Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3639245 A
Publication typeGrant
Publication dateFeb 1, 1972
Filing dateJul 22, 1968
Priority dateJul 22, 1968
Also published asDE1937651A1, DE1937651B2, DE1937651C3
Publication numberUS 3639245 A, US 3639245A, US-A-3639245, US3639245 A, US3639245A
InventorsRobert B Nelson
Original AssigneeMinnesota Mining & Mfg
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Developer power of thermoplastic special particles having conductive particles radially dispersed therein
US 3639245 A
Abstract
Flowable, heat fusible, dry powder suitable for use as a developer powder in electrographic recording which comprises thermoplastic, essentially spherical particles, the thermoplastic material of which has a conductivity of at most 10<->12 mho/cm., in which are essentially completely embedded electrically conductive particles forming a radially disposed zone, said essentially spherical particles having:
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Nelson Feb. 1, 1972 ..G03g9/02 WhQ F P; in? Y- D- elestrivcal field Field of Search ..252/62.l, 62.53, 62.54 between and mm/cma D.C. electrical field, References Cited b. 2snrcllumber average particle diameter below 15 microns, UNITED STATES PATENTS c. a volume ratio of said electrically conductive particles to said total particle volume of between 0.01/100 and 3,345,294 10/1967 Cooper ..252/62.l 4/100 7/ I965 Seymour ..252/65.1 8 Claims, 1 Drawing Figure 3 G q \g l z km" E F /0' 3L -15 M 6 R F f g -a b /0 we 5mm DEVELOPER POWER OF THERMOPLASTIC SPECIAL PARTICLES HAVING CONDUCTIVE PARTICLES RADIALLY DISPERSED THEREIN lnventor: Robert B. Nelson, Lake Elmo, Minn.

Assignee:

Company, Saint Paul, Minn.

July 22, 1968 Filed:

Appl. No.:

lnt. Cl.

Minnesota Mining and Manuiacturing Primary Examiner-George F. Lesmes Assistant Examiner-J. P. Brammer Attorney-Kinney, Alexander, Sell, Steldlt & Delahunt [57] ABSTRACT Flowable, heat fusible, dry powder suitable for use as a developer powder in electrographic recording which comprises thermoplastic, essentially spherical particles, the thermoplastic material of which has a conductivity of at most 10' mho/cm., in which are essentially completely embedded electrically conductive particles forming a radially disposed zone, said essentially spherical particles having:

a. an electronic conductivity ranging monatonically without decreasing from between about 10 and DEVELOPER POWER OF THERMOPLASTIC SPECIAL PARTICLES HAVING CONDUCTIVE PARTICLES RADIALLY DISPERSED TI-IEREIN This invention relates to a dry ink powder suitable for use in electrographic recording and a process for making such powder. In one aspect this invention relates to a developer powder having a good electrical conductivity in the presence of a relatively large impressed electric field, and low electrical conductivity (and hence good charge retention characteristics for the charge remaining on it) in the absence of this high impressed field. In still another aspect this invention relates to dry developer particles for electrophotography which are magnetizable. in still another aspect, this invention relates to a developer powder which has a pressure dependent conductivity, being more conductive under the influence of an impressed magnetic field during development, and less conductive (and hence having better individual charge retention characteristics) in the absence of this impressed magnetic field.

Electrostatic electrophotography originally employed two component dry ink powders, often called triboelectric mixtures," for charge development of the electrostatic image. Recently dry powders in which all of the particles are of the same composition have been described. The relatively conductive dry inks of U.S. Pat. No. 3,116,510 (Jan. 19, 1965; Charles P. West and Jacques Benveniste) contain thermoplastic resin particles in which about 35 to 55 percent of the total particle weight is carbon black dispersed throughout the resin particles. In U.S. Pat. No. 3,196,032 (July 20, 1965; David W. Seymour) an electrostatic printing ink having carbon powder partially embedded in or adhered to the surface of resin particles is prepared in a fluid bed reactor.

