Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3641373 A
Publication typeGrant
Publication dateFeb 8, 1972
Filing dateOct 2, 1969
Priority dateOct 8, 1968
Also published asDE1948659A1, US3769531
Publication numberUS 3641373 A, US 3641373A, US-A-3641373, US3641373 A, US3641373A
InventorsElkuch Franz
Original AssigneeProctor Ets
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrostatic system for generating periodical mechanical vibrations
US 3641373 A
Abstract
The present invention concerns means for generating periodical mechanical vibrations by means of electric energy, and deals with a greatly simplified and efficacious swing system, which produces mechanical vibratory movements, which system dispenses with any active elements or components except for an energy or current source or cell, the energy losses produced by ohmic resistances in the system being reduced to a minimum and resulting in a high degree of efficiency, reliability and accurate performance.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

Q United States Patent [151 3,641,373

Elkuch Feb. 8, 1972 [54] ELECTROSTATIC SYSTEM FOR 2,606,222 8/1952 Clifford et al ..3l0/6 X GENERATING PERIODICAL 5/1958 Itiavey ..58/28 8 1965 schu in..- ..310/22 MECHANICAL VIBRATIONS 3,283,226 11/1966 Umpleb'y et al ..3 17/250 X 721 t: FranzElkuchShllbe,L' l 1 w c e FOREIGN PATENTS OR APPLICATIONS 73 Ass :Eta tProcorVad,L'htel 1 Stein mm 922,033 3/1963 Great Britain ..310/5 [22] Filed: Oct. 2, 1969 Primary Examinerl). F. Duggan [2!] Appl- No 863,056 Attorney-Leon M. Strauss [57] ABSTRACT [30] Foreign Application Data The present invention concerns means for generating periodi- Oct. 8, 1968 Switzerland ..l4948/68 cal mechanical vibrations by means of electric energy, and deals with a greatly simplified and efficacious swing system, I 52] 0.8. CI ..3l0/6, 58/23 which produces mechanical vibratory movements, which [51 Int. Cl. .1102]! 1/00 system dispenses with any active elements or components ex- [58] Field of Search ..310/5, 6, 21, 22, 25, 31, 32; cep't'for n energy or current source or cell, he energy losses 317/250; 318/1 16; 58/23, 23 TF, 23 MV, 28, 28 A, produced by ohmic resistances in the system being reduced to 29 a minimum and resulting in a high degree of efficiency, reliability and accurate performance. 56 R 1 CM l l e mm 1 Claims, 5 Drawing Figures UNITED STATES PATENTS 1,910,434 5/1933 Hayes ..58/29 45 f A; j

PATENTEDFEB 8 I972 3.641.873

NVENTO Q /VZ E 619 ELECTROSTATIC SYSTEM FOR GENERATING PERIODICAL MECHANICAL VIBRATIONS Two or more electrodes are arranged to constitute a mechanical oscillating or swinging arrangement of which at least one electrode is resiliently supported and is capable of flexing and swinging along a predetermined length of an oscillating course and direction toward and away from the other electrode or electrodes; a charge compensation in condenser fashion occurring when selected ones of said electrodes approach each other closely enough, within an electric field established between said electrodes. In the position of rest said electrodes are sufficiently remote or spaced from each other, but are aligned with their frontal faces confronting each other.

SUMMARY OF THE INVENTION The invention is applicable more generally to the operation and performance of clocks, watches and similar instruments requiring substantially no surveillance and nevertheless acting dependently and accurately for an extensive length of time.

It is therefore one of the important objects of the invention to provide means resulting in a highly economical and inexpensive vibratory drive system which can be easily adapted to the clockwork of timepieces and similar instruments preferably employable in the scientific field which require precision and exactitude for their operation.

It is another object of the present invention to provide means conducive to a compact and relatively sturdy device for transferring electric energy to a mechanical drive arrangement which includes vibratory motion release and distribution.

Yet a further object of the invention is directed to means affording convenient and continuous replacement or replenishment of energy losses to which said device or instrumentality is being subjected during operation.

