Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3634125 A
Publication typeGrant
Publication dateJan 11, 1972
Filing dateAug 15, 1968
Priority dateAug 15, 1968
Also published asDE1941140A1, DE1941140B2, DE1941140C3
Publication numberUS 3634125 A, US 3634125A, US-A-3634125, US3634125 A, US3634125A
InventorsTieszen Dale O
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of coating iron or titanium containing substrate with poly(arylene sulfide)
US 3634125 A
A substrate of iron or titanium or an alloy containing iron and/or titanium is pretreated at a temperature of about 650 DEG F. or higher, and thereafter coated with a composition comprising a poly(arylene sulfide).
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Inventor App1. No. Filed Patented Assignee METHOD OF COATING IRON OR TITANIUM CONTAINING SUBSTRATE WITH POLY(ARYLENE SULFIDE) 11 Claims, No Drawings US. Cl 1 17/49, 1 17/132 C Int. Cl 844d l/34 Field of Search 1 17/49, 132 B, 132 C; 260/79 References Cited UNITED STATES PATENTS 1/1967 Giordano 117/132BX 3,354,129 11/1967 Edmonds et a1. 117/132CUX 3,408,342 10/1968 Horvath et a1. 260/79 X 3,451,848 6/1969 Stephens 1 17/49 Primary Examiner-Alfred L. Leavitt Assistant Examiner-Janyce A. Bell Attorney-Young and Quigg ABSTRACT: A substrate of iron or titanium or an alloy containing iron and/or titanium is pretreated at a temperature of about 650 F. or higher, and thereafter coated with a composition comprising a poly(ary1ene sulfide).

METHOD OF COATING IRON OR TITANIUM CONTAINING SUBSTRATE WITH POLY(ARYLENE SULFIDE) BACKGROUND OF THE INVENTION This invention relates to improved methods of applying poly(arylene sulfide) coatings. In a more specific aspect, it re lates to heattreating iron ortitanium containing substrates prior to coating with poly(arylene sulfide) compositions such as poly(phenylene sulfide).

Po1y(arylene sulfides) such as poly(phenylene sulfide) are well known in the art for their high-temperature stability. While it is generally regarded in the art that these polymers can be adhered to metallic substrates, poly(arylene sulfide) coated articles have not yet achieved significant commercial success. It has been found that, while poly(arylene sulfides) do adhere to metal substrates as broadly alleged in the prior art, the metals which would be of greatest commercial significance if coated with a poly(arylene sulfide), such as steel, titanium. and. alloys containing iron and/or titanium, form a very weak bond to the poly(arylene sulfide). Efforts to improve the bond to these particular metals by conventional cleaning treatments, such as degreasing with a solvent 'or cleaning with acid have proven. unsuccessful, indicating that the problem is of a more fundamentalnature than simple interference with the bond by impurities on the surface ofthe metal.

SUMMARY OF THE INVENTION It is an object of this invention to provide an improved hightemperature laminate; it is a further object of this invention to provide a coating which is uniformly adhered to a substrate; and it is a still further object of this invention to provide a treating process for iron or titanium containing substrates which will allow improved adhesion to poly(arylene sulfides).

In accordance with this invention, iron or titanium containing substrates are pretreated at a temperature of about 650 F. or higher prior to application of a coating of a poly(arylene sulfide).

DESCRIPTION OF THE PREFERRED EMBODIMENTS Any poly(arylene sulfide) can be used in the practice of this invention. Suitable polymers are disclosed, for instance, in Edmonds et al., U.S. Pat. No. 3,354,l29, Nov. 21, I967. The presently preferred polymer is poly(phenylene sulfide).

The term poly(arylene sulfide) is meant to include not only homopolymers but also arylene sulfide copolymers, terpolymers, and the like. Suitable poly(arylene sulfides) of this invention are those having inherent viscosities in chloronaphthalene at 206 C. of at least 0.1, preferably between 0.1 and 0.3, more preferably between 0.13 and 0.23.

The term iron as used herein is meant to include steel and any alloy containing iron as a major constituent. The instant invention is applicable to steel substrates, titanium substrates, and substrates of alloys containing a major proportion of iron and/or titanium.

