Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3641389 A
Publication typeGrant
Publication dateFeb 8, 1972
Filing dateNov 5, 1969
Priority dateNov 5, 1969
Publication numberUS 3641389 A, US 3641389A, US-A-3641389, US3641389 A, US3641389A
InventorsLeidigh William J
Original AssigneeVarian Associates
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
High-power microwave excited plasma discharge lamp
US 3641389 A
Abstract
A high-power microwave plasma discharge lamp is disclosed. The lamp includes a ceramic tube filled with gas and closed at one end by a window transparent to the optical radiation output of the lamp. The ceramic tube extends through a cavity resonator excited with microwave energy for exciting a plasma discharge within the lamp.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

D United States Patent 51 3,641,389 Leidigh 1 Feb. 8, 1972 [54] HIGH-POWER MICROWAVE EXCITED 3,280,364 10/1966 Sugawara et al ..315/l1 l PLASMA DISCHARGE LAMP 3,353,060 11/1967 Yamamoto et a1 ..315/11 1 X 3,374,393 3/1968 Bramley ..3l5/l1 l X 1721 Inventor Wlllwm s Belmom- Cahf- 3,431,461 3/1969 Dodo et al. .315/37 73 Assignee: v i Mates Palo Alto m 3,434,071 3/1969 Hart .315/39 X Filedl 1969 Primary Examiner-Herman Karl Saalbach Assistant ExaminerSaxfield Chatmon. Jr. [21] Appl 874475 Attorney-Stanley Z. Cole and Leon F Herbert [S2] U.S. Cl ..3l5/39, 313/231, 313/44, [57] ABSTRACT I In CI I on 7/46 A high-P wer microwave plasma discharge lamp is disclosed. ii-, Fie'ld 313/231 1 I The lamp includes a ceramic tube filled with gas and closed at one end by a window transparent to the optical radiation out- [56] References cued put of the lamp. The ceramic tube extends through a cavity resonator excited with microwave energy for exciting a plasma UNITED STATES PATENTS discharge within the p- 9 Claims, 3 Drawing Figures 3,541,372 ll/l970 Omura et al. ..3l5/39X MICROWAVE v SOURCE PAIENTEBFEB' a an FIG; 2

INVENTOR. WILLIAM J. LEIDIGH ATTORNEY I-IIGI-I-POWER MICROWAVE EXCITED PLASMA DISCHARGE LAMP DESCRIPTION OF THE PRIOR ART I-Ieretofore, microwave plasma discharge lamps have been employed as sources of ultraviolet light. These lamps have employed quartz envelopes and quartz windows and their power input has been limited to approximately 100 watts. It is desired to substantially increase the power output of such lamps.

SUMMARY OF THE PRESENT INVENTION The principal object of the present invention is the provision of an improved high-power microwave plasma discharge lamp.

One feature of the present invention is the provision of a ceramic tubular lamp envelope having the output window sealed across one end of the tubular envelope, whereby the power handling capability of the lamp structure is substantially increased.

Another feature of the present invention is the same as the preceding wherein the envelope is disposed within a cavity and the cavity resonator is provided with fluid coolant passageways for directing a stream of fluid coolant onto the envelope of the lamp for cooling same in use.

Another feature of the present invention is the same as any one or more of the preceding features wherein the lamp envelope structure passes through aligned bores in the opposite walls of the cavity resonator, the inside walls of such bores being in good heat exchanging relation relative to the envelope of the lamp via the intermediary of a pair of compressive metallic sleeves to facilitate removal of heat from the lamp in use.

Another feature of the present invention is the same as any one or more of the preceding wherein the output window is connected to the remaining portion of the envelope of the lamp via the intermediary of a metallic demountable gastight flange assembly to facilitate replacement of window members.

Another feature of the present invention is the same as any one or more of the preceding features wherein the output window has enlarged transverse dimensions relative to the transverse dimensions of the central ceramic tubular portion and wherein a reflector is provided internally of the envelope for reflecting optical radiation through the window.

