US3640788A - Method of making polyolefin-paper laminate with flame treatment of the paper - Google Patents

Method of making polyolefin-paper laminate with flame treatment of the paper Download PDF

Info

Publication number
US3640788A
US3640788A US888954A US3640788DA US3640788A US 3640788 A US3640788 A US 3640788A US 888954 A US888954 A US 888954A US 3640788D A US3640788D A US 3640788DA US 3640788 A US3640788 A US 3640788A
Authority
US
United States
Prior art keywords
web
flame
stock
paper
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US888954A
Inventor
John Harold Flynn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3640788A publication Critical patent/US3640788A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • B05D1/265Extrusion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/08Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • B05D7/26Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/08Surface shaping of articles, e.g. embossing; Apparatus therefor by flame treatment ; using hot gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • B29C65/106Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined using flames coming in contact with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/22Polyalkenes, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/22Paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2507/00Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/12Paper, e.g. cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/12Paper, e.g. cardboard
    • B29K2711/126Impregnated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • B32B2317/12Paper, e.g. cardboard

Definitions

  • relatively high heatintensity of the special flame is essential in flame-priming paper stock for its firm and even bond with the subsequently applied polyolefin coating. More particularly, not only must the high heat-intensity of the flame be at its tip which is that part of the flame that is nearest, and more often than not impinges on, the paper stock and, hence, acts to flame-prime the same, but it has been found that in order to flame-prime paper stock the flame must be fed with a gas-air mixture at a ratio at which preferably most, and even all, of the mixture in the flame tip undergoes combustion, with such flame havingthe characteristic appearance and relatively high velocity and also tip temperature of a more or less stiff or sharp flame.

Abstract

The disclosure relates to a method of priming paper web for its firm and even bond with subsequently applied molten polyolefin as a coating. The method provides for continuously feeding a paper web at relatively high speed to and past a station at which there is directed against the face to-be-coated of the passing web stiff flame which is fed by a combustible mixture of gas and air at a ratio to obtain substantially complete combustion of the mixture at the flame tip, thereby to cause a decrease in the polarity of the cellulose structure of the web face for enhanced adhesion of the subsequently applied molten polyolefin to this web face.