in a new electrographic process, described in French Pat. No. 1,456,993, an exposed photoconductive sheet is contacted with conductive developer powder applied from a conductive surface, to which it is adhered, while creating a differential electrical field between the photoconductive sheet (i.e., field electrode) and the conductive surface containing the developer powder. The developer powder is transferred selectively to the photoconductive sheet in the nonexposed areas. Separation of the photoconductive sheet from the source of supply of developer powder is made while still maintaining the influence of the electrical field, and provision can be made for continuing the attraction of the developer powder to the surface of the photoconductive sheet after such separation. The developer powder in this process is electronically conductive, usually having a conductivity of at least l mho per centimeter (ohm"cm.' preferably to 10' mho per centimeter, at the applied electrical field (preferably at least 1,000 DC volts per centimeter). Conductivity measurements are made with the developer powder compressed into a 1-centimeter cube between brass electrodes fitted in a rigid chamber, a pressure of 86 pounds per square inch (6.05 kg. per cm?) being applied across the sample before and during the measurement of conductance. If the developer powder is subsequently to be transferred from the photoconductive sheet to a receptor surface, it should also have electrical charge retention capability, to retain the electrical charge imparted to the developer particles by the applied electrical field during the development of the pattern on the field electrode. This may be accomplished by providing the developer particles with a highly resistive interior or core and a highly conductive surface or shell. However, the high conductivity of the developer particles desired to minimize voltage drop across them when they are in the electrical field, and the ability ofthe developer particles to retain the electrical charge, which characterizes high resistivity particles, are difficult to achieve satisfactorily, since one desirable characteristic is generally sacrificed to obtain the other.

It is therefore an object of this invention to provide new particles suitable for use as electrographic developers, particularly in the process of French Pat. No. 1,456,993, also referred to as the Electropowder process. Still another object of this invention is to provide powder particles having both high conductivity and good electrical charge retention. Yet another object is to provide a process for the manufacture of such developer particles.

The FIGURE is a plot of electrical conductivity vs. DC ap- I plied electrical field for developer particles of this invention.

The developer powders of this invention comprise thermoplastic, essentially spherical particles (i.e., spherules), the thermoplastic material of which has a conductivity of at most 10-" mho/cm, preferably at most 10" mho/cm, in which are essentially completely embedded electrically conductive particles forming a radially disposed layer or zone, said essentially spherical particleshaving an electronic conductivity which ranges monatonically without decreasing from between about 10' and about 10" mho/cm. (preferably between 10' and 10 mho/cm.) in a 100 v./cm. DC electrical field to between 10 and about 10' mho/cm. (preferably between 10 and 10 mho/cm.) in a 10,000 v./cm. DC electrical field, and having a number average diameter below 15, preferably below 10, microns. Preferably, the average particle size range is such that at least about 95 number percent of the particles have a diameter greater than about 2 microns, while no more than 5 number percent have a diameter greater than about 15 microns. These dry ink powders are flowable to such an extent that they have a flowability angle of repose ranging from about to 125 and preferably from 1 10 to 125. For purposes of this invention, flowability is measured by feeding a thin stream of powder to the upper flat surface of a 3-inch diameter circular pedestal from a vibrating funnel, thereby creating a conical deposit of powder on the pedestal. The angle of repose is defined by the angle measured between opposite sides of the conical deposit, i.e., the apex angle of the cone, at 25 C.

The dry ink powders of this invention and the thermoplastic materials used therein are preferably heat fusible in the range of 80 to 1 15 C., preferably from to 105 C. For determining fusion temperatures the Durrans Mercury method, as reported in SMS] 14, is employed. Any heat fusible thermoplastic material having a conductivity of at most 10' mho/cm. may be used to form the spherules, although thermoplastic organic polymers are preferred. Examples of suitable resins include B-stage (i.e., partially cured) phenol aldehyde polymers, polyvinyl acetate, epoxy resins, etc.

In general, any highly electrically conductive material (i.e., a material having a conductivity of at least 10 mho/cm., such as conductive carbon, metal, etc.) may be used in powdered form as the electrically conductive particles forming the conductive zone of the dry ink particles, provided the resulting electrically conductive particles have an average diameter below millimicrons, preferably under 40 millimicrons. Conductive carbon particles (e.g., those available under the trade name Vulcan XC-72R, sold by Cabot-Corporation) are preferred.

