Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3644203 A
Publication typeGrant
Publication dateFeb 22, 1972
Filing dateDec 9, 1968
Priority dateDec 9, 1968
Also published asDE1961451A1, DE1961451B2, DE1961451C3
Publication numberUS 3644203 A, US 3644203A, US-A-3644203, US3644203 A, US3644203A
InventorsVincent Lamberti, Ralph R Sepulveda
Original AssigneeLever Brothers Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fabric softener
US 3644203 A
Abstract
An improved fabric softener is disclosed comprising a mixture of a softener such as a quaternary ammonium compound or an imidazoline with an antiyellowing agent which is a complex of C12 to C22 alkyl alcohol and C12 to C19 alkylsulfate.
Images(5)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Lamberti et a1.

[ Feb. 22, 1972 FABRIC SOFTENER Vincent Lamberti, Upper Saddle River, N.J.; Ralph R. Sepulveda, Suffem, N.Y.

Lever Brothers Company, New York, NY.

Filed: Dec. 9, 1968 Appl. No.: 782,469

Inventors:

Assignee:

US. Cl ..252/8.75, 117/1395 CQ, 252/87, 252/88, 252/137, 252/138, 252/152, 252/161 Int. Cl ..D06m13/38,C1ld l/12,C1ld 1/86 Field of Search ..252/8.75, 8.8, 87,138,137, 252/161,152;117/139.5 CQ

References Cited UNITED STATES PATENTS Martin ..252/16l X Reference cited by Applicant- Goddard et al., Modified Detergent Properties, Soap and Chemical Specialties, Feb. 1966.

Primary Examiner-Herbert B. Guynn Assistant Examiner-Harris A. Pitlick Att0rney-Brumbaugh, Graves, Donohue & Raymond [5 7] ABSTRACT An improved fabric softener is disclosed comprising a mixture of a softener such as a quaternary ammonium compound or an imidazoline with an antiyellowing agent which is a complex of C to C alkyl alcohol and C to C alkylsulfate.

6 Claims, No Drawings FABRIC SOFTENER This invention relates to an improved fabric softener formulation having antiyellowing properties.

It has been known for some time that the conventional cationic fabric softeners tend to cause yellowing of fabrics treated with them where the fabrics have been first washed using nonionic-based detergents. The reasons for the occurrence of yellowing are not fully understood. However, it is generally believed that yellowing involves an interaction between the cationic fabric softener, electronegative absorption sites on the part being treated, and color bodies contained in the rinse water, typically attributable to water hardness.

Yellowing may be mitigated by providing for an anionic surfactant in combination with the cationic fabric softener. The anionic surfactant forms a complex with the cationic'fabric softener, which, under proper conditions, may be deposited on the fabric to be softened without causing yellowing. This approach to the control of the discoloration caused by fabric softeners, however, is not without difficulties. The principal disadvantage of it is that the presence of an anionic surfactant interferes with the softening efficiency of most cationic fabric softeners.

ln accordance with the present invention it has been found that the complex between alkyl alcohols and alkyl sulfates may be used as an antiyellowing agent in combination with cationic fabric softeners. On a weight basis, a mixture in which the ratio of softener to complex is between about 1.4:1 and is generally effective to reduce discoloration. Preferably the ratio of softener to complex is between 2:1 and 4:1. The use of the complex in excess of about 0.7 parts per part of softener continues to give still further improvement in reduction of discoloration. However, these higher levels of the complex tend to cause disproportionate losses in fabric softening efficiency.

The complex between alkyl alcohols and alkyl sulfates has previously been described in the art as having a ratio of alcohol to alkyl sulfate of either 1:1 or 1:2. It is generally assigned the formula 2ROSO NaROHwhere an alkanol is employed. Similar complexes are believed to be formed also from alkanediols.

Alkanols suitable for use in the present invention usually contain from 12 to 22 carbon atoms. In general, linear alcohols may be used, whether of natural or synthetic origin, such as dodecyl alcohol, myristyl alcohol, stearyl alcohol, and mixed alcohols such as C to C alcohols prepared by Ziegler polymerization of ethylene. Alkane diols such as octadecane diol may also be used if desired.