Description

United States Patent [151 3,640,788 Flynn 1451 Feb. 8, 1972 [54]. METHOD OF MAKING POLYOLEFIN- 3,416,411 12/1968 Hittenberger et al. ..156/82 X PAPER LAMINATE WITH FLAME TREATMENT OF THE PAPER John Harold Flynn, 234 Elk Ave., New Rochelle, NY. 10804 Filed: Dec.'29, 1969 Appl. No.: 888,954
Related US. Application Data Continuation-impart of Ser. No. 643,147, June 2, 1967, abandoned, which is a continuation-in-part of Ser. No. 325,055, Nov. 20, 1963, abandoned.
Inventor:
US. Cl ..l56/82, 156/244, 156/497 l/l967 Flynn 1 56/82 Primary Examiner-Carl D. Quarforth Assistant Examiner-Stephen J. Lechert, .l r. A ttorneyWa.lter Spruegel [57] ABSTRACT The disclosure relates to a method of priming paper web for its firm and even bond with subsequently applied molten polyolefin as a coating. The method provides for continuously feeding a paper web at relatively high speed to and past a station at which there is directed against the face to-be-coated of the passing web stiff flame which is fed by a combustible mixture of gas and air at a ratio to obtain substantially complete combustion of the mixture at the flame tip, thereby to cause a decrease in the polarity of the cellulose structure of the web face for enhanced adhesion of the subsequently applied molten polyolefin to this web face.
3 Claims, 5 Drawing Figures PATENIEDFQB elm 3,640,788
INVENTOR BY Jo/m H fig/2727 METHOD OF MAKING POLYOLEFIN-PAPER LAMINATE WITH FLAME TREATMENT OF THE PAPER This application is a continuation-in-part of my copending application Ser. No. 643,147, filed June 2, 1967, which was a continuation-in-part of my prior application Ser. No. 325,055, filed Nov. 20, 1963, both now abandoned.
This invention relates to a method of treating paper stock for subsequent coating with a polyolefin.
In coating paper or boardstock with a polyolefin in conventional manner by direct extrusion of the same on the stock, it is customary to prime the stock, for example, by-applying to the face to be coated a bonding solution which must be permitted to dry before applying the polyolefin coating. It is only by virtue of thus priming thestock that the subsequently appliedpolyolefin coating will firmly and evenly adhere to the stock, for it is well known that the adherence of polyolefin to nonprimed stock is so superficial as to be wholly inadequate for most'practical purposes. However, while a polyolefin coating applied to primed stock is satisfactory is most respects, including its firm adherence to, and reliable sealing of, the stock, the cost of priming the stock prior to coating adds so much to the overall cost of polyolefin-coated stock as to prohibit its use for many purposes for which it would otherwise be eminently suited.
It is,'therefore, among the objects of the present invention to provide polyolefin-coated paper stock which must have at least as firm and even a bond between stock and coating as that between primed stock and its coating thereon, yet its cost must be sufficiently low to make it pricewise attractive for many purposes for which it was hitherto too expensive.
lt'is another object of the present invention to devise a method according to which polyolefin-coated paper stock is formed with the aforementioned firm and even bond between stock and coating and at the aforementioned low cost.
It is a further object of the present invention to eliminate in the method of making polyolefin-coated paper stock the aforementioned priming of the stock and, instead, provide for treatment of the stock which not only will afford a bond between stock and coating that is entirely satisfactory in all respects, but the cost of which is also so much smaller than that of stock priming as to make possible the aforementioned low cost of coated stock.
Another object of the present invention is to provide, in the method of making polyolefin-coated paper stock, for treatment of the stock pursuant to a discovery of mine according to which brief impingement of certain high heat-intensity flame on the stock will lend the latter the characteristic of directly bonding with a subsequently applied polyolefin coating with great firmness and evenness. The method of making polyolefin-coated paper stock, which features the stock treatment just mentioned that amounts to flame-priming of the stock, thus permits a highly efl'rcient and low-cost, and also continuous, operation, involving no more than continuously feeding paper stock past a station at a rate at which a polyolefin coating may thereat be extruded onto the stock, and on the continuous pass of the stock to the station directing high heat-intensity flame against the face to be coated of the stock.
Other objects and advantages will appear to those skilled in the art from the following, considered in conjunction with the accompanying drawings.
In the accompanying drawings, in which certain modes of carrying out the present invention are shown for illustrative purposes:
FIG. I is a diagrammatic illustration of an installation in which to coat paper web stock with a polyolefin in accordance with a method embodying the present invention;
FIG. 2 is a section through polyolefin-coated paper web stock made according to the featured method and also embodying the present invention;
FIGS. 3 and 4 are copies of photomicrographs of identically magnified cut edges of polyolefin-coated identical paper webs, of which the coated web of FIG. 3 embodies the present invention, and the coated web of FIG. 4 is the result of direct polyolefin application to the web without prior priming of any kind of the latter; and
FIG. 5 is a fragmentary diagrammatic illustration of an installation in which to coat paper web stock with a polyolefin in accordance with a method also embodying the invention.
