Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3635483 A
Publication typeGrant
Publication dateJan 18, 1972
Filing dateSep 2, 1969
Priority dateSep 2, 1969
Publication numberUS 3635483 A, US 3635483A, US-A-3635483, US3635483 A, US3635483A
InventorsRichard D Barriball, William T Faris, George F Gross, Charles W Walters
Original AssigneeLarson Ind Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Encapsulated plastic snow ski
US 3635483 A
Abstract
A rugged, flexible snow ski having a lightweight core (e.g., polyurethane foam) encapsulated within a shell made of a tough, resilient thermoplastic which has been reinforced with glass fibers. The ski can be manufactured by hot pressing a ski assembly which comprises a high-density polyethylene running surface, steel edges, a preformed polyurethane foam core interposed between upper and lower sheets of glass fiber reinforced thermoplastic and bounded on each side by sheets of glass fiber reinforced thermoplastic, all topped by a decorative plastic cover sheet. During the hot pressing, the four glass reinforced plastic sheets which surround the core are fused together to form a shell which encapsulates the foam core, and the entire ski assembly is firmly bonded together to form a unitized structure.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Barriball et al.

[451 Jan. 18, 1972 [54] ENCAPSULATED PLASTIC SNOW SKI [73] Assignee: Larson Industries, Inc., Edina, Minn. [22] Filed: Sept. 2, 1969 [21] Appl. No.: 854,544

[52] U.S.Cl ..280/ll.l3L [51] Int. Cl ..A63c 5/00 [58] FieldofSearch ..280/1l.13;9/310R,31OA

[56] References Cited UNITED STATES PATENTS 2,920,898 l/1970 Metcalfe et a1 ..280/l 1.13 3,201,138 8/1965 Brown ..280/11.13 3,475,035 10/1969 Nason ..280/l 1.13

FOREIGN PATENTS OR APPLICATIONS 1,473,256 2/1967 France ..280/1 1. l 3

Primary ExaminerMilton Buchler Assistant Examiner-Gregory W. O'Connor AttorneyMerchant & Gould [57] ABSTRACT A rugged, flexible snow ski having a lightweight core (e.g., polyurethane foam) encapsulated within a shell made of a tough, resilient thermoplastic which has been reinforced with glass fibers. The ski can be manufactured by hot pressing a ski assembly which comprises a high-density polyethylene running surface, steel edges, a preformed polyurethane foam core interposed between upper and lower sheets of glass fiber reinforced thermoplastic and bounded on each side by sheets of glass fiber reinforced thermoplastic, all topped by a decorative plastic coversheet. During the hot pressing, the four glass reinforced plastic sheets which surround the core are fused together to form a shell which encapsulates the foam core, and

the entire ski assembly is firmly bonded together to form a unitized structure.

3 Claims, 3 Drawing Figures 7 PATENTEDJANWISYE 3,635,483

" I 3 mm.

RICHHRD nBQRmBRLL wnunm 'r. FHRIS GEORGE F. snoss CHHRLES w. mums ATTORNEYS ENCAPSULATED PLASTIC SNOW SKI BACKGROUND or THE INVENTION Snow skis have been made from a variety of materials including wood, plastic, metal. and various combinations of the foregoing.

in manufacturing skis. ski manufacturers seek to develop skis which are rugged. have the proper degree offlexibility for the intended end use (e.g., as a slalom ski. downhill ski, etc.). have a minimum weight consistentwith performance and stability requirements, have a long life and the like. in addition.

ski manufacturers seek to achieve these properties using construction materials and techniques which lend themselves to mass production and minimum costs.