Suitable alkyl sulfates for use in the present invention have from about 12 to about 18 carbons atoms. Typically, the alkyl group is linear, such as n-dodecyl, myristyl, stearyl, etc. The alkyl sulfates may be either substantially pure or mixed. The alkyl sulfate is used in the form of its alkali metal salt. For commercial convenience, the sodium or potassium salts are preferred, but other alkali metals may be substituted if desired.

Fabric softeners with which the antiyellowing agents of the present invention have been found effective include the quaternary ammonium compounds of the formula in which R and R are each long chain, substantially linear groups from about 16 to 22 carbon atoms, R, and R are each lower alkyl groups of from about one to three carbon atoms and X is a cation imparting water dispersibility such as chloride, bromide, iodide, sulfate, methosulfate, etc.

Another class of fabric softeners with which the antiyellowing agent of the present invention may be used are the imidazolines ofthe general formula in which R and R are each substantially linear alkyl groups of about 15 to 21 carbon atoms, R, is a divalent alkyl group of one to three carbon atoms, and R and X are as defined above.

In preparing fabric softener compositions in accordance with the present invention, the fabric softener, the alkyl alcohol and the alkyl sulfate may be combined in any convenient order. Thus, while the alkyl alcohol-alkyl sulfate complex may be formed prior to combination of these ingredients with the fabric softener if desired, it is not necessary to do so.

An important application of the present invention is in the formulation of multifunctional detergents. Because of the well-known cationic-anionic interaction, leading to a loss in both detergency and fabric softening efficiency, those skilled in the art of formulating multifunctional detergents conventionally choose to employ a nonionic detergent and a cationic fabric softener. This system, however, presents a most severe test of the yellowing characteristics of cationic fabric softeners in the presence of nonionic detergents. For this reason, antiyellowing agents will be particularly useful in the formulation of multifunctional detergents based upon nonionic detergent actives and cationic fabric softeners.

Typical multifunctional detergents employing the present invention will have the following composition:

,4 by weight Nonionic detergent active 5% to 25% Builder 5% to 60% Fabric softener 194 to I094 Alkyl sulfate 0.05% to 6% Alkyl alcohol 0.02% to 371 Preferred compositions generally are formulated with the proportions:

The nonionic detergent active contemplated is a conventional kind. Typically these are condensates of hydrophobic compounds having a reactive hydrogen with ethylene oxide, the amount of ethylene oxide in the condensate being sufficient to impart surface-active properties to it. Typical nonionic detergents which may be used include the ethylene oxide-polypropylene oxide block polymers commercially available as the so-called Pluronic" series; ethylene oxide condensates of alkyl alcohols having from eight to 20 carbon atoms in the alkyl group and containing up to percent ethylene oxide; ethylene oxide condensates of the fatty acids such as ethoxylated tall oil fatty acids, etc.; ethylene oxide condensates of the fatty amines; and many others. This class of detergents is well known to those skilled in the art.

As builders, the conventional alkaline builders may be employed such as the alkali metal phosphates, pyrophosphates, tripolyphosphates, hexametaphosphates, etc., as well as other alkali metal compounds such as alkali metal carbonates, etc. Organic builders are also known such as nitrilotriacetic acid. The amount of builder will be in the amounts conventionally employed. Normally, when builders are used in a detergent system, the amount used is in the order of 25 to 50 percent of the complete formulation.

The fabric softening actives, alkyl alcohols, and alkyl sulfates for use in the foregoing composition have already been described above.

While not specifically mentioned in the foregoing skeleton formulation, it will be obvious to those skilled in the art that many other materials may be included. Adjuvants may be provided such as suds boosters, such as fatty acid amides; soil suspending agents, such as carboxymethyl cellulose, hydroxyethyl cellulose; anticorrosion agents, such as sodium silicate; as well as optical brighteners, colorants, perfumes, fillers, germicides, enzymes etc.

Another important application of the present invention is in the formulation of rinse cycle fabric softeners. Because of carryover from the wash cycle to the rinse cycle, yellowing has been a persistent problem when detergent formulations are employed in the wash. The use ofa mixture ofa cationic fabric softener and a complex in accordance with the present invention mitigates this problem.