Referring to the drawings, and more particularly to FIGS. 1 and 2, thereof, the reference numeral I0 designates an installation of making polyolefin-coated paper stock s by a featured method of the present invention. The installation I0 comprises, in this instance, a stationary extruder 12, a stationary flame burner 14, and suitable rotary guide rolls 16 to 22 over which exemplary paper web stock w to be coated is led past a flame F from the burner I4 and onto an application roll 24 from which thecoated stock is withdrawn. The roll 22 serves also as a pinch roll which holds the web stock directly against the application roll 24, with the extruder I2 discharging molten polyolefin p in sheet form into the bite of the rolls 22, 24 and, hence, against the face f to be coated of the web stock w.
Except for the burner 14, the installation 10 is entirely conventional and is used in continuously coating web stock which has previously been primed by the application of a bonding agent to its face to be coated as previously described, with he continuously fed web stock receiving its polyolefin coating at the bite of the rolls 22, 24 where its primed face contacts the extruded polyolefin. The application roll 24 and also the pinch roll 22 may in this instance be power-driven for the feed of the web stock, w in the direction of the arrows 26 to and beyond the coating application station A.
In accordance with an important aspect of the present invention, the paper web stock w is primed for a firm and even bond between its face f to be coated and the molten polyolefin applied at the station A, by subjecting the stock face f on the webs pass to the station A to the flame F from the burner 14. The flame F, which is special" in that it must have certain characteristics to be described, is in this instance a single flame sheet that extends, and impinges, more or less, with its tip on the stock face f, throughout the width of the web w, and the burner 14 may be, and preferably is, an industrial gas burner of high-capacity type shown in my prior U.S. Pat. No. 2,647,569, dated Aug. 4, 1953, having in a burner slot a plurality of burner ribbons from which issue a multitude of piloted utility flames of regulatable heat-intensity that combine to form the flame sheet F, with the burner being fed with a combustible fuel mixture, this being a gas-air mixture.
In operation of the present installation 10, paper web stock w is continuously fed and led over the rolls 16 to 20 into the bite of the application and pinch rolls 24 and 22 and withdrawn from the application roll 24, with the guide roll 18 leading the web stock into sufficiently close proximity to the flame sheet F to be evenly subjected thereto. The coated stock s thus continuously passing from the application roll 24 is shown enlarged in FIG. 2, with the polyolefin coating c being bonded to the face f of the web stock w.
In thus treating the paper web stock w with the special flame F prior to coating the same, the web stock, and more particularly its face f to be coated may be said to be flame-primed, for it has been found that a paper web face thus flame-treated will bond with-the subsequently applied polyolefin coating at least as firmly and evenly as does previous solution-primed web stock bond with a subsequently applied polyolefin coating. It has also been found that such flame treatment renders the web face immeasurably more receptive to the subsequently applied polyolefin coating than a web face not previously primed at all, i.e., neither flame-primed nor solution-primed.
Polyolefin-coating paper web stock in the exemplary operation shown in FIG. 1 is thus according to a method which involves coating a surface of the continuously fed web by contacting molten polyolefin therewith, and which features, prior to coating the web surface priming the web for a firm and even bond of its surface directly with the subsequently applied polyolefin coating, by subjecting the face to be coated of the continuously fed web to the special flame.
web stock with a polyolefin according to the present invention, there is given, by way of example and not by way of limitation, the following pertinent data of an actual stock coating operation in an installation like that shown in FIG. 1. Thus, web stock in the form of a paper web of approximately 4 mil thickness was fed'at a rate of approximately 1000 feet per minute past the sheet F of special flame and into the bite of the application and pinch rolls 24, 22 where molten polyethylene at normal extrusion temperature was applied to the face to be coated of the paper web, with the polyethylene coating being about one-half mil in thickness. The flame sheet impinged on the passing web stock throughout its width. The resulting polyethylene-coated paper web had such a strong bond between paper and coating as practically to defy all efforts at peeling the coating from the paper web, wherefore at the given feed rate of the paper web the exceedingly brief impingement of the flame sheet of the given temperature on the web primed the latter quite satisfactorily.