The high-temperature pretreating step for the substrate can be carried out by any means known to the art, such as in an oven or in a flame, preferably a gas oxygen flame. The treatment can be carried out at any temperature between about 650 F. and the temperature at which the particular metal in question begins to deform or soften. Preferably, temperatures of 675-800 are used for the oven treatment. Preferably, the flame treatment is done with a gas oxygen flame having a temperature of about l,8l5 C. (natural gas plus oxygen gives a flame of about 2,930 C. and can also be used), and is continued until the metal begins to turn bluish. Preferably, this pretreating step is carried out in the presence of an oxygencontaining gas such as air.

This pretreating step can take from 1 second to 5 hours. Generally, if oven treating is being utilized, the time will vary from about l5 to 90 minutes depending on the temperature.

stance when the metal begins to turn bluish. This time will vary greatly depending on the intensity of the flame, but generally will be within the range of l to 5 minutes.

In a preferred embodiment, the poly(arylene sulfide) coating composition contains titanium dioxide. Any titanium dioxide can be used. The presently preferred form is the rutile form. The titanium dioxide can be present in an amount within the range of 0.5 to 50 weight percent based on the weight of the solids, that is, the weight of the poly(arylene sulfide) and the titanium dioxide. More preferably, the concentration of titanium dioxide will be within the range of 10 to 35 weight percent.

After the substrate has been given the high-temperature pretreatment and has cooled, the coating is preferably applied in the form ofa slurry of the poly(arylene sulfide) and titanium dioxide in an inert diluent.

Any low-boiling liquid can be used as the diluent. Preferred materials include ethylene glycol, methyl alcohol, water, and toluene, width ethylene glycol being the most preferred diluent. Certain high-boiling materials such as chlorinated biphenyl and dimethyl phthalate have been found to be less satisfactory. The coating slurries can be applied by any conventional means such as spraying, smoothing with a doctor blade, and the like. In addition, the compositions can be blended with conventional additives such as stabilizers, sofcontinued until a color change is noted in the metal, for inteners, extenders, other polymers, other pigments, specific curing agents, and the like.

During the fusing step after the coating has been applied. the solvent is first evaporated off, and then at about 500 F.. the polymer melts and fuses together into a continuous coating. While cross-linking agents can be added, it is preferred to allow the cross-linking to take place without specific additives for that purpose. The exact nature of the cross-linking reaction is not known, but is is known that it occurs much faster in the presence of air or oxygen than in an inert atmosphere. Preferably, the curing is done in air at a temperature of S50800 F., preferably 650-750 F., the preferred time within the range of 1 minute to 5 hours, preferably 15 minutes to 2 hours. Of course, there is a relationship between time, temperature, and oxygen, and at higher temperatures and/or higher oxygen contents, the time can be reduced.

EXAMPLE I A slurry of 60 grams of poly(phenylene sulfide) and 20 grams of rutile titanium dioxide in I grams of ethylene glycol was stirred in a Waring blender for IS minutes. The poly(phenylene sulfide) was an uncross-linked product having an inherent viscosity in chloronaphthalene of 0.2 at 206 C. (In runs 1 and 3, the titanium dioxide was omitted from the formulation). Steel panels measuring 3X6 inches were coated with this formulation; three separate coats were applied, the composition being cured at about 700 F. for about one-half hour after each coating. The following sequential steps were carried out on said steel panels. All of the steel panels were first cleaned by wiping with acetone. The control panel was then coated directly, while in runs l and 2 the panel was pretreated at 700 F. in an oven under air atmosphere and run 3 was flame treated for 2 minutes prior to coating. All of the pretreated panels were cooled prior to applying the coating. The results were as follows:

Gardner Laboratories Reverse Impact Tester. This equipment comprises a rounded tip which rests above the sample on the reverse side from the coating. A ram is raised a calibrated distance and dropped against the tip which then impinges on the back side ofthe coated slab. The side opposite that which comes in contact with the tip, that is, the side having the coating, is examined for cracks and loosencss ofthe coating.