These and other objects and features of the invention ensue from the following detailed specification, reference thereto being made in the attached drawings illustrating some preferred embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 shows a basic diagram of a device according to the invention employing two electrodes, one of which can be excited to perform mechanical vibrations.

FIG. 2 is another form or embodiment pursuant to the invention with two electrodes, both of which being excitable to carry out vibrations.

FIG. 3 is a similar embodiment equipped with three electrodes, two of which being movable.

FIG. 4 is still another form of the invention having incorporated three electrodes, of which only one is movable.

FIG. 5 shows schematically the application of the embodiment of FIG. 4 to a ratchet wheel drive.

DETAILED SPECIFICATION For achieving a structure capable of performing desired 7 vibrations a mass must be mounted in a resilient or springy manner and in a fashion that the mass can transmit its kinetic energy to a resiliently suspended or supported member, and after complete transmission or transfer of kinetic energy of the mass, the static energy stored in the resiliently suspended member is again completely transferred to the mass in the form of kinetic energy. To maintain the resultant vibration, it becomes further necessary to replace any inevitably resulting energy losses.

In FIG. 1 there is disclosed a device with an arrangement capable of executing vibratory motions for the drive of a clock or timepiece mechanism. On an elastic or resilient member or tongue 1 is fastened an electrode 2, which constitutes at the same time primarily the vibrating mass. The other end of the tongue I is rigidly connected with an insulating block 3. The electrode can swing back and forth in the direction of arrow 4, when it is excited or caused to do so. For this purpose a second electrode 5 is provided at a distance and location opposite the movable electrode 2, which is likewise fastened on said block 3 by means of a relatively heavier support or carrier 6.

Tongue I and carrier 6 are electric conductors, so that through connections 7 and 8 electric current can be supplied to the electrodes from a voltage source or energy cell (not shown) for the charging of these electrodes. Block 3 contains or consists of insulation material.

The two opposite electrodes 2 and 5 constitute or function as a condenser, the capacity of which depends on the size of the mutually opposite faces of the electrodes and the distance between them. This condenser charges across the connections 7 and 8, so that electrode 5 has a positive and electrode 2 a negative potential. By the action of the electric field between these two electrodes the latter are pulled and attracted toward each other, the movable electrode 2 being moved counter to the force of the elastic tongue 1 toward and up to electrode 5.

As soon as the electrodes closely approach or touch each other, as is indicated in broken lines (FIG. 2), the potential difference between these two electrodes is compensated and the electric field rapidly disappears. Electrode 2 is now exposed only to the action or force of the tensioned elastic tongue member 1 and hence can swing back, passing, owing to inertia, beyond its neutral or initial position to a second end position shown in broken lines (FIG. I).

The voltage source with which the electrodes are connected is high-ohmic, or has purposely been rendered high-ohmic by a preconnected or series ohmic resistance (not shown), in order that at the time of contact of the electrodes the short circuit current is limited and, on the other hand, the condenser constituted by the electrodes, after these latter two do no longer touch each other due to the return movement of the movable electrode, is charged again with delay. This internal resistance is so great that the condenser is charged to practically the full voltage of the energy supply source at the earliest after attainment of the central position of electrode 2.

In the selection of the active internal resistance it must be also taken into consideration that the capacityof this condenser may vary, whereby the charging time may likewise be varied.

In FIG. 2 another form of construction according to the invention is revealed in principle. It differs from the first embodiment only in the likewise resilient arrangement of the second electrode 5, which is fastened to an elastic tongue 1', so that the two electrodes 2 and 5 are able to execute mutually oppositely directed swinging movements, whereby they touch once in the course of each occurrence of vibration for the purpose of charge exchange, as is indicated in broken lines. Also these electrodes are connectable to a high-ohmic voltage or like energy source (not shown).

In the embodiment of the invention according to FIG. 3, two electrodes 10 and l l, maintained at a distance by a web or bridge element 9, and electrically insulated from each other, are arranged at the freely vibrating end of a resilient tongue 12. These electrodes are connected for electric conduction via flexible conductors l3 and 14 with the terminals l5, 16 so that corresponding charges can be supplied to them from an energy cell or source (not shown).