For a better understanding of the present invention, reference may be had to the following examples:

EXAMPLE 1 25 the distearyldimethyl ammonium chloride as a fabric softener, sodium lauryl sulfate and various alkyl alcohols. Five 4X6 inch terry cloth swatches were treated in a Terg-O-Tometer pot for 15 minutes with 1,000 ml. of 90 p.p.m. hard water artificially hardened with calcium and magnesium in a 2:1 ratio and additionally containing 4 ppm. of Fe. The washing temperature was 120 F. 1.94 grams of built nonionic detergent composition and 0.1 grams of distearyl dimethyl ammonium chloride were added. The amounts of sodium lauryl sulfate and alkyl alcohol were varied as set forth below,

In each test conducted, improvements in softness and yellowing were measured relative to the softness and yellowness observed on swatches washed in nonionic detergent only. By recording the differences in softness (AS) and yellowing (Ab), more meaningful comparisons may be made between successive experiments. in the data reproduced below, an increase in the value of AS indicates an improved softness in the final product relative to the softness of the control. An increase in the value of Ab indicates a deterioration in whiteness or an increase in yellowness ofthe washed swatches.

EXAMPLE 2 The test described in Example 1 was repeated substituting fabric softener 1-methyll-alkylamido-ethyl-Z-al- TABLE I.TERG-O-TOMETER SOFTENING ACTION AND YELLOWING DATA Detergent, Softener, Job Pot percent percent Antiyellowant AS Ah I 1 0. 194 s t 0. 0 0. 0 2 0.194 0.01 2.5 12.8 3 0. 194 0.01 .0034%* Na lauryl sulfate-.25 0c 2. 5 11.9 4 0. 194 0.01 .0067% Na lauryl sulfate-.25 octadecanol 0. 0 2.0 II 1 0. 194 0. 0 2 0. 194 0. 01 .4 10. 4 3 0. 194 0.01 .0034% Na lauryl sul tadecan .7 9. 3 4 0. 194 0. 01 .0067% Na lauryl sulfate.50 octadecanol 0 2. 1 III 1 0. 0. 0 0. 0 2 0. 1 2. 3 12. 1 3 0. .0034% Na lauryl sulfate-.75 octadecanol t. 2. 4 11. 1 4 0. 194 0. 01 .0067% N a lauryl sulfatc. 75 octadecanol 2. 4 8. 7 IV 1 0. 194 0.0 0.0 2 0.104 0.01 2.7 11.9 3 0. 194 0. 01 .0034% N a lauryl sulfate-1.00 l1cxadccanc-1,2-di0l 2. 5 10. 0 4 0. 194 0. 01 .0067% N a lauryl sulfate-l.00 licxadccalie-l,2-diol 1. l 3. 8 V 1 0. 0. 0 0. 0 2 O. 2. 0 11. 9 3 0.194 .0 Na lauryl sulfate-.25 octadecanoL 0. 1 0. 9 4 0. 194 .01% N a lauryl sulfate-.50 octadectmol 0. 2 0. 9 VI 1 0. 194 0.0 0.0 2 0. 194 0. 01 2. 5 12. 6 3 0. 194 0. 01 .01% Na lauryl sulfate-.75 0ctadecan0l 0.3 0. T 4 0 194 0. 01 .01% Na lauryl sulfate-1.00 hexadecane-1,2diol 0. 2 0.8

The first number (0.003475) states the concentration in weight percent of the complex in the wash water. The second number (025) states the molar ratio of alcohol to alkyl sulfate.

tion were tested in a multifunctional detergent composition 55 kylimidazolinium methosulfate as the fabric softener for composed of a conventionally built nonionic detergent employing and containing sodium tripolyphosphate builder,

distearyldimethyl ammonium chloride previously described. The following results were obtained:

TABLE II Detergent, Softener, Job Pot percent percent Antiyellowant AS Ah I 1 0. 194 0. 0 0. 0 2 0.194 0.01 2. 7 l0. 8 3 0.194 0. 01 .0034%* Nalaury1suliate0.75* octadecano 1 1. 1 3. 2 4 0. 194 0.01 .0067% Na lauryl sulfate-0.75 octadecanol 0.0 0. 1 II 1 0.194 0.0 0.0 2 0.194 0.01 2. 5 8. 7 3 0. 194 0. 01 .0034% Na lauryl sulfate-1.00 h cane-1341101. 0. 6 0. 2 4 0. 194 0. O1 .0067% Na lauryl sullate1.00 hexadccane-1,2-diol 0. 2 1. 6 III 1 0. 194 1 1 1 0.0 0. 0 2 0. 194 0. 01 1. 9 9. 8 3 0. 194 0.01 .01% Na lauryl sulfa adeca 0.2 0. 1 4 O. 194 0. 01 .01% Na lauryl sulfate-1.00 hexadecane-l, 1o 0. 0 0. 6