To further demonstrate the firm and even bond between the paper and polyethylene of the exemplary coated paper web just described, clean cut edges of the same were inspected under the microscope at l magnification and a photomicrograph made of one of them of which FIG. 3 is a copy in accurate outline and in the nearest possible proximation of the demarcation between the paper and polyethylene at the bond between them which despite this high-power magnification was difficult to observe on the actual photomicrograph. Thus, FIG. 3 shows the paper web w and the polyethylene coating c thereon, with the demarcation between them being roughly along the jagged line L. However, all microscopic inspections of cut edges of the coated paper web, including the one photographed and depicted in FIG. 3, clearly indicated that, except for very few and very minute as well as entirely inconsequential pockets between the paper stock and polyethylene, the paper stock and polyethylene was remarkably free from pockets therebetween, for no pockets, except the few mentioned, were discernible at lOOX magnification, and the photomicrograph copied in FIG. 3 did not even shown a single one of these very few pockets. This, coupled with the described great resistance of the polyethylene coating to being peeled from the paper stock, points clearly at adhesion of the polyethylene coating to the paper stock which to all practical intents and purposes amounts to 100 percent adhesion, and further points equally clearly at the remarkable firmness and evenness of the bond between the paper stock and coating thereon.
To further demonstrate the remarkable effectiveness of flame-priming stock for its subsequent polyolefin-coating, exactly the same paper stock of 4 mil thickness was, without prior flame priming or any other previous priming, coated with polyethylene in. the same manner as the described flamepreprimed paper web. Clean-cut edges of samples of the thus coated but not preprimed stock were inspected under the microscope at l00 magnification and a photomicrograph made of which FIG. 4 is a true copy in every respect. The phonmiicrogrnph copied in FIG. 4 affords a typical demonstration of what microscopic inspection of all sample edges showed. Thus, FIG. 4 shows the paper stock w and the applied polyethylene coating 0 of which the latter is bonded or tacked to the former at the isolated places 1, with the detached polyethylene coating therebetween forming typical bubbles 11. Further investigation brought to light that there were about 54 of these bubbles per inch of linear edge of the coated stock and that about 38 percent of the polyethylene coating was attached to, and 62 percent thereof detached from, the surface of the paper stock. While it is hardly necessary to mention that the coated stock of FIG. 4 is useless for most practical purposes, for its coating has no peel resistance to speak about and the bubble formations of the coating will rupture on the slightest rubbing touch therewith, this coated stock, with but 38 percent of its coating adhering to the paper stock, points unmistakably at the remarkable effectiveness of flame-priming the base stock prior to coating the same which is solely responsible for just about 100 percent adherence of the subsequently applied coating to the base stock, as described.
It has been mentioned heretofore that relatively high heatintensity of the special flame is essential in flame-priming paper stock for its firm and even bond with the subsequently applied polyolefin coating. More particularly, not only must the high heat-intensity of the flame be at its tip which is that part of the flame that is nearest, and more often than not impinges on, the paper stock and, hence, acts to flame-prime the same, but it has been found that in order to flame-prime paper stock the flame must be fed with a gas-air mixture at a ratio at which preferably most, and even all, of the mixture in the flame tip undergoes combustion, with such flame havingthe characteristic appearance and relatively high velocity and also tip temperature of a more or less stiff or sharp flame.
Tests have been conducted to find out the exact change in a paper web face pursuant to its subjection to sharp flame, and in these tests methods were employed involving surface microscopy, infrared reflectance spectrometry and surface adsorption. These tests have indicated and proved that in a paper web subjected to such a sharp flame the polarity of the cellulosic structure of the flame-subjected web face has notably deceased which, of course, promotes the adhesion of the subsequently extruded, relatively nonpolar, polyolefin to this web face.
As already mentioned, such a sharp flame has a characteristic appearance, wherefore it is merely necessary to vary the ratio of gas and air until a flame has the characteristic appearance of sharp flame which thereupon is entirely suited for the purpose of flame-priming a paper web. Of course, there is no single exact ratio of gas to air which must be maintained for a sharp flame suited for the purpose, for this ratio may vary even for the same gas and will vary fordifferent gases such as natural gas and produced gas, for example, yet as long as the ensuing flame has the appearance of a more or less sharp flame, combustion of the air-gas mixture in the flame tip is sufficiently complete to flameprime a paper web face, i.e., will cause a decrease in the polarity of the cellulosic structure of the web face and thereby promote adhesion of the subsequently applied polyolefin to this web face. Just to give some indication of air-gas ratios of sharp flames, there is given by way of example and without any implied limitation, one example of such an air-gas ratio used for a flame suited for the purpose, this being a ratio of 9.6 to l for a certain natural gas, i.e., 9.6 parts by volume of air to 1 part by volume of the particular gas.
