Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3643096 A
Publication typeGrant
Publication dateFeb 15, 1972
Filing dateFeb 27, 1969
Priority dateFeb 27, 1969
Publication numberUS 3643096 A, US 3643096A, US-A-3643096, US3643096 A, US3643096A
InventorsJeffries Luther R Jr, Thompson Charles F
Original AssigneeGen Nuclear Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Radioactive source shield with safe position indicator
US 3643096 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

w wwvlun avx joiffries h, E?

{541i EIQURCE SHIELD WITH SAiE PQE-E'ETZQN INEHCATOR [21 Inventors: Lies-52m R. Eeiiries, .31., Medford Lakes;

fifimiir. F. Tiiomnson, Miliviile, both of Nlli.

W ssignee: Nuciear, firm, Houston, Tex.

[22} Fiiw: FEE. .27, 1%?

[2H AppLNo; SE35 2 [522 US. G. ........wwmnnlfifilfl R, 250/813 R, 250/ l 06 S [52 int. ....G-91t 1/26, 021i 5/00 [5% Fieifi of Emi -cit.- .-...............250/ l 08, 106 S, 83.3

[5% 'Ezed'ermeas Cited {SHRED STATES PATEMS 2.2"i6,628 1211959 :Prcsi ..250/108 X 3,327,515 BIMM Ifismas ..25G/l06 S CIRGUITRY j QATTERY Primary Examiner-James W. Lawrence Assistant Examiner-Morton J. Fromc Armrney Busser, Smith & Harding [5 7] ABSTRACT Apparatus for indicating when a radioactive source capsuie is in a safe position within its shield comprises a gamma-sensitive photoconductor located in the shield in close proximity to the safe location of the radioactive source, Tho photoconduclor operates a visual indicator through eiectricai circuitry designed so that a positive indication is given when the radioactive source is in its safe position.

, 6 Claims, 4 Drawing Figures PATEWEDFEB 15 m2 3. 643 098 cmcurmv BATTERY 58 38 FIG. 3.

INVENTORS LUTHER R. JEFFRlES,Jr. CHARLES F. THOMPSON ATTORNEYS WKCKGR END OF'TEHE INVENTION This inverrsz'ion relates to radiowactivc source position indicators Tor use i. conjunction withs-ource capsule storage shields. The purpose cat" these indicators is to provide a visual indicatiosz when the'radioactive source is in a safe position within its shield so thauithe user can know." when it is safe to approach and. handle Isl-2*: shieid.

in the past: years, the usage of radioactive isotopes for industrial radiography has replaced the usage of X-ray equipmoist in manyeadiographic operations performed in the field. The use of rae-iiioactive isotopes has also become important in medicine.

The principal disadtantage to!" -the use of radioactive isotopes is theitact that they emitgamma radiation continuous and bus mush be shielded by a; covering of dense material Wh'lii'l not in. are. in v0 lved, exposure dev 2 when each exporsunre is completed in order to make sure the radioactive :source is in a safe, shielded position. This. survey must be made with an instrument capablecof detectiir gamma radiation. in fact, government regulatiozss require ese precautions.

Even though precautions are acquired, and the prescribed procedures slbmuld be fooiproof, manyinstances are reported each year where technicians and others are exposed to overdoses of radio-m en through the faiiore of the technician to follow the propec'rsurvey procedures;

Several attempts have "been mode in the prior art to overcome the profiiiem of accidental Xif0$l1f by the incorporation of mechanicaii Eilfid electromechazzicai indicators in the exposure device.

In :most exposure devices, a radioactive source capsule is pushed or puliied through. a tortuous passage in a shield by a control cable. in some devices, air pressure is used to move the radioactive-source capsule. In Kite case of cable-controlled source capsulies, it is common to rely on the position of the cableas an indzication of the position of the source within the shield. illdiCikKlBZS have been provided which are activated by the control c. e or by some other part which should move with the radioactive source capsule. in the case of air pressure control. microswitches have been arranged to be activated by the source capzaule when it is in a sate position.