Between these two movable electrodes 10 and 11, there is arranged a stationary or fixed third electrode 17 which is electrically insulated. Between the two outer electrodes 10 and 11 there exists a voltage difference, and when by a single external influence electrode 10, for example, has been brought into contact with the central electrode 17, the latter assumes the same polarity, and subsequently electrode 10 is repelled from and simultaneously electrode 11 is attracted by electrode I7, because the latter two carry opposite charges. These two forces acting in the same direction deflect tongue 12in the opposite direction until electrode 11 comes in contact with electrode 17, thereby causing a charge exchange and the aforementioned operation and phenomenon repeating itself in reverse direction.

In contrast to the two first-mentioned examples pursuant to the inventionas per FIG. 3 forces act on the vibrating mass in either direction of movement thereof, and during the brief contact of the electrodes 10, 17 and l1, 17 only a relative small compensating current flows, which is independent of the resistance of the circuit including electrode 10, conductor 13, terminal 15, voltage source, terminal 16, conductor 14 and electrode 11. The voltage source must simply replenish the electrons intermittently absorbed by electrode 17 from electrode 11, which it transfers to electrode 10. Therefore the efficiency of this device is extremely high and dependable.

FIG. 4 shows a variant of the embodiment of the invention of FIG. 3, in that the two outer electrodes 18 and 19 are fixedly attached or held in position and the central electrode 20 is fastened to the freely vibrating end of tongue 21 as indicated in FIG. 4 at 25, 26. Electrode 20. is electrically insulated from the remaining part 7 of the instrumentality, as shown. The operation of this structure of FIG. 4 is basically the same as that of FIG. 3 with the exception that the central electrode 20 is able to swing back and forth between the two outer electrodes l8 and 19. (See wiring diagram of FIG. 5.)

Contact points 22, 23 and 2A of a known conductive metal or material resistant to burning down or melting are arranged on the end faces of the respective electrodes. They render it possible that when using a voltage source of 1,000 volts, for

example, the electrodes need not approach each other completely for the charge exchange or load compensation, in that already at a sufficiently minute or small distance between the contact points a spark arcs over, which suffices for charge compensation. In this way the harmonic vibratory movement of the mass (electrodes) is not disturbed by any impact of the electrodes on each other.

For the partial decoupling of the vibration energy a transducer may be inserted in the circuit, which transforms the current surges occurring during a charge reversal into an alternating current voltage, which can be tapped at the terminals of the secondary winding of the transformer or transducer, At

the resilient tongue a pawl may be arranged which engages in the asymmetrical teeth of a gear, the latter being advanced by one tooth during each vibratory movement. (See FIG. 5.)

Since for generating a force necessary for vibrating the electrodes a voltage source of relatively high voltage, say, of at least 100 volts, is necessitated, an isotropic generator is advantageously employed. Such voltage cells or sources can be accommodated within a minimum of space and yet furnish a terminal voltage of more than 1,000 volts.

The electric circuit of these above described aggregates or instrumentalities is very simple and any necessary changes of direction of the electric field are effectuated automatically by the movements of the electrodes. The great advantage of this with a very high efficiency and is suitable for installation in timing instruments, clockworks and the like.

It will be seen from the aforesaid disclosure that there has been created according to this invention a very compact and highly efficient vibratory system, which lends itself to a great variety of applications in the instrument field and may be modified or altered according to the purpose intended.