These same tests have also indicated and proved the surprising fact that sharp flame suited for flame-priming a paper web face, i.e., causes a decrease in the polarity of its cellulosic structure, left intact cellulose fibers that protruded from the web face. These same tests further indicated and proved that such protruding cellulose fibers burned off or fused only on subjection to a flame which was widely different from a sharp flame and is best described as a soft flame. Such a soft flame is in its appearance markedly different from a sharp flame, and is further characterized by noncombustion of a quite substantial proportion of the air-gas mixture in the flame tip. It was found that soft flame which did burnoff or fuse protruding cellulose fibers on a paper web face caused an increase in the polarity of the cellulosic structure of the face and, hence, made for even more inferior adherence of an extruded polyolefin coating to the web face. Just to give an example, without any implied limitation, of such a soft flame which burned-off and fused protruding cellulose fibers on a paper web face with ensuing increase of the polarity of the cellulosic structure of the web face, a flame was fed with a mixture of gas and air at a ratio of 6 parts by volume of air to 1 part by volume of gas, with the gas being the same natural gas mentioned above for a sharp flame.
It is imperative for satisfactory priming of a paper web that the sharp flame substantially impinges on the web face. In this connection, at the practical high web speeds contemplated for flame-priming web according to the invention, this being web speeds within a range starting at a minimum of approximately 400 feet per minute and extending at present to 2,500 feet per minute, a layer of air clings to and travels with the web. This air layer increases in thickness with increasing web speed and acts as an effective heat insulator on the web, and this air layer must be penetrated by the flame tip before the latter reaches the web face to prime the same. Accordingly, at different web speeds the velocity of the flame will have to be varied in order to achieve the foregoing. This is done by simply varying the pressure of the combustible air-gas mixture for the burner in well-known manner, without ordinarily changing the air-gas ratio of the mixture so as to retain the sharp characteristic of the flame. 1
It has been found that for web speeds from approximately 400 feet per minute to approximately 1,200 feet per minute,
7 flame from a single burner satisfactorily flame-primes the web on varying the flame velocity as needed. At web speeds above 1,200 feet per minute, the tip of a single flame apparently is cooled quite considerably by the clinging air layer on the web, and it has been found appropriate for good flame-priming of webs to employ the flames from two burners.
ln initial operations of making polyolefin-coated paper stock according to the invention pinholes in the coating were noted. However, pinholes in these coatings were quickly eliminated in toto on first finding that they were caused by breaks or ruptures therein owing to insufficient extrusion speed of the polyolefin and, hence, without compensating in the applied polyolefin for its stretch tendency on cooling to room temperature. The simple remedy for eliminating pinholes altogether was a slight increase in the extrusion speed of the polyolefin onto the passing web.
The web stock is flame-primed according to the present invention preferably and advantageously in the same continuous operation in which the polyolefin coating is applied thereto, as in the installation in FIG. 1 and in the described exemplary operation thereof. However, it is not imperative that the paper web be flame-primed and polyolefin-coated in the same operation, for flame-primed web has been laid aside for several days and then coated with polyolefin, with the bond between them being as firm and even as that achieved by flame-priming the web and coating it in the same operation.
Reference in now has to FIG. 5 which shows an installation 10 for flame-priming a paper web w with flame 'F from two burners 14' at the hereinbefore mentioned web velocities of over 1,200 feet per minute.
While in the foregoing description of the invention reference is made to the flame-priming of paper, the term paper as used herein and in the appended claims is meant to include stock commonly referred to as cardboard or boardstock or any other stock having the characteristic properties of paper.
What is claimed is:
1. In a method of making polyolefin-coated paper web, involving at any time after the hereinafter specified flame treatment of a face of a paper web extruding molten polyolefin onto said web face, that improvement which comprises continuously feeding the web to and beyond a station, feeding to a first high-capacity burner at said station a mixture of gas and air at a ratio to produce a first stiff flame with substantially complete combustion of the mixture at the flame tip, and directing the flame with its tip against said web face transversely of the feed direction of the web to cause a decrease in the polarity of the cellulose structure of said web face and thereby promote adhesion of the subsequently extruded polyolefin on said web face.
2. The improvement in a method of making polyolefincoated paper web as in claim 1, in which the web is fed at a rate within a range from approximately 400 feet per minute to approximately 1,200 feet per minute at which there clings to said web face an air layer, and the velocity of said flame is regulated so that the same penetrates said air layer at any web speed within said range.
3. The improvement in a method of making polyolefincoated paper web as in claim 1, in which the web is fed at a rate above 1,200 feet per minute, there is fed to a second highcapacity burner at said station a mixture of gas and air at a ratio to produce another stiff flame with substantially complete combustion of the mixture at the flame tip, and said other flame is spaced from said first flame and directed with its it against said web face transversely of the feed direction of the web.