It has been found that the amount of conductive material in the embeddedzone of the dry ink particle, the type of conductive material used, the particle size of the embedded conductive particles, and the location of the embedded zone can influence the conductivity of the dry ink powder. Generally the volume ratio of electrically conductive material to the total particle volume in the ink powder can be in the range of 001/100 to 4.0/100, although 0.1/100 to 1.5/100 is preferred. The embedded zone of conductive particles is normally quite close to the surface of the ink particle and is preferably not thicker than one-tenth the radius of the essentially spherical developer particle. Although essentially all of the conductive particles are embedded, an occasional particle may protrude from the surface. The conductivity of these developer particles is field dependent," i.e., the conductivity under high electrical fields differs from the conductivity under low electrical fields. In fact, as mentioned earlier, the electrical conductivity of the developer particles is a monatonically, nondecreasing function of the applied DC electrical field. It is preferred that the slope of the conductivity vs. applied electrical field curve also increases monatonically with the applied electrical field. This has been found to be extremely valuable for developer powders used in the process of French Pat. No.

TABLE I Parts by weight Size distribution 3 Conductivity (ohm cm)" Pigment Resin 1 giarblpr i Silica 4 95% b% 100. v./cm. 10,000 v./cm.

e0 40 1. as .1 3. 7 e. 4 12. e 2. SXAO- 4x10-' 60 40 1.2 .1 3.1 6.7 13 0 3. 0x10 5 GXiO' 4O 1. 2 .1 2. 1 5. 8 12 3 3. 0X10 4. 1X10 16 6 83. 4 2 0 2. 2 7.0 31 1 5. 4X10" 2 0X10 50 1. 8 1 3. 0 7.8 13 6 2X10 K 0X10- 60 40 0. 8 1 1. 4 4. 8 22 0 6. 0X10 6. 6X10 1 Plgments'used are as follows: A, B, C, E-Magnetite (0.2%).8 micron diameter); D-Benzidine Yellow (Color Index No. 21090); F-niclrel zinc ferrite (0.20.8 micron diameter).

2 All Exam les except Example E used the resin of Example A. The resin of Example E was Epon 1002" (epichlorohy rin/blsphcnol A solid epoxy resin, melting olnt 75-85/C., cpoxlde equivalent 01600400, molecular weight of 1060, a trademarked product of Shell Chemica Company). 1

3 The size distribution data are percent by number greater than indicated sizes, which are in microns. For example in sample A, 96% of all the particles are larger than 3.7 50% are greater than 6.4 and 6% are greater than 12.6

4 CAB-O-SIL, a trademarked product of Cabot Corporation.

5 milllmicron diameter particle size, as measured by electron microscope.

1,456,993, since the developer particles display high conductivity under the high electrical field conditions of particle deposition on the field electrode and display lower conductivity (and hence better electrical charge retention) after they are removed from the high electrical field. As mentioned earlier, charge retention is particularly important when one desires to transfer the imagewisc pattern of developer particles from the field electrode to a receptor sheet without loss of particles. Although the mechanism is not completely understood, the field dependent conductivity of these particles is believed to be attributable to their being essentially completely immersed or embedded in the relatively insulative, thermoplastic material. At the higher electrical fields the electrical current is believed to tunnel" or pass through the thermoplastic material on the particle surface to reach the embedded zone or layer of conductive material. At the lower electrical fields the thermoplastic surface layer serves as an effective insulativc barrier to current flow, resulting in a lower particle conductivity and a higher electrical charge retention capability.

Various other materials may be usefully incorporated in or on the developer particles of this invention, c.g., plasticizers, dyestuffs, pigments, magnetically permeable particles, etc.

Magnetically permeable particles having an average diameter of 1 micron or less are particularly preferred, including magnctite, barium ferrite, nickel zinc ferrite, chromium oxide, nickel oxide, etc. A magnetically permeable core may also be used. Powdered flow agents may also be added to the dry particles to improve their flow characteristics.