Several dangersate inherent in source position indicators in the parlor art. 135 most of these iaadicators are complicated devices with seweral moving parts built as small as possible to conserve SPZlCfirEDd weight, they have a tendency to fail at inopportune timtes. Another serious fault of such indicators is the fact that (they are activated not entirely by the source, but by some other part that should move with the source, for exampt'e, the come-ml cable. if, for some reason, a source capsule became separaeed from its con'trc t cable it could remain exposed when theindicatoris indicating a safe condition. Exposure devices w&h are equipped with indicators controlled by cabi'es and other: parts which move with the source capsule become more dangerous and hazandous than devices without source position indicators since technicians tend to rely on indicators on the device, and tend not to'use an external survey metersuch as aetilfieiger counter.

MARY OF THE ENV ENTION In accordance with the invention, a cable-controlled source capsule is used. its presence at a sfife position in the tortuous passage within a shield is detected by a gamma-sensitive photoconductosliouried in tile shieldsmaterial-in close proximi- "'2. Because of the dangers to personnel which 7 is desirable to malizca survey of a radioactive ty to the safe location of the radioactive source. The detector can ora ly be acdrzated by the source in the safe position. The principal advartcage of the use of a gamma-sensitive detector buried! in the shield materiai is the tfactthat it cannot be actitrated by the control cable or by anything other than the source capsule. rm addition the gamma-sensitive detector has the advantage-oti'cxtremely high reliability.

The detector activates an indicating device, for example a meter, through extremely simple circuitry which is designed so that the failure of any component will result in a readily recognized indication on the meter or other indicator that such a failure has occurred. The principal object of the invention, therefore, is to provide a source position indicator which is fail safe" in its operation.

Since some of the radioactive sources used in industrial radiography have short half-lives, it is necessary to provide compensation for source strength variations in the indicating circuitry. Accordingly, a further object of the invention is to provide such compensation so that similar indications are provided when radioactive sources are in their safe position even though their strength may differ considerably.

BRIEF DESCRlPTlON OF THE DRAWINGS FlG. l is a vertical section ofa radioactive source shield in a carrying case, the figure also showing an external control ..cable.=-and-a tube fortransporting'asource capsule from the DESCRlPTlON OF THE PREFERRED EMBODIMENT HO. 1 shows a carrying case 2 provided with a carrying handle 4. Within case 2, there is mounted a massive shield 6 consisting of lead or other dense material which cannot be penetrated by alpha, beta or gamma radiation. An S-shaped passage 8 extends through the shield material from an opening 10 to a threaded opening 12.

A radioactive source capsule 14, which is of conventional design, is shown in what is termed a safe position in the S- shaped passage 8. The passage is so shaped that radiation emanating from the radioactive isotope within capsule 14 cannot escape through openings 10 and 12 when the capsule is in this position.

A short length 16 of cable is attached at one end to the capsule and terminated at its other end in a connector 18. which extends into a passage 20 provided in a block 22 which is an integral part of the wall of the carrying case. The outer end of passage 20 is threaded at 24, the threads being provided so that member 26 can be connected to the carrying case. Member 26 has an internal passage 28, through which control cable 30 passes. A connector 32 on cable 30 is adapted to be engaged with connector l8 on cable 16 so that the position of the source capsule 14 can be controlled from a remote posidownwardlyto an unsafe position because of the engagement of plunger 35 with connector 18. in order to engage connectors 32 and 18, connector 18 is pulled outwardly so that it clears threads 24. A stop 37, attached to cable 16 and engageable by plunger 35, prpvents connector 18 from being pulled so far outwardly as to expose the source capsule.

A tube 36 is provided with a threaded connector 38, which is adapted to be connected at opening 12. Tube 36 carries the radioactive source capsule to the position in which a radiographic exposure is to be made.

A plug, indicated generally at 40 is preferably made from lead or another suitable shielding material. Plug 40 is an integral element comprising a cylindrical portion 42, a larger cylindrical portion 44, and a cap portion 46, which has an annular face 48 which engages the external wall of the shield. Plug 40 fits into a conforming opening in shield 6, the opening extending from the exterior of the shield to the interior passage 8. The differences between the diameters of cylindrical portions 42 and 44, and the annular portion 48 of the cap provide a stepped configuration ofthe plug which prevents the leakage of radiation. A tortuous passage 49 is provided in the plug elements 44 and 46 for an electrical cable.