In the past, many manufacturers have produced laminated skis by gluing together under'pressure a plurality of wooden or plastic parts (e.g., thin sheets of unidirectional glass fiber reinforced polyester). However, delamination or failure of the glue lines has been a continued problem in the ski industry. in addition. the flat sheets of unidirectional gins fiber reinforced polyester which are often used in making such skis have a memory. When such sheets are flexed and the forces are then removed, the sheet tends to abandon its flexed position and return to its original flat position. As a result, when such flat sheets are bent during ski fabrication to form the nose or toe of the ski and to impart camber to the ski, there is a tendency for the ski to flatten out over long periods of time as a result of the memory of the unidirectional glass reinforced polyester sheet. i

in attempts to produce skis of improved quality, ski manu facturers have turned in increasing numbers to the useof plastics. particularly in conjunction with new fabrication techniques. According to one such technique a foamed ski core is woundor wrapped withglass filaments which are then coated or impregnated with a suitable resin which is thereafter cured or hardened in place. Metal edges and appropriate decorative top surfaces are then bonded to this structure by known techniques.

More recently. snow skis have been made by laminating a sandwich made of a high-density polyethylene running surface, a wooden core covered with glass fibers or glass fabric which has been impregnated with an uncured resin, and a decorative plastic top sheet. During lamination, the uncured resin is cured in place to form a box tube around the wooden SUMMARY OF THE INVENTION right sidewalls of glass reinforced thermoplastic, a top sheet of glass reinforced thermoplastic. and finally a decorative plastic cover sheet. During thermopressing. the top and bottom glass reinforced thermoplastic sheets are bonded to the left and right 'giass reinforced sides by fusion, thereby encapsulating Also. top sheet l2-can be omitted entirely, or replaced by the lightweight core in a glass fiber reinforced shell. Simul tancously..the decorative plastic top sheet. the running surface. and the steel edges are bonded together to form a unitized ski which is unusually light in weight (e.'g., 9 lbs. for 2 l O-ccntimeter skis).

Among other desirable properties, the shells ofthe snow skis produced by this invention have a memory which is its shape as formed (i.e., ski shaped) and'does not have the same tendency to flatten with time as is the ease with certain prior art skis.

THE DRAWINGS FlG. l is a perspective view ofa snow ski.

FIG. 2 is a cross section of the ski of HO. l taken along the lines 22 in the direction ofthc arrows.

FiG. 3 is a fragmentary isometric view of the section shown inFlG. 2 with portions of each element of the ski broken away in step fashion to show in more detail the construction of the ski.

DETAILED DESCRlPl'lON Thepresent invention'is directed to an improved process for making plastic snow skis and to the resulting snow skis.

rHE SNOW SKIS The following description is made with reference to the drawings in which FIG. 1 illustrates a snow ski, generally designated by the numeral I, having mounted thereon a suitable ski binding 2. l v V H A cross-sectional view of the ski is shown in FIG..2. The

details ofconstruction areas follows. A running surface typically of high-density polyethylene, is embraced andprotected along either edge by L-shaped steel edges 4 and 5. immediately above the running surface are one or more bottom sheets of glass fiber reinforced thermoplastic 6. Next is a lightweight core 7 (usually a foamed plastic) which is embraced on'the left and right by glass fiber reinforced thermoplastic sidewalls 8 and 9. Optionally, a sheet of metal 10 is placed above the core 7. On top of this entire assembly are one or more top' sheets of glass reinforced thermoplastic 11 which are overlaid i with a decorative plastic sheet 12.

if desired, the top, bottom and sidewalls (ll,

which will, as a result of thermopressing, fusibly bond together to encapsulate the core 7. By way of example, sidewalls 8 and 9 and bottom 6 can be formed in a U-shape from a single sheet of glass fiber reinforced thermoplastic by hot stamping. I

The details of construction of the snow skis of this invention are shown more clearly in FIG. 3.

' MATERIALSOF CONSTRUCTION the use of a separate running surface 3 as shown in FIGS. 2

and 3 is preferred.

The top decorative sheet 12 is optional and can be of any conventional plastic material used for this purpose in the ski industry. Phenolic and aminoplast decorative sheets are par,- ticulariy useful. Decorative plastic sheets of either phenol-formaldehyde resin or melamine-formaldehyde resin have proven toibe particularly abrasion resistant and colorfast paint or an additional sheet or layer of the glass reinforced thermoplastic used to encapsulate the core 7.