What is claimed is: I

1. A system for generating periodical mechanical oscillations with relatively high-frequency stability, in particular for use in connection with timepieces and like instruments, characterized by two electrodes springedly and swingably supported and mutually electrically insulated, a common bridge element for said two electrodes forming the support therefore and maintaining the two electrodes at predetermined fixed distance from each other, a third electrode having opposed power source.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1910434 *Jan 26, 1929May 23, 1933Hayes Harvey CElectrically driven pendulum
US2606222 *Aug 16, 1948Aug 5, 1952Frank Clifford CecilElectric motor
US2835105 *May 24, 1954May 20, 1958Ancienne Manufacture D HorlogeElectrostatic balance clock
US3204133 *Jan 29, 1963Aug 31, 1965Straumann Inst AgElectric reciprocating drive with motion conversion
US3283226 *Jan 7, 1965Nov 1, 1966Berry Ind IncResonant reed assembly
GB922033A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3772537 *Oct 27, 1972Nov 13, 1973Trw IncElectrostatically actuated device
US3805511 *Jan 24, 1973Apr 23, 1974Biviator SaElectric timepiece assembly
US3881309 *Mar 5, 1974May 6, 1975Biviator SaElectronic timepiece
US3961209 *Oct 24, 1974Jun 1, 1976Biviator S.A.Oscillator for time measurement
US5072288 *Feb 21, 1989Dec 10, 1991Cornell Research Foundation, Inc.Microdynamic release structure
US5149673 *Sep 19, 1991Sep 22, 1992Cornell Research Foundation, Inc.Selective chemical vapor deposition of tungsten for microdynamic structures
US6184607 *Dec 29, 1998Feb 6, 2001Honeywell International Inc.Driving strategy for non-parallel arrays of electrostatic actuators sharing a common electrode
US6568286Jun 2, 2000May 27, 2003Honeywell International Inc.3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US6729856Oct 9, 2001May 4, 2004Honeywell International Inc.Electrostatically actuated pump with elastic restoring forces
US6758107Jan 10, 2003Jul 6, 2004Honeywell International Inc.3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US6767190Feb 25, 2003Jul 27, 2004Honeywell International Inc.Methods of operating an electrostatically actuated pump
US6837476Jun 19, 2002Jan 4, 2005Honeywell International Inc.Electrostatically actuated valve
US6889567Jan 10, 2003May 10, 2005Honeywell International Inc.3D array integrated cells for the sampling and detection of air bound chemical and biological species
US6968862Nov 3, 2004Nov 29, 2005Honeywell International Inc.Electrostatically actuated valve
US7000330Jul 2, 2003Feb 21, 2006Honeywell International Inc.Method and apparatus for receiving a removable media member
US7112911 *Jan 30, 2004Sep 26, 2006Hitachi, Ltd.Vibrational power generation device vibrator
US7222639Dec 29, 2004May 29, 2007Honeywell International Inc.Electrostatically actuated gas valve
US7245062 *May 7, 2003Jul 17, 2007Enocean GmbhDevice for converting mechanical energy into electrical energy
US7320338Jun 3, 2005Jan 22, 2008Honeywell International Inc.Microvalve package assembly
US7328882Jan 6, 2005Feb 12, 2008Honeywell International Inc.Microfluidic modulating valve
US7420659Apr 25, 2005Sep 2, 2008Honeywell Interantional Inc.Flow control system of a cartridge
US7445017Jan 28, 2005Nov 4, 2008Honeywell International Inc.Mesovalve modulator
US7467779Dec 13, 2007Dec 23, 2008Honeywell International Inc.Microfluidic modulating valve
US7517201Jul 14, 2005Apr 14, 2009Honeywell International Inc.Asymmetric dual diaphragm pump
US7523762Mar 22, 2006Apr 28, 2009Honeywell International Inc.Modulating gas valves and systems
US7624755Dec 9, 2005Dec 1, 2009Honeywell International Inc.Gas valve with overtravel
US7644731Nov 30, 2006Jan 12, 2010Honeywell International Inc.Gas valve with resilient seat
US8007704Jul 20, 2006Aug 30, 2011Honeywell International Inc.Insert molded actuator components
US8030807 *Dec 9, 2005Oct 4, 2011Chubb International Holdings LimitedElectromechanical energy harvesting system
US8222775Aug 30, 2011Jul 17, 2012Chubb International Holdings LimitedElectromechanical energy harvesting system
US8839815Dec 15, 2011Sep 23, 2014Honeywell International Inc.Gas valve with electronic cycle counter
Classifications
U.S. Classification310/309, 368/160, 968/480, 968/456
International ClassificationG04C3/08, G04C3/00, G04C3/02
Cooperative ClassificationG04C3/024, G04C3/08
European ClassificationG04C3/02D, G04C3/08