Within cylindrical portion 42 a passage 50 is provided. Within passage 50 there is located a gamma-sensitive photoconductor 52. This photoconductor is preferably a cadmium sulphide or cadmium selenide cell, which is sensitive to gamma radiation, but may be any other device providing an electrical response, i.e., either a change in electrical characteristics or an electrical output, to alpha. beta or gamma radiation. A two-conductor cable 54 extends from detector 52 and through passage 49 in the plug elements 44 and 46 to the circuitry at 56. A single-conductor cable can be used as well if the circuit is completed through the shield material. A battery is indicated at 58. An electrical cable 60 extends from the circuitry indicated at 56 to an indicating meter 62, mounted in the cover of the carrying case.

From FIG. I, it will be apparent that detector 52 will only respond to radiation from the radioactive isotope within capsule 14 when capsule-14 is in closeproximity with detector 52.

lf capsule 14 were moved to a position such that radiation could be emitted through one of openings and 12, it would be so remote from detector 52 that the detector would not respond to a significant degree. The tortuous configuration of passage 8 not only prevents the escape of radiation but also shields the detector 52 from external light.

in the electrical diagrams, primed reference numerals indicate elements which correspond to elements shown in FIG. 1.

FlG. 2 shows a simple, uncompensated circuit comprising battery 58, milliammeter 62', and photoconductor 52' connected in series. Photoconductor 52 is a cadmium sulphide cell or another photoconductor which has the characteristic that its resistance decreases as the intensity of radiation impinging upon it increases. In its operation, when the source capsule is in its safe position, the resistance of detector 52 is greatly decreased, and meter 62' gives a positive indication of the safe condition. In the use of the circuit of HG. 2, a minimum meter indication should be established. If the technician operating the device observes a meter reading lower than this minimum when he expects the source capsule to be in its safe position, he should make a check with an external Geiger counter. It may be that the low reading is due to battery age, but, in no case, will the meter give the expected reading when the source capsule is not in its safe position. A short circuit across detector 52' will produce an extraordinarily high indication on the meter which may be protected by a series resistance. in either case, the meter will provide a readilyrccognizable indication ofa malfunction.

When the technician is returning the radioactive source capsule to is safe position, he can observe the meter indication passing through its maximum as the source capsule approaches and moves past the detector. The continuous variation of the meter indication gives absolute assurance to the technician that the source capsule is in the vicinity of the detector. The technician simply adjusts the position of the source capsule until the meter gives a maximum reading. The lock 34 is then operated to extend plunger 35, and connector 32 is disconnected from connector 18. The meter can be at a remote location from the shield if desired.

It should be noted at this point that the electrical circuit of FIG. 2 is perfectly suitable where radioactive sources having relatively long half-lives are used. However, in the case of a radioisotope having a short half-life, for example, Iridium 192, which has a half-life of 74 days, consideration must be made for variations in source strength which occur over a period of time. In practice, the strength of the radioactive source might decrease over a period of time by a factor of 100. FIGS. 3 and 4 show alternative circuits by which these source strength variations are taken into account so that the meter indication,

when the source is in its safe position, is approximately the same regardless of the source strength.

Referring particularly to FIG. 3 a battery 58", a meter 62", a detector 52" and a resistor 66 are connected in series. Delector 52 is located adjacent the safe position of the source within the shield. The circuit of FIG. 3 operates similarly to that shown in FIG. 2 in that the presence of the radiation source in proximity with detector 52" causes its resistance to I decrease, and causes an increase in current through meter 62". However, while the circuit of HG. 2 is highly sensitive to differences in detector resistances, especially in the range of low resistances, in the case of HO. 3, the inclusion of resistor 66 in series with the detector 52" decreases the sensitivity of the circuit to differences in detector resistance in the low resistance range. The circuit of FIG. 3 consequently exhibits similar meter readings for radiation sources in the safe location regardless of their radiation intensities, and it is therefore capable of accommodating radiation sources having short half-lives.

The circuit of FIG. 4 produces a result similar to that produced by the circuit in FIG. 3, and, in addition, it provides amplificationso that relatively insensitive detectors can be used, and weak radiation sources will be accommodated.