The conductivity of these dry ink powders is related to the applied electric field across the powder particles, and measurement of conductivity is therefore made under standard conditions of sample size, sample compression and applied electric field. The following test procedure is used for the conductivity measurements presented herein.

The sample of ink is placed in a test cell between two brass electrodes of circular cross section, each with a cross-scctional area of about 0.073 cm.". An insulating cylindrical sleeve of polytetrafluoroethylene surrounds the ink and electrodes such that the ink sample is constrained to the shape ofa small pill box. At least one of the electrodes is free to move like a piston in the insulating sleeve to provide a predetermined comprcssion on the sample. The compression is obtained by placing a known weight on the movable electrode,

and typically one uses a 100 gram weight to give a pressure of l,370 g./cm. on the sample. One places enough ink into the cell such that the final electrode spacing under the above pressureis about 0.05 cm. to about 0.1 cm., and preferably as close to 0.05 cm. as possible. The final spacing is measured carefully using a cathctomctcr. A voltage is applied in a series circuit arrangement consisting of the ink sample, an electrical current mctcr (such as a Kcithlcy Model 601 Elcctromcteri, and the voltag'c'source. The ink conductivity is calculated from the voltage which appears across the sample electrodes and the current which flows through it in the usual manner. The voltage is varied and the resulting conductivity is calculated for various electric ficldsfrom about lO v/cm. to about from 1,000 to 4,000 v./cm. For fields higher than about 4,000

20 v./cm., the voltage cannot be applied to the sample for longer than a fraction of a second or so, before considerable heat develops in the sample, changing its characteristics, or causing it to break down" entirely. To measure the electrical conductivity at high fields, therefore, the applied voltage is rapidly in- 25 creased from about 0 to 2,000 v. or more (corresponding to 3 cial, high voltage ramp (or sweep) generator. To measure the current through the sample, when using the voltage sweep, the current meter described earlier is replaced by a current-sampling resistor, typically of about 10,000 ohms. The voltage across this sampling resistor, as monitored by an oscilloscope,

1 is proportional to the current flowing through the sample. Thc

voltage across the sample is also monitored on an oscil- ,loscope, using high voltage probes. Typically, the voltage across the current-sampling resistor is applied to the horizontal input to the oscilloscope, while the voltage across the ink sample itself is appliedto the vertical input to the same oscilloscope, giving a direct plot proportional to the current (ab- ;scissa) vs. voltage (ordinate) characteristics of the ink sample 3 on the oscilloscope screen, which is then photographed. From i this, the conductivity vs. field characteristics of the ink sample ,at very high fields can be calculated. The electrical conduc- Ltivity data given in Table l was obtained in the above manner. 1 The dry ink powder conductivity should be such that at high applied electric fields, it permits a relatively large current flow the development electrode to the intermediate photoconductivc imagcable surface during the development step, which is carried out with a relatively large series voltage impressed. However, the powder should not be so conductive that after one layer is deposited on the intermediate photoconductive imageable surface it thereafter electrically shiclds subsequent layers of powder from the intermediate surface, accepting their charge but preventing their deposition as would happen with a highly conductive powder. Additionally, at low or zero applied electric field, the conductivity should be considerably smaller so the powder which was deposited on the intermediate photoconductive imagcable surface retains its charge for a time period sufficient to permit transfer of the powder from the intermediate surface to a receptor sheet. After development is completed, the electric field holding the powder to the intermediate surface in areas where it is deposited is still relatively strong, but the nature of the interface in these areas is insulating enough to prevent the charge to flow from the powder into the intermediate itself. At the same time, the lateral electric field from particle to particle is very small or zero, so the charge on the deposited particles does not leak laterally to the more conductive areas on the intermediate surrounding the deposited powder. Furthermore, the electric field from layer to layer of deposited powder is smallaftcrdcvclopment, so the charge do es not readily leak from layers more rcmotcfrom thc intermediate surface to the' layers more adjacent to said surface. Thus all deposited particles remain strongly bound to the intermediate and retain their charge for a time.