Another feature and advantage of the present invention will become apparent upon a perusal of the following specification taken in connection with the accompanying drawings wherein:

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view, partly broken away of a microwave plasma lamp incorporating features of the present invention,

FIG. 2 is a longitudinal sectional view of a lamp envelope incorporating features of the present invention, and FIG. 3 is an enlarged view of an alternative embodiment of a portion of the structure of FIG. 2 delineated by line 3-3.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIG. 1, there is shown microwave plasma lamp 1 incorporating features of the present invention. The lamp 1 includes a rectangular microwave cavity resonator 2 having a pair of mutually opposed broad walls 3 and 4 closed about their periphery by narrow sidewalls 5, 6, 7 and 8. The cavity 2 is conveniently formed by bolting together two flanged sections of rectangular waveguide 9 and 11.

A pair of axially aligned bores 12 and 13 pass through the mated flanges 14 and 15, such bores being centrally disposed of the broad walls 3 and 4 of the cavity 2 and directed generally at right angles to the plane of the broad walls 3 and 4. An elongated tubular envelope portion 16 of the lamp 1 extends through the cavity 2 and axially through the aligned bores 12 and 13. The envelope portion 16 of the lamp is more fully described below with regard to FIGS. 2 and 3. A pair of axially adjustable metallic sleeves 17 and 18 are disposed in the bores 12 and 13 intermediate the tubular envelope l6 and the inside wall of the bores 12 and 13. The sleeves are axially adjusted to define an optimum gap length 1 between their inner mutually opposed ends. The sleeves are preferably split into two semicylindrical portions which are pressed into intimate physical contact between the inside wall of bores 12 and 13 and against the outer surface of the tubular envelope to provide a good thermally conductive path between the envelope l6 and the flanges 14 and 15, such flanges being cooled by coolant ducts 19 and 21 passing therethrough.

A second pair of axially aligned bores 22 and 23 pass through the narrow sidewalls and 6 and through the flanges l4 and 15 to provide afluid coolant passageway for directing a stream of coolant, such as air, onto the tubular envelope portion 16 disposedwithin the cavity 2 for cooling the lamp envelope in use.

The opposite ends of the rectangular waveguide sections are closed off by narrow end walls 7 and 8. End wall 7 is centrally apertured to accommodate a section of coaxial transmission line 24 having 'a coupling loop 25 extending into the cavity 2 from the center conductor 26 of the coaxial line 24 for exciting the cavity 2 with microwave energy at a convenient frequencyv such as 2,450 MHZ derived from a microwave source 27, such as a 2.5 kw. C.W. magnetron.

The other narrow end wall 8 is defined by the inner end of an axially slidable nonelectrically contacting double-choke shorting plunger 28 which is axially translatable via a.worm shaft 29 and crank 31 for tuning the resonant frequency of the cavity 2 to impedance match the cavity 2 to the microwave source 27.

The microwave energy within the cavity 2 excites a plasma discharge within the envelope 16. Optical radiation emanating from the plasma discharge is passed through a window 32 to a utilization device, not shown. The window 32, as of sapphire or calcium fluoride is sealed over one end of the tubular envelope 16 via a metallic frame structure 33 which includes a demountable gastight flange assembly 34, such as a conventional Conflat flange assembly marketed by Varian Associates of Palo Alto, Calif. In an alternative embodiment, not shown, the window 32 is merely glazed over the end of the ceramic tubular envelope 16 without providing any metallic parts to the envelope 16.