Claims (2)

  1. 2. The improvement in a method of making polyolefin-coated paper web as in claim 1, in which the web is fed at a rate within a range from approximately 400 feet per minute to approximately 1, 200 feet per minute at which there clings to said web face an air layer, and the velocity of said flame is regulated so that the same penetrates said air layer at any web speed within said range.
  2. 3. The improvement in a method of making polyolefin-coated paper web as in claim 1, in which the web is fed at a rate above 1,200 feet per minute, there is fed to a second high-capacity burner at said station a mixture of gas and air at a ratio to produce another stiff flame with substantially complete combustion of the mixture at the flame tip, and said other flame is spaced from said first flame and directed with its tip against said web face transversely of the feed direction of the web.
US888954A 1963-11-20 1969-12-29 Method of making polyolefin-paper laminate with flame treatment of the paper Expired - Lifetime US3640788A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32505563A 1963-11-20 1963-11-20
US88895469A 1969-12-29 1969-12-29

Publications (1)

Publication Number Publication Date
US3640788A true US3640788A (en) 1972-02-08

Family

ID=26984755

Family Applications (1)

Application Number Title Priority Date Filing Date
US888954A Expired - Lifetime US3640788A (en) 1963-11-20 1969-12-29 Method of making polyolefin-paper laminate with flame treatment of the paper

Country Status (4)

Country Link
US (1) US3640788A (en)
DE (1) DE2111887C3 (en)
FR (1) FR1389238A (en)
GB (1) GB1030809A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904104A (en) * 1972-08-18 1975-09-09 Du Pont Polyethylene terephthalate/paperboard blank and container formed from such blank
US4115176A (en) * 1973-10-24 1978-09-19 Ab Akerlund & Rausing Laminated paper product and a method for manufacturing said product
US4133710A (en) * 1975-01-21 1979-01-09 Cordotex Sa Method for forming a polyethylene layer on a substrate
US4432820A (en) * 1982-03-29 1984-02-21 Champion International Corporation Process for production of polyester-polyolefin film laminates
US4476153A (en) * 1981-10-01 1984-10-09 Fuji Photo Film Co., Ltd. Process for the preparation of photographic resin-coated paper
US4610627A (en) * 1984-12-04 1986-09-09 Wise Walter G High velocity, even flow flame treatment of webs
US4702956A (en) * 1985-12-12 1987-10-27 Ausimont, U.S.A., Inc. Method of bonding glass fibers or other substrates to various polymers by oxidizing the molten polymer surface, and articles produced thereby
EP0293098A2 (en) * 1987-05-29 1988-11-30 International Paper Company Improved non-foil composite structures for packaging juice
US4802943A (en) * 1987-05-29 1989-02-07 International Paper Company Non-foil composite structures for packaging juice
US5552002A (en) * 1993-12-01 1996-09-03 Westvaco Corporation Method for making paperboard packaging containing a PVOH barrier
US5772819A (en) * 1988-12-09 1998-06-30 Olvey; Michael Wayne Method of making a composite of paper and plastic film
US5916393A (en) * 1997-06-24 1999-06-29 Owens Corning Fiberglas Technology, Inc. Method for applying adhesive on a porous substrate
US6280825B1 (en) * 1988-12-07 2001-08-28 Laminating Technologies, Inc. Method of making a composite of paper and plastic film and composites
US20060128563A1 (en) * 2004-12-09 2006-06-15 Flabeg Gmbh & Co., Kg Method for manufacturing a non-fogging element and device for activating such an element
WO2012089611A3 (en) * 2010-12-29 2012-10-11 Tetra Laval Holdings & Finance S.A. Flame treatment of a substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300350A (en) * 1963-03-11 1967-01-24 John H Flynn Method of making jointed polyolefincoated paperboard products
US3416411A (en) * 1965-02-25 1968-12-17 Kliklok Corp Method of heat bonding panels of paperboard having a thermoplastic coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300350A (en) * 1963-03-11 1967-01-24 John H Flynn Method of making jointed polyolefincoated paperboard products
US3416411A (en) * 1965-02-25 1968-12-17 Kliklok Corp Method of heat bonding panels of paperboard having a thermoplastic coating