A battery 58" has its positive end connected to line 68, and its negative end connected to line 70. Resistors 72 and 74 are connected in series between lines 68 and 70. The emitter-collector circuit of PNP-transistor 76 is connected in series with resistor 78 between lines 68 and 70, the emitter of the transistor being connected to line 68. Resistors 72, 74 and 78,

along with transistor 76 form the arms of a Wheatstone bridge. Milliammcter 62" is connected between the junction of transistors 72 and 74 and the connection between the collector of transistor 76 and resistor 78 to form the bridge. Photoconductor 52" is connected at one terminal to line 68, and its other terminal is connected through resistor '79 to line 70. NPN-transistor 80 has its emitter connected to line 70, and its collector is connected directly to the base of transistor 76. and through resistor 82 to line 68. The base of transistor 80 is connected to the junction between resistor 78 and photoconductor 52".

The parameters of the various components are desirably selected so that the bridge is in a balanced condition when the resistance ofphotoconductor 52" is high. As the resistance of the photoconductor decreases as a result of radiation, both transistors become increasingly conductive, and the bridge becomes unbalanced so that a current is registered by meter 62".

A Wheatstone bridge has the characteristic that it is most sensitive to variations in the resistance ofone of its arms when it is near its balanced condition, and less sensitive when it is brought further away from its balanced condition. Accordingly weak and strong radiation sources are responded to similarly. Further compensation can be accomplished, if desired, by operating one or both of the transistor near saturation.

In summary, the radioactive source position indicator in accordance with the invention is fail safe" in that it isimpossible for it to indicate that the radioactive source is in its safe position when it is not. Malfunctions in the electrical circuitry will produce readily recognizable indications warning the operator that they exist. High reliability is achieved because of the simplicity of the apparatus and the absence of moving parts (with the exception of the meter movement). The auxiliary circuitry permits the apparatus to provide consistent responses to radioactive sources having short half-lives.

We claim:

1. A shield for storing a radioactive source comprising'a mass of radiationshielding material having a passage extending within said material through which the source may be moved between a safe storage location and a position for use,

intensity of the radiation received by said detecting means. and an electricai connection between said detecting means and said indicating means for actuating said indicating means in response to the intensity of radiation received by said detecting means from the source, said electrical conncctlOn comprising means for decreasing the sensitivity of the indicating means, in the high range of radiation intensities, to variations in the intensity of the detected radiation, below that sensitivity which would exist; in the absence of said decreasing means.

2. A shield according to claim I, in which said detecting means comprises a photoco-nductor, in series with a source of electric current and said indicating means, and said means for decreasing the sensitivity crfi'said indicating means comprises a resistor in series with said? photocorsductor, said source of electric current and said indicating means.

3. A shield according to claim 1. in which said means for decreasing the sensitivity a the indicating means comprises a bridge circuit. means responsive to the detecting means for varying the resistance ,ofmnc branch of said bridge, and wherein said indicating means is responsive to the output of said bridge.

4. A shield for storing a radioactixwe source comprising a mass of radiatiomshielding, material having a passage extending within said material through which the source may be moved between a range ofsttoragc positions and a position for use, means for preventing radiation from a radioactive source from escaping to the exterior ofsnid mass of shielding material when said radioactive source is located within said range of storage positions, radiation detecting means located closely adjacent said range of positions within said passage for providing an electrical response to radiation. indicating means, and an electrical connection between said detecting means and said indicating means for actuating said indicating means in response to the intensity of radiation received by said detecting means from the source, said electrical connection comprising mcans for decreasing the sensitivity of the indicating means. in the high range of radiation intensities. to variations in the intensity of the detected radiation below that sensitivity which would exist in the absence of said decreasing means.

5. A shield according to claim 4, in which said detecting means comprises a photoconductor, in series with a source of electric current and said indicating means, and said means for decreasing the sensitivity of said indicating means comprises a resistor in series with said photoconductor, said source of electric current and said indicating means.

6. A shield according to claim 4 in which said means for decreasing the sensitivity of the indicating means comprises a bridge circuit, means responsive to the detecting means for varying the resistance of one branch of said bridge, and wherein said indicating means is responsive to the output of said bridge.