A comparison of runs 1 and 2 with the control reveals that at 700 F. pretreatment, neither the pretreatment nor the presence of titanium dioxide gave a coating that was resistant to reverse impact test at 160 in.-lb. However, a combination of pretreating the panels at 700 and the presence of the titanium dioxide in the poly(arylene sulfide) sulfide) composition does give such a bond. Thus, surprisingly, while heat treatment at 700 F. alone will not effect the exceptionally tough bond as exemplified by a 160 value for reverse impact, nor will the presence ofthe titanium dioxide alone, the combination of the two coact to give the unexpected result, namely a coating so tough that it does not fail at the limiting ofthe test machine.

It is further noted that the heat treatment at 700 F. does effect some improvement in the quality of the coating and further that heat treatment at higher temperatures, either in the oven or by means of a gas flame as noted by run 3, will effect the production of an unexpectedly high bond without the presence of titanium dioxide.

EXAMPLE ll The following conventional cleaning techniques were employed on steel panels in lieu ofthe high-temperature pretreatment, and the panels were thereafter coated and otherwise treated in a manner similar to that in example I. All of the following treatments resulted in either no improvement in adhesion or else detracted from the quality of the bond.

A. 10 percent sulfuric acid, followed by water rinse.

B. [5 percent phosphoric acid.

C. Zinc phosphate (Panels dipped in a solution of 300 grams, 85 percent l-l PO and 250 grams Zn ,(PO,) in 1,200 grams deionized water.

D. Commercial iron phosphate treatment.

E. Degreased with methylene chloride, scrubbed with steel wool, rinsed, dipped in percent sodium hydroxide at room temperature for 10 minutes, then dried in oven.

F. Steel panel wiped with methylene chloride, steel wool treated, rinsed and dried. Then treated with 10 percent sulfuric acid-l0 percent nitric acid-80 percent water for 5 minutes. Thereafter rinsed for a few seconds and treated with 60 ml. concentrated HCl, 40 ml. water, and 30 percent hydrogen peroxide. Again rinsed, dried, and again polished with steel wool, rinsed and dried.

EXAMPLE III A formulation similar to that of example I was applied to titanium coupons. One group of the coupons has been pretreated in a gas oxygen flame until the metal turned blue. The other was simply degreased with a solvent. The coating was then cut with a knife blade in the area to be tested. The coating on the laminate with the substrate which has been pretreated in a flame passed the 160 in.-lb. reverse impact test which was the limit of the machine and the coatings on the coupons which had not received the flame treatment failed this test at I60 in.-lb.

EXAMPLE IV Aluminum coupons were coated with a formulation similar to that of example I. One group of the aluminum coupons was given a high-temperature pretreatment and the other was not. In both instances, the metal failed in the reverse impact test with the bonds still intact.

The data in example ll reveals that conventional cleaning techniques do not improve the bond whereas, surprisingly. the heat treatment of the instant invention does. Example IV shows that no improvement is effected by heat treatment of aluminum, as evidenced by the reverse impact test.

It is noted that even the samples which were not treated in accordance with this invention do adhere to the poly(arylene sulfide) coating compositions as IS clearly shown by the prior art. However, the treatments of the instant invention bring about such an improvement in the bond that the bond does not fail at the upper limits of the conventional testing machinery.

While this invention has been described in detail for the purpose of illustration, it is not to be construed as limited thereby, but is intended to cover all changes and modifications within the spirit and scope thereof.

1 claim:

1. A coating process comprising the following sequential steps: pretreating a substrate selected from the group consisting ofiron, titanium, and alloys containing a major proportion of at least one of iron and titanium, which substrate exhibits a weak bond to poly(arylene sulfide), by heating said substrate to a temperature of at least 650 F.; cooling said substrate; and thereafter applying to said pretreated substrate a coating composition comprising said poly(arylene sulfide).

2. A process according to claim 1 wherein said substrate is heated in an oven at a temperature between 675-800 F. for between 15 and minutes.

3. A process according to claim 1 wherein said pretreatment comprises flame treatment.

4. A process according to claim I wherein said pretreatment comprises flame treating with a gas oxygen flame until said substrate turns bluish.

5. A process according to claim 1 wherein said coating composition contains 0.5 to 50 weight percent TiO based on the total weight ofthe poly(arylene sulfide) and TiO 6. A process according to claim 1 wherein said poly(arylene sulfide) is poly(phenylene sulfide).

