompanyRotary mold for sausage
US3245106 *Apr 27, 1964Apr 12, 1966Ams Food Proc Equipment CorpMeat ball forming machine
US3296655 *Aug 6, 1963Jan 10, 1967Star Kist FoodsApparatus for molding comminuted material
US3318265 *Mar 16, 1964May 9, 1967Abbott LabTablet punch assembly
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3912441 *Jan 8, 1974Oct 14, 1975Yasuo ShimadaCompressing roll in rotary power compression molding machine
US3982035 *Sep 20, 1974Sep 21, 1976Orlowski Gerald JMolding apparatus and method
US4167380 *Aug 29, 1977Sep 11, 1979Wilhelm Fette GmbhApparatus for the manufacture of layered articles such as multilayer tablets
US4193167 *Nov 9, 1978Mar 18, 1980Armour And CompanyApparatus for molding meat patties
US4276318 *Feb 4, 1980Jun 30, 1981Armour And CompanyApparatus and method for molding meat patties
US4298326 *Oct 4, 1979Nov 3, 1981Armour And CompanyMolding apparatus
US4613294 *Jul 29, 1985Sep 23, 1986Stainless Steel Fabricating, Inc.Rotary cheese molder with improved cooling
US4616988 *Feb 15, 1985Oct 14, 1986Gabriele MuzzarelliMoulding machine for the production of caciocavallo and similar cheeses
US4664613 *May 19, 1986May 12, 1987Cmt Costruzioni Meccaniche E Tecnologia S.P.A.Molding and hardening machine for pasta filata cheese
US4975039 *Sep 18, 1989Dec 4, 1990Dare Gary LFood molding and portioning apparatus
US4987643 *Aug 10, 1989Jan 29, 1991Marlen Research CorporationSlide plate patty forming apparatus
US5250314 *May 15, 1992Oct 5, 1993PrcThree dimensional food product forming apparatus and method
US5470596 *Sep 1, 1993Nov 28, 1995PrcFood product forming apparatus and method
US6869633Apr 22, 2002Mar 22, 2005Restaurant Technology, Inc.Automated food frying device and method
US6871676Apr 22, 2002Mar 29, 2005Restaurant Technology, Inc.Automated device and method for packaging food
US6960157Apr 22, 2002Nov 1, 2005Restaurant Technology, Inc.Automated system and method for handling food containers
US7303776Apr 21, 2003Dec 4, 2007Restaurant Technology, Inc.Automated food processing system and method
US7337594Apr 22, 2002Mar 4, 2008Restaurant Technology, Inc.Food dispensing device and method
US7356980Apr 22, 2002Apr 15, 2008Restaurant Technology, Inc.Automated method for packaging food
US7441388Apr 22, 2002Oct 28, 2008Restaurant Technology, Inc.Automated device for packaging food
US7703636Nov 2, 2007Apr 27, 2010Restaurant Technology, Inc.Frozen food dispensing device and method
US7891289Aug 23, 2004Feb 22, 2011Restaurant Technology, Inc.Automated food frying device and method
US7981455Mar 14, 2008Jul 19, 2011Restaurant Technology, Inc.Automated food processing system and method
US8034390Mar 14, 2008Oct 11, 2011Restaurant Technology, Inc.Automated food processing system and method
US20130156881 *Nov 29, 2012Jun 20, 2013Formax, Inc. An Illinois CorporationKnockout Plunger for Patty-Forming Machine
DE2731728A1 *Jul 13, 1977Jan 19, 1978Armour & CoVorrichtung und verfahren zur herstellung von nahrungsmittelformlingen
Classifications
U.S. Classification425/259, 425/261, 425/348.00R
International ClassificationA22C7/00
Cooperative ClassificationA22C7/0015
European ClassificationA22C7/00C
Legal Events
DateCodeEventDescription
Sep 4, 1996ASAssignment
Owner name: PACKAGING RESOURCES INCORPORATED, ILLINOIS
Free format text: RELEASE OF SECURITY INTEREST IN, AND MORTGAGE ON PATENTS;ASSIGNOR:UNION BANK OF SWITZERLAND, NEW YORK BRANCH, AS AGENT;REEL/FRAME:008113/0292
Effective date: 19960517
Aug 12, 1993ASAssignment
Owner name: PACKAGING RESOURCES INCORPORATED, ILLINOIS
Free format text: ASSIGNMENT FOR RELEASE OF SECURITY;ASSIGNOR:SECURITY PACIFIC BUSINESS CREDIT INC.;REEL/FRAME:006667/0051
Owner name: UNION BANK OF SWITZERLAND, NEW YORK BRANCH, AS AGE
Free format text: ASSIGNMENT FOR SECURITY;ASSIGNOR:PACKAGING RESOURCES INCORPORATED;REEL/FRAME:006667/0075
Effective date: 19930630