Metal edges 4 and 5 are desirably perforated or have an irregular'shaped (e.g., serrated or corrugated) ski-engaging surface to enable them to become firmly attached to and integral with the finished snow ski during therrnopressing (i.e., they are locked into the-ski). During thermopressing, the thermoplas'tic used to encapsulate core 7 will flow into and around such irregular shapes or perforationsto thereby mechanically V lock'the edges to the encapsulated core when the soft hot plastic has cooledand hardened.

Reinforcing element l0 may be omitted entirely, although its use in the center section of theski is preferred. One pur- 6, 8 and 9 respectively) can be formed in more or less than the. four separate pieces as shown and it is only necessary that the. lightweight core 7 be surrounded or enclosed'withinor by at least two separate sheets of glass reinforced thermoplastic pose of reinforcing element 10 is to reinforce the ski at the points where the binding 2 is attached. Aluminum is a suitable material of construction.

The lightweight core 7 can be any lightweight material (e.g., foamed or filled plastic) that can be shaped or preformed to the desired shape (e.g.. ski shaped) and will function satisfactorily under the conditions of thermopressing. Although wood or a wood-filled plastic can be used to form the core, the use of a metal or plastic core (i.e.', a wood-free core) is preferred. Suitable core materials include foamed plastics, paper and metal honcycombs, and the like, ordinarily havinga bulk density of less than 50 pounds per cubic foot, generally less than 20 pounds per cubic foot, and preferably less than l pounds per cubic foot (e.g., 4-8 pounds per cubic foot). One of the primary functions of the core 7 is to provide a core around which a thermoplastic shell (i.e., the ski-defining surfaces) can be formed by thermopressing together the sheets of glass fiber reinforced thermoplastic 6, 8, 9 and ll. Under some conditions, it is even possible to use a lightweight plastic core (e.g styrofoam) which loses its structural identity or shape under the conditions of thermopressing but is, nonetheless, capable of temporarily supporting elements 6, 8, 9 and 11 until they have fused together under the conditions of thcmiopressing to encapsulate the core. However, for normal use we prefer to use a lightweight plastic which does not lose its structural identity or integrity during therrnopressing. Polyurethane foam, particularly polyurethane foam reinforced with glass fibers is preferred. One especially preferred core material is polyurethane foam which has been filled or extended with small diameter glass bubbles (e.g., 50-75 microns in diametcr) and reinforced with glass fibers (c.g., continuous roving).

Although the core has been shown in FIGS. 2 and 3 as having a rectangular cross section (i.e., four sides), other shaped cores can be used (e.g., oval). However, the'use of four-sided cores as shown in FIG. 2 and 3 is preferred.

The shell which surrounds core 7 can be formed of separate elements 6, 8, 9 and II or their equivalent (e.g., a U-shaped bottom and side member, and a top piece). These elements can be made of any thermoplastic which possesses the physical properties needed for ski construction. However, for use in this invention, it is necessary that the thermoplastic which is selected for encapsulating core 7 be one wherein the two or more separate elements can be fused together by thermopressing (e.g., pressing at 350 F. and I00 p.s.i.g.) to form in situ a shell around the core. Normally, and most preferably. this thermoplastic will be reinforced with glass fibers, preferably those which are not unidirectionally oriented.

However, the use of glass reinforcing is not essential with all thermoplastics. Suitable thennoplastics include but are not limited to polypropylene, styrene-acrylonitrile copolymers, poly (vinyl chloride), and the like. Some particularly useful materials for this purpose are those sold under the trademark Azdcl (products of GRTL. Inc.). These materials are thermoplastic sheets reinforced with large amounts (e.g., 40 percent by volume) of randomly oriented glass fibers. Azdel A-20l (based on a styrene-acrylonitrile copolymer) is especially useful.

METHOD or CONSTRUCTION Snow skis produced according to this invention can be made by thermopressing all of the elements shown in FIGS. 2 and 3 in a mold. Each of the individual elements is formed to the desired shape and then positioned within the mold in the order shown in FIGS. 2 and 3. When using glass reinforced sheets of an acrylonitrile-styrene copolymer to form the sidewalls of the shell, is melamine-formaldehyde decorative plastic top sheet, and high-density polyethylene as the running surface, it is necessary to pretreat, precoat or dope the bonding surfaces of the polyethylene running surface and the decorative top sheet with a suitable adhesive (e.g., by heating P-Tex and coating it with a suitable adhesive while. hot).