In preparing the developer powders a dry-powdered blend of appropriate composition is first obtained by any of several standard means, for example, by melting a resin, stirring in the solid filler, if any, allowing the mixture to cool, then grinding and classifying to the appropriate particle size range of approximately 1 to microns diameter. This powder, which is pseudocubical in shape is then spheroidized" by the following method: the powder is aspirated into a moving gas stream, preferably air, thus creating an aerosol. This aerosol is directed at about 90 (:5") through a stream of hot air, which has been heated to about 900-1,l00 F., into a cooling chamber, where the powder is then allowed to settle by gravity while it cools. The resulting powder is now made up of substantially spherical particles. It is then dry blended with conductive powder, such as conductive carbon black, and the mixture is directed at about 90 (i5) through a stream of gas, preferably air, heated to a temperature (e.g., 700800 F.) which can at least soften and desirably melt the thermoplastic resin in the particles and maintain that softened or melted condition for a period of time sufficient to permit the conductive powder to become essentially completely embedded, due to the effects of surface tension. The particles are then collected, such as by cyclone separation, and are preferably blended with a flow agent, such as CAB-O-SIL (finely divided silica, a trademarked product of Cabot Corporation) to insure that it will be free flowing.

In an alternative preparation of the developer powders of this invention the conductive material may be deposited, as a powder or as a continuous film, on the surface of the essentially spherical particles, and a thin film ofinsulative material, e.g., a resin, may be superimposed or deposited thereon to ef fectively embed the conductive material as a zone in the parti+ cles.

The following procedure represents a preferred method for manufacturing the dry ink powder.

EXAMPLE A Four parts by weight of Epon 1004" (epichlorohydrin/bi sphenol A solid epoxy resin, melting point 95-105 C., epoxide equivalent of ENS-1,025, molecular weight of 1,400, a trademarked product of Shell Chemical Company) and 6 parts by weight of magnetite were blended thoroughly on a conventional heated-roll rubber mill. The resulting material was pulverized in an attrition-type grinder and was then classified in a standard air-centrifugal-type machine, the yield from which was about percent by weight in the desired particle size distribution range. Particle size analysis of the product showed it to be about 95% 1 .3u, 50% 4.1,u, 5% l2.6 .1r% (by number).

These particles, which are sharp edged and pseudocubical in shape, were then "spheroidized such that most of the particles were transformed into spherelike shapes or round-edged particles by the following process. The powder was fed to an air aspirator in a uniform stream of about 800 grams per hour. The aspirator sucks the particles into the airstream and disperses them, forming an aerosol. This aerosol was directed at 90 into a heated airstream, the temperature of which was about 950 1 ,000 F. The powder was then allowed to settle and was collected by filtration.

exactly as it was described above, except that the temperature of the hot a1rstream was ad usted to about 740 F. and the product was collected in a cyclone-type separator.

The final step in the process was to blend 0.1 percent by weight of a small particle size SiO flow agent to cause the powder to become sufficiently free flowing for use in the electropowder process. This ink was coded A, and the conductivity vs. applied electrical field curve is shown in the FIGURE.

Table I shows the properties obtained when several other formulations (B-F) were prepared by the method given in the above example, and the conductivity vs. applied electrical field curves are presented in the FIGURE. The two dotted lines in the FIGURE represented the upper and lower limits of conductivity over the range of applied DC electrical fields, as mentioned earlier.

What is claimed is:

l. Flowable, heat fusible, dry powder suitable for use as a developer powder in electrographic recording which comprises thermoplastic, essentially spherical particles, the thermoplastic material of which has a conductivity of at most 10 mho/cm., in which are essentially completely embedded electrically conductive particles having a conductivity of at least 10 mho/cm. and an average diameter below about 100 millimicrons forming a radially disposed zone, said essentially spherical particles having:

a. an electronic conductivity ranging monatonically without decreasing from between about 10" and 10 mho/cm. in a 100 v./cm. DC electrical field to between about 10 and 10' mho/cm. in a 10,000 v./cm. DC electrical field,

b. a number average particle diameter below 15 microns,

and

c. a volume ratio of said electrically conductive particles to said total particle volume of between 0.01/100 and 4/100.

2. The dry powder ofclaim 1 in which said essentially spherical particles contain therein magnetizable particles.

3. The dry powder of claim 1 in which said electrically con ductive particles are particles of highly conductive carbon having a conductivity of at least 10 mho/cm.