Referring now to FIG. 2, the gastight envelope 16 of the lamp 1 is shown in greater detail. The envelope 16 includes a tubular ceramic central portion 35, as of alumina or beryllia, 0.5 inch diameter, 4 inches long, and having a wall thickness of 0.125 inch. Window frame structure 33 is sealed over one end of the central section 35 via a metallized ceramic-to-metal seal 36. The other end of the central ceramic section 35 is similarly sealed off by a metal cap 37 having a length of tubulation 38 sealed thereto for exhausting and filling the envelope 16-with suitable gas fills. Suitable gas fllls includes 20 percent nitrogen, percent argon by volume, at 1.5 mm. Hg at room temperature, introduced after bakeout and evacuation at 500 C. to produce a relatively narrow band of optical radiation in the ultraviolet band of 1,700 A to 1,900 A wavelength. Other suitable gases include krypton, xenon, helium hydrogen.

Sapphire is a suitable window 33 for optical radiation having a wavelength of 1,600 A and longer, whereas calcium fluoride is suitable as a window material for optical wavelengths falling within the range of 1,600 A to 1,200 A.

Referring now to FIG. 3, there is shown an alternative embodiment of the present invention. In this embodiment, the envelope 16 is essentially the same as that of FIG. 2 except that the output end of the envelope 16 is formed by an outwardly flared metallic window frame structure 41 which is sealed in a gastight manner, as before, over the output end of the central ceramic section 16. The outwardly flared portion 41 is shaped like the reflector of a flashlight and coated on its interior with a reflective coating 42 to reflect optical radiation emanating on the axis of the envelope 16 out through an enlarged window 33 which is sealed in a gastight manner over the open end of the flared reflector 41. The plasma discharge extends axially out of the cavity resonator 2. Optical radiation emanating from this end portion which would otherwise be lost is reflected by reflector 42 out through window 33'.

Since many changes could be made in the above construction and many apparently widely different embodiments of this invention could be made without departing from the scope thereof, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not' in a limiting sense.

I claim:

1. In a high-power microwave excited plasma discharge lamp, means forming a cavity resonator structure having a pair of aligned bores in opposite sides of said cavity structure, means forming an elongated gastight tubular plasma discharge lamp envelope structure extending through said cavity resonator and into said aligned bores, said lamp envelope being tilled with a gas capable of emitting optical radiation within a certain range of desired wavelengths upon excitation by microwave energy, means for exciting said cavity resonator with microwave energy to produce a microwave plasma discharge within the gas filled lamp, means forming a gastight window structure sealed over one end of said tubular lamp envelope for passing output optical radiation at the desired wavelength therethrough, and said tubular lamp envelope including a central portion made of ceramic, and a pair of coolant apertures in opposite sidewalls of said cavity, and means for directing a stream of coolant onto said tubular lamp envelope for cooling same in use.

2. The apparatus of claim 1 including means forming a metallic window frame structure for sealing said window over the end of said tubular ceramic lamp envelope.

3. The apparatus of claim 2 wherein said ceramic lamp envelope is made of a material selected from the class of alumina and beryllia.

4. The apparatus of claim 2 wherein said cavity resonator is rectangular having a pair of opposed broad walls closed about their periphery by narrow sidewalls, and wherein said pair of aligned apertures for receiving said lamp envelope are cen trally disposed in said pair of broad walls.

5. The apparatus of claim 1 including a pair of fluid coolant passageways disposed in a pair of opposed ones of said narrow sidewalls of said cavity for directing a stream of fluid coolant upon said tubular lamp envelope and through said cavity resonator for cooling said lamp in use.

6. The apparatus of claim 4 wherein one of said narrow sidewalls is movable in a direction generally parallel to the plane of said broad walls for tuning said rectangular cavity resonator.

7. The apparatus of claim 5 wherein said means for exciting said cavity resonator with microwave energy includes a coaxial line communicating with said cavity via an aperture in said narrow sidewall thereof which is opposed to said movable sidewall, and a coupling loop extending from the center conductor of said coaxial line into said cavity resonator.

8. The apparatus of claim 2 wherein said metallic window frame stnicture includes a demountable gastight flange assembly having a pair of demountable mating flange portions, one of said flange portions being attached to said window, and the other one of said flange portions being attached to said tubular ceramic lamp envelope.