Although the temperature and pressure of thermopressing in a box mold under a molding pressure of about I00 p.s.i.g. to

a desired molding or encapsulating temperature (e.g., 350 F.) and then water cooling-the mold in a total time of about It) minutes.

The channel groove in the center of running surface 3 can be pressed or molded into the plastic as the ski is formed'and does not need to be machined in.

The toe end of the ski I can be sealed orencapsulated by either: (a) continuing the sidewalls 8 and 9 around the tip or toe; or by' having the sidewalls taper down to a point short of the toe or tip of ski 1, allowing the top and bottom sheets 6 and ll to extend forward beyond the'forc end of core 7 and fusibly bonding top and bottom sheets and l! to each other. Similar techniques can be used to finish off the heel of the ski (e.g., an endor crosspicce of reinforced thermoplastic can be fusibly bonded toelements 6, 8, 9 and II).

Advantages of the present skis include: strength and durav bility; ease of construction; the ski has a memory of its own; it can be completely sealed or encapsulated; and nose and tail inserts can be eliminated. Flexibility can be controlled byadding extra layers or partial layers of reinforced thermoplastic.

What is claimed is:

I. In a plastic snow ski, the improvement which'comprises a lightweight, plastic foam core within a plastic shell encapsulating said core, said shell being formed in situ by thermopressing said shell in a mold to bond together separate sheets of rigid or semirigid thermoplastic. V

2. Snow skis of claim I wherein said thermoplastic sheets are of glass fiber reinforced copolymer of styrene and scrylonitrile.

3. Snow skis of claim Zwherein said core is polyurethane foam reinforced with glass fibers and filled with glass bubbles, and having a bulk density of less than l0 pounds per cubic foot. i