4. The dry powder of claim 1 in which the particle size range ofsaid spherical particles is such that at least about number percent of the particles have a diameter greater than about 2 microns and no more than 5 number percent have a diameter greater than 13 microns.

5. The dry powder of claim 1 in which said spherical particles have a flowability angle of repose between 80 and 125.

6. The dry powder of claim 1 in which said spherical particles have an electronic conductivity ranging monatonically without decreasing from between 10' and 10 mho/cm. in a v./cm. DC electrical field to between 10 and 10 mho/cm. in a 10,000 v./cm. DC electrical field.

7. The dry powder of claim 1 in which said thermoplastic material is an organic resin.

8. The dry powder of claim 1 which is heat fusible in the range offrom about 80 to 1 15 C.

UNITED STATES PATENT @FFECE CERTIFICATE OF CURREfiTEON Patent No. Dated February 1 1972 Inventor(s) Robert Nelson It is certified that error appears in the above-identified patent and that said Letters Patentare hereby corrected as shown below:

Col. 5, line 52 "5% l2.6u1r1/ 4(by number)" should read 5% 12.6u(by number) Signed and sealed this 18th day of July 1972.

SEAL) Attest:

EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Commissioner of Patents Attesting Officer USCOMM'DC 60376-969 FORM PC3-1050 (10-69) e 0.5. aovznnnzm' ramrms OFFICE can o-ses-334.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3196032 *Feb 20, 1962Jul 20, 1965Burroughs CorpProcess for producing electrostatic ink powder
US3345294 *Apr 28, 1964Oct 3, 1967American Photocopy Equip CoDeveloper mix for electrostatic printing
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3909258 *Jan 2, 1974Sep 30, 1975Minnesota Mining & MfgElectrographic development process
US3925219 *Jun 29, 1973Dec 9, 1975Minnesota Mining & MfgPressure-fixable developing powder containing a thermoplastic resin and wax
US3929658 *Dec 2, 1974Dec 30, 1975Du PontMagnetic recording compositions and elements of low abrasiveness and process for making them
US4082681 *Nov 4, 1975Apr 4, 1978Mita Industrial CompanyMagnetic developer for electrostatic photography and process for preparation thereof
US4108786 *Dec 16, 1975Aug 22, 1978Mita Industrial Company Ltd.Magnetic dry developer for electrostatic photography and process for preparation thereof
US4137188 *Feb 1, 1978Jan 30, 1979Shigeru UetakeMagnetic toner for electrophotography
US4146494 *Jan 7, 1977Mar 27, 1979Oce-Van De Grinten N.V.One-component developer powder and process for its preparation
US4148640 *Mar 11, 1974Apr 10, 1979Eastman Kodak CompanyDeveloper compositions having electrically conducting filaments in carrier particle matrix
US4174409 *Aug 5, 1977Nov 13, 1979Minnesota Mining And Manufacturing CompanyDepositing latent fingerprints and development thereof
US4176078 *Jun 2, 1977Nov 27, 1979Xerox CorporationField dependent toner having chrome complex coated magnetic particles
US4185916 *Apr 8, 1977Jan 29, 1980Xerox CorporationComposite developer particles and apparatus for using same
US4189390 *Oct 31, 1977Feb 19, 1980Hitachi Metals, Ltd.One-component magnetic developer powder for developing electrostatic latent image and method of making same
US4210448 *Oct 18, 1976Jul 1, 1980Elfotec A.G.One-component magnetic toner, corona
US4212837 *May 4, 1978Jul 15, 1980Tokyo Shibaura Electric Co., Ltd.Method and apparatus for forming spherical particles of thermoplastic material