9. The apparatus of claim 2 wherein said window frame structure is disposed externally of said cavity resonator, said window frame structure having enlarged transverse cross-sectional dimensions relative to the transverse cross-sectional dimensions of said tubular lamp envelope portion which is disposed within said cavity resonator, said enlarged window frame structure having an internal surface reflective to the output optical radiation for reflecting same outwardly of the lamp through said window.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3280364 *Mar 5, 1963Oct 18, 1966Hitachi LtdHigh-frequency discharge plasma generator utilizing an auxiliary flame to start, maintain and stop the main flame
US3353060 *Nov 18, 1965Nov 14, 1967Hitachi LtdHigh-frequency discharge plasma generator with an auxiliary electrode
US3374393 *Feb 12, 1965Mar 19, 1968Melpar IncIntense incoherent light source obtained by quenching the higher excited states and concentrating the energy on the lower states
US3431461 *Sep 27, 1965Mar 4, 1969Hitachi LtdElectron cyclotron resonance heating device
US3434071 *Sep 14, 1967Mar 18, 1969Philips CorpIncoherent microwave generator including a gas discharge tube
US3541372 *Dec 21, 1967Nov 17, 1970Hitachi LtdMicrowave plasma light source
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3757518 *Oct 20, 1971Sep 11, 1973Messerschmitt Boelkow BlohmIon engine
US3872349 *Aug 22, 1973Mar 18, 1975Fusion Systems CorpApparatus and method for generating radiation
US3911318 *Feb 4, 1974Oct 7, 1975Fusion Systems CorpMethod and apparatus for generating electromagnetic radiation
US4002943 *Jul 22, 1975Jan 11, 1977Gte Laboratories IncorporatedTunable microwave cavity
US4042850 *Mar 17, 1976Aug 16, 1977Fusion Systems CorporationMicrowave generated radiation apparatus
US4199419 *Dec 28, 1978Apr 22, 1980The United State Of America As Represented By The Department Of EnergyPhotochemical method for generating superoxide radicals (O2-) in aqueous solutions
US4207452 *Apr 19, 1978Jun 10, 1980Tokyo Shibaura Electric Co., Ltd.Activated gas generator
US4359668 *Jul 15, 1981Nov 16, 1982Fusion Systems CorporationMethod and apparatus for igniting electrodeless discharge lamp
US4414488 *Jun 26, 1980Nov 8, 1983Deutsche Forschungs- Und Versuchsanstalt Fur Luft-Und Raumfahrt E.V.Apparatus for producing a discharge in a supersonic gas flow
US4498029 *Jul 2, 1984Feb 5, 1985Mitsubishi Denki Kabushiki KaishaMicrowave generated plasma light source apparatus
US4507587 *May 24, 1982Mar 26, 1985Fusion Systems CorporationMicrowave generated electrodeless lamp for producing bright output
US4645973 *Oct 2, 1984Feb 24, 1987L'Air Liquide, Societe Anomyme pour l'Etude et l'Exploitation des Procedes Georges ClaudeHyperfrequency energy plasma torch
US4673846 *Feb 26, 1985Jun 16, 1987Mitsubishi Denki Kabushiki KaishaMicrowave discharge light source apparatus
US4810933 *Jul 2, 1986Mar 7, 1989Universite De MontrealSurface wave launchers to produce plasma columns and means for producing plasma of different shapes
US4877999 *Apr 7, 1988Oct 31, 1989Anton Paar KgMethod and apparatus for producing an hf-induced noble-gas plasma
US4906898 *Aug 8, 1988Mar 6, 1990Universite De MontrealSurface wave launchers to produce plasma columns and means for producing plasma of different shapes