O O i O O

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2920898 *Jun 19, 1956Jan 12, 1960Edmond T ChrobakSki having a foamed plastic body portion
US3201138 *Sep 10, 1962Aug 17, 1965Brown Jr Culver SLaminated ski with a honeycomb core
US3475035 *Feb 17, 1967Oct 28, 1969Mobay Chemical CorpPolycarbonate plastic skis
FR1473256A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3901522 *Aug 22, 1974Aug 26, 1975Olin CorpVibration damped ski
US3902732 *Feb 14, 1973Sep 2, 1975Jr Albert A FoshaAdvanced composition ski
US3949988 *May 30, 1973Apr 13, 1976Fischer Gesellschaft M.B.H.Racket
US4014542 *Mar 14, 1974Mar 29, 1977Yukio TanikawaBat used in baseball
US4042238 *Jan 27, 1975Aug 16, 1977Composite Structures CorporationRacket
US4061520 *Sep 3, 1976Dec 6, 1977Fansteel Inc.Method of making composite high strength to weight structure
US4062541 *Feb 25, 1976Dec 13, 1977Marcraft Recreation Inc.Paddle construction
US4070020 *Jul 7, 1976Jan 24, 1978Fansteel Inc.Composite high strength to weight structure with fray resistance
US4070021 *Jul 7, 1976Jan 24, 1978Fansteel Inc.Composite high strength to weight structure having shell and sleeved core
US4124208 *May 9, 1977Nov 7, 1978Numerical Control, Inc.Hockey stick construction
US4124670 *Jul 7, 1976Nov 7, 1978Fansteel Inc.Method of producing a composite high strength to weight structure having a shell and weight controlled cellular core
US4135732 *Feb 25, 1977Jan 23, 1979Magnus & Co. A/SSkis
US4204684 *Oct 31, 1977May 27, 1980Questor CorporationGolf club head and method of producing same
US4270768 *Jul 26, 1978Jun 2, 1981Nippon Gakki Seizo Kabushiki KaishaSki and a process for manufacturing same
US4293142 *Jul 16, 1979Oct 6, 1981K-2 CorporationVibration damped ski
US4324400 *Aug 8, 1979Apr 13, 1982Est Industries, Inc.Table tennis bat blade
US4556237 *Feb 22, 1984Dec 3, 1985Olin CorporationAlpine ski with selective reinforcement
US4706985 *Jun 28, 1985Nov 17, 1987Tristar Sports Inc.Alpine ski with selective reinforcement
US4722539 *Oct 9, 1986Feb 2, 1988Samuel MolinaroUser-controllable single runner ski
US4949996 *Feb 28, 1989Aug 21, 1990Mcnally Mark HSki equipment including a mirror panel attachment
US4993740 *Mar 29, 1989Feb 19, 1991Salomon S.A.Process for forming a ski, and a ski formed according to the process
US5160158 *Mar 5, 1991Nov 3, 1992Atomic Skifabrik Alois RohrmoserMulti-ply ski
US5338238 *Aug 14, 1992Aug 16, 1994Connelly Skis, Inc.Compression molded water ski and method of making the same
US5695209 *Jan 4, 1995Dec 9, 1997Skis Rossignol S.A.Ski or other snow board, with core made in situ
US5900300 *Jul 2, 1997May 4, 1999Slaven; John P.High modulus and stiffness polymer foam/GMT composites
US6346325Jun 29, 2000Feb 12, 2002The Dow Chemical CompanyFiber-reinforced composite encased in a thermoplastic and method of making same
US6588772Dec 28, 2000Jul 8, 2003The Burton CorporationSintered sheet plastic material and gliding board base material
US7922206 *Apr 30, 2008Apr 12, 2011James KriezelUpright seated snowboard
US8104784 *Jan 12, 2009Jan 31, 2012K-2 CorporationHorizontal laminated ski construction
US8603604 *Apr 12, 2010Dec 10, 2013Timothy VotraOne-piece encapsulated plastic product formed from multiple recycled products
US20060213137 *Mar 22, 2005Sep 28, 2006Kemlite Company, Inc.Thermofused reinforced decorative composite material with thermoplastic stiffener core
US20090179402 *Jan 12, 2009Jul 16, 2009Francois SylvainHorizontal laminated ski construction
US20090271670 *Apr 29, 2008Oct 29, 2009Agere Systems Inc.Systems and Methods for Media Defect Detection Utilizing Correlated DFIR and LLR Data
US20090273175 *Apr 30, 2008Nov 5, 2009James KriezelUpright seated snowboard
US20110215541 *Mar 2, 2011Sep 8, 2011James KriezelUpright seated snowboard
US20120061005 *Nov 18, 2010Mar 15, 2012Windsor ChouRecycle skiboard fabrication method
DE3737524A1 *Nov 5, 1987May 18, 1989Bayer AgProcess for the production of ski cores
DE102012100964A1Feb 6, 2012Aug 23, 2012Jörg KaufmannGliding-sports device e.g. snowboard and ski, comprises a metallic side edge or metallic circumferential edge, where a bottom chord and a top chord consist of fiber reinforced material having a thermoplastic matrix and continuous fibers
DE102012100965A1Feb 6, 2012Aug 8, 2013Jörg KaufmannSliding sports equipment e.g. snowboard, has lower and upper belts made from consolidated, partly-consolidated or unconsolidated semi-finished fiber material in form of continuous filaments in thermoplastic matrix
DE202011000269U1Feb 5, 2011May 16, 2012Jörg KaufmannGleitsportgerät, insbesondere Snowboard, Ski und dergleichen
EP0429851A1 *Oct 24, 1990Jun 5, 1991Salomon S.A.Process for preparing a ski by sticking, and ski structure obtained by this process
EP0922473B1 *Dec 2, 1998Nov 12, 2003Skis Rossignol S.A.Core for snowboard
WO2001002470A1 *Jun 30, 2000Jan 11, 2001The Dow Chemical CompanyFiber-reinforced composite encased in a thermoplastic and method of making same
Classifications
U.S. Classification280/610, 273/DIG.400, 273/DIG.800
International ClassificationA63C5/12
Cooperative ClassificationY10S273/04, A63C5/12, Y10S273/08
European ClassificationA63C5/12