US4240723 *May 16, 1975Dec 23, 1980Elfotec A.G.Process for electrographic image production and an apparatus for carrying out this process
US4242434 *Jun 21, 1978Dec 30, 1980Ricoh Company, Ltd.Magnetic carrier, measurement of conductivity
US4246331 *Mar 5, 1979Jan 20, 1981Sublistatic Holding SaElectrophotographic developers containing sublaminate dyes
US4251616 *Jun 23, 1977Feb 17, 1981Sublistatic Holding SaMagnetic toners and development process
US4258644 *Jul 23, 1979Mar 31, 1981Minnesota Mining And Manufacturing CompanyPad impregnated with dimer or trimer acids
US4259426 *Mar 6, 1979Mar 31, 1981Canon Kabushiki KaishaNarrow range of particle sizes
US4262076 *Mar 1, 1979Apr 14, 1981Minolta Camera Kabushiki KaishaMethod for manufacturing magnetically attractive toner particles and particle
US4264698 *Oct 15, 1976Apr 28, 1981Mita Industrial Company LimitedSpherical magneto-sensitive material and flowable particles
US4265992 *Jul 31, 1978May 5, 1981Mita Industrial Company LimitedDry blend with fe3o4 or fe2o3 and carbon black
US4265993 *Jun 26, 1979May 5, 1981Hitachi Metals, Ltd.Powder and a polymer of styrene, an acrylic acid and an acrylate
US4273847 *Dec 12, 1979Jun 16, 1981Epp Corp.Inks for pulsed electrical printing and methods of producing same
US4273848 *Mar 5, 1979Jun 16, 1981Minolta Camera Kabushiki KaishaOriented magnetic toner
US4282302 *Oct 22, 1979Aug 4, 1981TDK Electronics, Ltd.Ferrite powder type magnetic toner used in electrophotography and process for producing the same
US4288519 *Dec 20, 1977Sep 8, 1981Black Copy Company, Inc.Softening irregularly shaped thermoplastic toner particles after anchoring pigment on the surfaces thereof
US4291111 *Feb 9, 1979Sep 22, 1981Xerox CorporationNitrogen-containing additives for magnetic toners having hydrophobic and hydrophilic moiety
US4293632 *Apr 3, 1978Oct 6, 1981Xerox CorporationAttrition process for alteration of toner particles containing conductive materials
US4296176 *Dec 11, 1979Oct 20, 1981Epp Corp.Fusible resin and electroconductive material
US4312933 *Mar 30, 1981Jan 26, 1982Xerox CorporationMethod of imaging using nitrogen-containing additives for magnetic toners
US4345013 *Feb 28, 1977Aug 17, 1982Black Copy Company, Inc.Dual purpose magnetic toner
US4345015 *Mar 23, 1977Aug 17, 1982Oce-Van Der Grinten N.V.Dispersion-heat process employing hydrophobic silica for producing spherical electrophotographic toner powder
US4389478 *Jun 22, 1981Jun 21, 1983Bell & Howell CompanyApparatus for and methods of making bimodal electrophotographic copies
US4442790 *Sep 29, 1982Apr 17, 1984Eastman Kodak CompanyMagnetic brush development apparatus
US4443527 *Sep 2, 1982Apr 17, 1984Oce-Nederland B.V.Multilayer, polymer binders
US4451837 *Jun 1, 1982May 29, 1984Xerox CorporationConductive single component magnetic toner for use in electronic printing devices
US4487825 *Jan 22, 1981Dec 11, 1984Xerox CorporationLow melt fusion temperature
US4496232 *Jun 8, 1981Jan 29, 1985Bell & HowellApparatus for and methods of making bimodal electrophotographic copies
US4496644 *Feb 28, 1983Jan 29, 1985Eastman Kodak CompanyElectric field adjustment for magnetic brushes
US4514484 *Jan 6, 1981Apr 30, 1985Compagnie Internationale Pour L'informatique Cii/Honeywell Bull (Societe Anonyme)Powder for developing latent images and a method of producing the powder
US4526851 *Sep 6, 1983Jul 2, 1985Trw Inc.Binder, ferrous carbon comprising carbon fibers in ferrous metal