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904104A (en) * 1972-08-18 1975-09-09 Du Pont Polyethylene terephthalate/paperboard blank and container formed from such blank
US4115176A (en) * 1973-10-24 1978-09-19 Ab Akerlund & Rausing Laminated paper product and a method for manufacturing said product
US4133710A (en) * 1975-01-21 1979-01-09 Cordotex Sa Method for forming a polyethylene layer on a substrate
US4476153A (en) * 1981-10-01 1984-10-09 Fuji Photo Film Co., Ltd. Process for the preparation of photographic resin-coated paper
US4432820A (en) * 1982-03-29 1984-02-21 Champion International Corporation Process for production of polyester-polyolefin film laminates
US4610627A (en) * 1984-12-04 1986-09-09 Wise Walter G High velocity, even flow flame treatment of webs
US4702956A (en) * 1985-12-12 1987-10-27 Ausimont, U.S.A., Inc. Method of bonding glass fibers or other substrates to various polymers by oxidizing the molten polymer surface, and articles produced thereby
US4802943A (en) * 1987-05-29 1989-02-07 International Paper Company Non-foil composite structures for packaging juice
EP0293098A2 (en) * 1987-05-29 1988-11-30 International Paper Company Improved non-foil composite structures for packaging juice
EP0293098A3 (en) * 1987-05-29 1990-03-07 International Paper Company Improved non-foil composite structures for packaging juice
US6280825B1 (en) * 1988-12-07 2001-08-28 Laminating Technologies, Inc. Method of making a composite of paper and plastic film and composites
US6509105B2 (en) * 1988-12-07 2003-01-21 Laminating Technologies, Inc. Method of making a composite of paper and plastic film and composites
US5772819A (en) * 1988-12-09 1998-06-30 Olvey; Michael Wayne Method of making a composite of paper and plastic film
US5552002A (en) * 1993-12-01 1996-09-03 Westvaco Corporation Method for making paperboard packaging containing a PVOH barrier
US5916393A (en) * 1997-06-24 1999-06-29 Owens Corning Fiberglas Technology, Inc. Method for applying adhesive on a porous substrate
US20060128563A1 (en) * 2004-12-09 2006-06-15 Flabeg Gmbh & Co., Kg Method for manufacturing a non-fogging element and device for activating such an element
WO2012089611A3 (en) * 2010-12-29 2012-10-11 Tetra Laval Holdings & Finance S.A. Flame treatment of a substrate
CN103237941A (en) * 2010-12-29 2013-08-07 利乐拉瓦尔集团及财务有限公司 Flame treatment of a substrate
RU2582135C2 (en) * 2010-12-29 2016-04-20 Тетра Лаваль Холдингз Энд Файнэнс С.А. Flame treatment of substrate

Also Published As

Publication number Publication date
FR1389238A (en) 1965-02-12
DE2111887B2 (en) 1973-08-16
DE2111887C3 (en) 1974-03-21
GB1030809A (en) 1966-05-25
DE2111887A1 (en) 1972-09-21

Similar Documents

Publication Publication Date Title
US3640788A (en) Method of making polyolefin-paper laminate with flame treatment of the paper
US3954928A (en) Process for making sheet-formed reticulated fibrous structures
US6136414A (en) Embossed sheet and a method of producing a laminate including that sheet
US3811987A (en) Apparatus for bonding thermoplastic materials and products thereof
US3038198A (en) Apparatus for perforating thermoplastic sheets
US7037100B2 (en) Apparatus for flame-perforating films and methods of flame-perforating films
US2795820A (en) Treatment of polyethylene
KR20000048853A (en) High density polyethylene film with high biaxial orientation
JPH023707B2 (en)
US2575046A (en) Process for producing ornamental plastic films
US4933124A (en) Process of applying a silicone release coating to an oriented polymer film
US4839123A (en) Process of applying a silicone release coating to an oriented polymer film
DE602004010168T2 (en) METHOD AND DEVICE FOR THE OXYGEN-EFFECTIVE FLAMMING REFORMS OF A POLYMER FILM
US3325332A (en) Method for heat sealing plastic film to plastic foam
DE4343526A1 (en) Vermiculite foil prodn. for thermal insulation and flame retardant coat - by applying unflocculated colloidal dispersion of delaminated flake to flexible carrier retaining wet foil and release dry foil
US3783062A (en) Method for flame bonding by use of high velocity,high temperature direct flame
US3736219A (en) Heat sealed polyester film
US3769138A (en) Apparatus and a method for preparing a composite laminated sheet
EP2969535B1 (en) Polymeric multilayer films and methods to make the same
GB1080649A (en) Method to increase adhesion of a polyolefin coating to substrates
US3853584A (en) Process for the preparation of photographic materials
US1845133A (en) Edge-sealed assembly
US3481804A (en) Process for forming a polyethylene/polypropylene laminate
US3980513A (en) Process for making laminates of sheet-formed, reticulated fibrous structures
US4186018A (en) Surface treatment of a support member for photographic light-sensitive materials