7. A process according to claim I wherein said coating composition is applied in the form a slurry in a diluent.

8. A process according to claim 7 wherein said poly(arylene sulfide) is poly(phenylene sulfide), said process comprising in addition heating said composition, after said composition has been applied to said substrate, at a temperature within the range of550 to 800 F. to evaporate said diluent and fuse said poly(arylene sulfide) into a continuous coating.

9. A process according to claim 8 wherein said poly(phenylene sulfide) contains between 0.5 and 50 weight percent Tit] based on the total weight of the poly( arylene sulfide) and TiO 10. A process according to claim 9 wherein said substrate is steel.

11. A process according to claim 9 wherein said substrate is titanium.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3297630 *Sep 25, 1963Jan 10, 1967Thiokol Chemical CorpStabilized polysulfide polymer based compositions containing organo-metallic tin compounds
US3354129 *Nov 27, 1963Nov 21, 1967Phillips Petroleum CoProduction of polymers from aromatic compounds
US3408342 *Aug 31, 1965Oct 29, 1968Phillips Petroleum CoStabilized poly(arylene sulfides
US3451848 *Mar 31, 1966Jun 24, 1969Standard Oil CoMethod of coating magnet wire with a polytrimellitamide
Non-Patent Citations
1 *Gregory et al., Heat Treatment of Steel, N.Y., Pitman, 1958, p. 28, 32, 353, 216 and 217. TS320G72, 1958
2 *McClintick et al., Physical Metallurgy and Heat Treatment of Titanium Alloys, Niles, Ohio, Mallory-Sharon, 1955, p. 26. TN799TSM21
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3928661 *Jun 1, 1973Dec 23, 1975Phillips Petroleum CoSelective coating of a substrate with poly(arylene sulfide)
US3930078 *Dec 4, 1974Dec 30, 1975Phillips Petroleum CoCoating with arylene sulfide polymer containing compounds to enhance cure
US3931419 *Dec 18, 1974Jan 6, 1976Phillips Petroleum CompanyCoating with arylene sulfide polymer cured with the aid of certain compounds
US3964582 *Jul 26, 1974Jun 22, 1976Wallace-Murray CorporationFan drive hydraulic coupling
US3979543 *May 14, 1975Sep 7, 1976Phillips Petroleum CompanyArticle having a poly(arylene sulfide) coating and method of producing
US4011121 *Apr 30, 1975Mar 8, 1977Phillips Petroleum CompanyAdhesive bonding of poly(arylene sulfide) surfaces
US4075388 *Oct 18, 1976Feb 21, 1978Phillips Petroleum CompanyAdhesive bonding of poly(arylene sulfide) surfaces
US4212922 *Oct 2, 1978Jul 15, 1980Phillips Petroleum CompanyPoly(arylene sulfide) resin coating
US4237039 *Dec 18, 1978Dec 2, 1980Phillips Petroleum CompanySalts of arylalkanoic acids as corrosion inhibitors for poly(arylene sulfide)s
US4247598 *May 29, 1979Jan 27, 1981Phillips Petroleum CompanyApplying powder arylene sulfide polymer coatings to substrates
US4355059 *Apr 24, 1981Oct 19, 1982Phillips Petroleum CompanyPoly(arylene sulfide) composition containing a polyolefin
US4835051 *Feb 24, 1987May 30, 1989Phillips Petroleum CompanyCoatings of arylene sulfide polymers
US4904502 *Mar 16, 1989Feb 27, 1990Phillips Petroleum CompanyCoatings of arylene sulfide polymers
US5015686 *Mar 16, 1989May 14, 1991Phillips Petroleum CompanyCoatings of arylene sulfide polymers
US5272185 *Oct 24, 1991Dec 21, 1993The Furukawa Electric Co., Ltd.Polyphenylenesulfide composition for powder coating
US20030175421 *Dec 13, 2002Sep 18, 2003Delphi Technologies, Inc.Process for reducing contaminants on surfaces of die cast components
U.S. Classification427/223, 427/318
International ClassificationB05D7/24, B05D7/14, C09D181/00, B05D3/02, C09D181/02
Cooperative ClassificationC09D181/02
European ClassificationC09D181/02