US4540646 *Jul 9, 1984Sep 10, 1985Konishiroku Photo Industry Co., Ltd.Method of developing an electrostatic latent image
US4554232 *Sep 23, 1980Nov 19, 1985Kazunori TabaruEpoxy resin crosslinked with aminosilane
US4599292 *May 31, 1985Jul 8, 1986Konishiroku Photo Industry Co., Ltd.Method and device of developing an electrostatic latent image
US4601967 *Dec 6, 1984Jul 22, 1986Ricoh Company, Ltd.Toner particles having a relatively high specific volume resistivity coating layer
US4643960 *Jun 6, 1984Feb 17, 1987Minnesota Mining And Manufacturing CompanyBlend of thermoplastic binder, pigment, and fatty amide
US4681830 *Apr 24, 1986Jul 21, 1987Minnesota Mining And Manufacturing CompanyFluorinated carbon-containing developer composition
US4745418 *Apr 30, 1986May 17, 1988Minnesota Mining And Manufacturing CompanyReusable developing powder composition
US4762765 *Mar 24, 1986Aug 9, 1988Alpine Aktiengesellschaft AugsburgMethod of generating a spherical grain
US4913088 *Mar 4, 1987Apr 3, 1990Canon Kabushiki KaishaApparatus for developer transfer under electrical bias
US5032485 *Jun 27, 1990Jul 16, 1991Canon Kabushiki KaishaAlternating current
US5040027 *Dec 12, 1989Aug 13, 1991Matsushita Electric Industrial Company, Ltd.Printing apparatus
US5044310 *Dec 22, 1989Sep 3, 1991Canon Kabushiki KaishaDeveloping apparatus for non-magnetic developer
US5096798 *Mar 18, 1991Mar 17, 1992Canon Kabushiki KaishaAntifog, sharpness, tone, low frequency alternating electrical bias
US5153616 *Mar 6, 1991Oct 6, 1992Hitachi Metals, Ltd.Method for recording images
US5194359 *Aug 6, 1991Mar 16, 1993Canon Kabushiki KaishaDeveloping method for one component developer
US5202211 *Feb 5, 1991Apr 13, 1993Oce-Nederland B.V.Deposits on or embedding in surface of thermoplastic resin
US5350659 *Mar 31, 1993Sep 27, 1994Xerox CorporationPreparation of conductive toners using fluidized bed processing equipment
US5358811 *Apr 29, 1993Oct 25, 1994Canon Kabushiki KaishaFor high speed, high quality electrographic copying
US5385768 *Apr 28, 1993Jan 31, 1995Diafoil Company, LimitedElectrically conductive film
US5457001 *Jul 26, 1994Oct 10, 1995Oce'-Nederland, B.V.Electrically conductive toner powder
US6594462 *Mar 13, 2001Jul 15, 2003Canon Kabushiki KaishaDeveloping apparatus using toner with conductive particles
DE2313132A1 *Mar 16, 1973Sep 20, 1973Oce Van Der Grinten NvElektrofotografisches verfahren
DE2424350A1 *May 20, 1974Nov 27, 1975Turlabor AgVerfahren zur elektrographischen bilderzeugung und vorrichtung zur ausfuehrung des verfahrens
DE2729946A1 *Jun 29, 1977Jan 5, 1978Minnesota Mining & MfgElektrographisches entwicklungsverfahren
EP0035573A1 *Mar 9, 1981Sep 16, 1981Fujitsu LimitedToner particles for electrophotography and electrophotographic process utilizing same
EP0042224A1 *May 27, 1981Dec 23, 1981Minnesota Mining And Manufacturing CompanyFluorinated carbon-containing developer composition
EP0154053A2 *Dec 18, 1984Sep 11, 1985Philips Electronics N.V.Projection screen
EP0266579A2 *Oct 11, 1987May 11, 1988EASTMAN KODAK COMPANY (a New Jersey corporation)An electrostatographic method of making images
WO1983002013A1 *Nov 26, 1982Jun 9, 1983Konishiroku Photo IndMagnetic toner
Classifications
U.S. Classification430/108.1, 252/62.53, 430/111.4, 430/903, 252/62.54
International ClassificationG03G9/087, G03G9/08
Cooperative ClassificationG03G9/0827, G03G9/0823, G03G9/0819, G03G9/0808, Y10S430/104, G03G9/0825
European ClassificationG03G9/08D, G03G9/08B4, G03G9/08T, G03G9/08P2, G03G9/08S