l k i t t

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3843891 *Jun 28, 1972Oct 22, 1974Sauerwein KDevice for examining materials or for surgical treatments by gamma ray irradiation
US4143270 *May 20, 1977Mar 6, 1979Seimens AktiengesellschaftDevice for monitoring a radioactive filling level measuring installation
US4467212 *May 11, 1981Aug 21, 1984Olcott Donald JRadioactive source pigtail inspection apparatus and method
US4486666 *Sep 15, 1982Dec 4, 1984United Kingdom Atomic Energy AuthorityCoupling devices to containers for radioactive material
US4695728 *Feb 26, 1986Sep 22, 1987Gibes Terrence RPortable radiation contamination detector
US5059797 *Nov 5, 1990Oct 22, 1991Cogema - Compagnie Generale Des Matieres NucleairesApparatus for measuring the dose rate in a transportation flask containing radioactive waste
US5418379 *Nov 8, 1993May 23, 1995Amersham CorporationFor use with a control cable
US6019718 *May 30, 1997Feb 1, 2000Scimed Life Systems, Inc.Apparatus for intravascular radioactive treatment
US6059713 *Mar 5, 1998May 9, 2000Scimed Life Systems, Inc.Catheter system having tubular radiation source with movable guide wire
US6059812 *Mar 6, 1998May 9, 2000Schneider (Usa) Inc.Self-expanding medical device for centering radioactive treatment sources in body vessels
US6071227 *Jan 27, 1997Jun 6, 2000Schneider (Europe) A.G.Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6074338 *Jun 28, 1994Jun 13, 2000Schneider (Europe) A.G.Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6099454 *Mar 6, 1997Aug 8, 2000Scimed Life Systems, Inc.Perfusion balloon and radioactive wire delivery system
US6110097 *Mar 6, 1997Aug 29, 2000Scimed Life Systems, Inc.Perfusion balloon catheter with radioactive source
US6117065 *Jun 24, 1998Sep 12, 2000Scimed Life Systems, Inc.Perfusion balloon catheter with radioactive source
US6146322 *Oct 30, 1996Nov 14, 2000Schneider (Europe) AgIrradiating filament and method of making same
US6203485Oct 7, 1999Mar 20, 2001Scimed Life Systems, Inc.Low attenuation guide wire for intravascular radiation delivery
US6231494Nov 17, 1997May 15, 2001Schneider (Europe) A.G.Medical device with radiation source
US6234951Jan 10, 1997May 22, 2001Scimed Life Systems, Inc.Intravascular radiation delivery system
US6258019Sep 8, 1999Jul 10, 2001Scimed Life Systems, Inc.Catheter for intraluminal treatment of a vessel segment with ionizing radiation
US6264596Nov 3, 1997Jul 24, 2001Meadox Medicals, Inc.In-situ radioactive medical device
US6267775Mar 6, 2000Jul 31, 2001Schneider (Usa) Inc.Self-expanding medical device for centering radioactive treatment sources in body vessels
US6302865Mar 13, 2000Oct 16, 2001Scimed Life Systems, Inc.Intravascular guidewire with perfusion lumen
US6352501Sep 23, 1999Mar 5, 2002Scimed Life Systems, Inc.Adjustable radiation source
US6398708Oct 28, 1998Jun 4, 2002Scimed Life Systems, Inc.Perfusion balloon and radioactive wire delivery system
US6398709Oct 19, 1999Jun 4, 2002Scimed Life Systems, Inc.Elongated member for intravascular delivery of radiation
US6413203Sep 16, 1998Jul 2, 2002Scimed Life Systems, Inc.Method and apparatus for positioning radioactive fluids within a body lumen
US6416457Mar 9, 2000Jul 9, 2002Scimed Life Systems, Inc.System and method for intravascular ionizing tandem radiation therapy
US6422989Nov 5, 1999Jul 23, 2002Scimed Life Systems, Inc.Method for intravascular radioactive treatment
US6514191Jan 25, 2000Feb 4, 2003Schneider (Europe) A.G.Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6582352Jan 2, 2001Jun 24, 2003Schneider (Europe) A.G.Medical appliance for treatment by ionizing radiation
US6599230Mar 14, 2001Jul 29, 2003Scimed Life Systems, Inc.Intravascular radiation delivery system
US6616629Jun 14, 1999Sep 9, 2003Schneider (Europe) A.G.Medical appliance with centering balloon
US6676590Dec 8, 1997Jan 13, 2004Scimed Life Systems, Inc.Catheter system having tubular radiation source
EP2067502A1 *Sep 23, 1997Jun 10, 2009Best Vascular, Inc.Intraluminal radiation treatment system
Classifications
U.S. Classification250/370.1, 250/497.1, 250/506.1
International ClassificationG01T1/26, G01T1/00
Cooperative ClassificationA61N2005/1008, G01T1/26
European ClassificationG01T1/26