US5008593 *Jul 13, 1990Apr 16, 1991The United States Of America As Represented By The Secretary Of The Air ForceCoaxial liquid cooling of high power microwave excited plasma UV lamps
US5055741 *Jul 13, 1990Oct 8, 1991The United States Of America As Represented By The Secretary Of The Air ForceLiquid coolant for high power microwave excited plasma tubes
US5361274 *Mar 12, 1992Nov 1, 1994Fusion Systems Corp.Microwave discharge device with TMNMO cavity
US6737809Mar 15, 2001May 18, 2004Luxim CorporationPlasma lamp with dielectric waveguide
US7067779 *Dec 21, 2000Jun 27, 2006E2V Technologies (Uk) LimitedMagnetron arrangement
US7348732Feb 4, 2004Mar 25, 2008Luxim CorporationPlasma lamp with dielectric waveguide
US7358678Mar 18, 2005Apr 15, 2008Luxim CorporationPlasma lamp with dielectric waveguide
US7362054Mar 18, 2005Apr 22, 2008Luxim CorporationPlasma lamp with dielectric waveguide
US7362055Mar 18, 2005Apr 22, 2008Luxim CorporationPlasma lamp with dielectric waveguide
US7362056Mar 18, 2005Apr 22, 2008Luxim CorporationPlasma lamp with dielectric waveguide
US7372209Dec 11, 2004May 13, 2008Luxim CorporationMicrowave energized plasma lamp with dielectric waveguide
US7391158Mar 18, 2005Jun 24, 2008Luxim CorporationPlasma lamp with dielectric waveguide
US7429818Sep 23, 2004Sep 30, 2008Luxim CorporationPlasma lamp with bulb and lamp chamber
US7498747Mar 18, 2005Mar 3, 2009Luxim CorporationPlasma lamp with dielectric waveguide
US7518315Dec 29, 2006Apr 14, 2009Luxim CorporationMicrowave energized plasma lamp with solid dielectric waveguide
US7525253May 23, 2005Apr 28, 2009Luxim CorporationMicrowave energized plasma lamp with dielectric waveguide
US7919923Oct 15, 2008Apr 5, 2011Luxim CorporationPlasma lamp with dielectric waveguide
US7940007Sep 11, 2008May 10, 2011Luxim CorporationPlasma lamp with dielectric waveguide integrated with transparent bulb
US8110988Feb 15, 2011Feb 7, 2012Luxim CorporationPlasma lamp with dielectric waveguide
US8125153Feb 25, 2009Feb 28, 2012Luxim CorporationMicrowave energized plasma lamp with dielectric waveguide
US8203272Mar 16, 2011Jun 19, 2012Luxim CorporationPlasma lamp with dielectric waveguide integrated with transparent bulb
USRE32626 *Nov 20, 1986Mar 22, 1988Mitsubishi Denki Kabushiki KaishaMicrowave generated plasma light source apparatus
DE2439961A1 *Aug 21, 1974Jul 3, 1975Fusion Systems CorpVorrichtung und verfahren zur erzeugung von strahlung
DE2548220A1 *Oct 28, 1975May 20, 1976AnvarVorrichtung und verfahren zur anregung einer in einer isolierenden huelle eingeschlossenen gassaeule durch hyperfrequenz
DE2751567A1 *Nov 18, 1977May 24, 1978AnvarVerfahren und vorrichtung zur erzeugung eines ionisierten gases oder eines plasmas mittels hyperfrequenter wellen
DE3712971A1 *Apr 16, 1987Nov 3, 1988Plasonic Oberflaechentechnik GMethod and device for producing (generating) a plasma
EP0061409A1 *Mar 25, 1982Sep 29, 1982Saint Gobain Vitrage InternationalElectrically movable sliding window equipped with a safety detector
Classifications
U.S. Classification315/39, 313/44, 313/36, 313/231.1
International ClassificationH01J65/04
Cooperative ClassificationH01J65/044
European ClassificationH01J65/04A1