The first number (.0034%) states the concentration in weight percent of the complex in the wash water.

alcohol to alkyl sulfate.

ln like manner a series of complexes were prepared from alkyl sulfates having from 12 to l8 carbon atoms and alkyl alcohols having from 12 to 22 carbon atoms and tested as antiyellowing additives.

Complexes found to be effective were the following:

Alkyl Sulfate. ROSO Na Alkyl Alcohol, R'OH H Hi We claim:

1. A fabric softening composition having a reduced tendency to cause yellowing, consisting essentially of a complex of (a) an alcohol selected from the group consisting of alkanols and alkane diols of 12 to 22 carbon atoms and an alkali metal alkyl sulfate of 12 to 18 carbon atoms in combination with (b) a cationic fabric softener selected from the group consisting of 3 and N-CHz s C\ O N-CH:

molar ratio of the alcohol to the alkali metal-alkyl sulfate in the complex (a) being from between about l:l and 1:2.

2. A composition according to claim 1 wherein the weight ratio of said fabric softener (b) relative to the amount of said complex (a) is between about 2:1 and 4: l.

5 3. A composition according to claim 1 wherein said complex is formed from a linear alkanol having from l2 to 22 carbon atoms and an alkali metal alkyl sulfate having from 12 to 18 carbon atoms and in which the alkali metal is selected from the group consisting of sodium and potassium.

4. A composition according to claim 3 wherein said complex is formed from octadecanol and lauryl sulfate.

5. A composition according to claim 3 wherein said complex is formed from hexadecanediol and lauryl sulfate.

6. A multifunctional detergent composition consistl5 ing essentially of the following ingredients in the following approximate proportions in parts by weight:

(a) A nonionic synthetic organic detergent5 to 25 parts, (b) A builder for said nonionic detergent effective to 20 improve the detersive properties thereof-5 to 60 parts, (0) A fabric softener selected from the group consisting of r 1 T'- a] R4 and N-CH2 R5-C (H) /N- CH2 X" d: 7 R3 40 wherein R and R are each substantially linear alkyl groups of about 16 to 22 carbon atoms, R and R are each alkyl groups of about 1 to 3 carbon atoms, R and R are each substantially linear alkyl groups of about 15 to about 21 carbon atoms, and R is a di-valent alkylene of 1 to about 3 carbon atoms, and X is an anion imparting water dispersibility to said softener and a complex of-1 to 10 parts, ((1) an alkyl sulfate having 12 to 18 carbon atoms of an'alkali metal0.05 to 6 parts, and (e) an alcohol selected from the group consisting of alkanols and alkanediols having 12 to 22 carbon atoms 0.02 to 3 parts.

@22 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,644 ,203 Dated February 22, 1972 Invent0r(s) Vincent Lamberti et al.

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

601. 1 lihes 60-65, "1

.. R2 I v T ex [R --NR X should read R NR 1L I 1L d Col. 1, line 70, "groups" should appear -groups of-;

Col. 5, line 35, v

I 1 Rl 9X6 [R N-R X should read R --N--R R 4 E i: Col. 5, line 53, "metal-alkyl" should read -.metal alkyl-;

Col. 6, line 30, v

n R2 1T 9X6 [R NR +X should read R -N-R 4 Col. 6 line 46, "and a complex of" should not appear; I

Col. 6, line 48, and a complex of-- should appear before "((1)".

Signed and sealed this 7th day of November 1972. L .J

(SEAL) Attest:

EDWARD M.FLETCHER,JR. ROBER GQTTSCHALK Attesting Officer' Commissioner of Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2166314 *Aug 13, 1935Jul 18, 1939Procter & GamblePreparation of detergents
US2679482 *Oct 8, 1949May 25, 1954Colgate Palmolive CoSynthetic detergent compositions
US3044962 *Oct 21, 1958Jul 17, 1962British Nylon Spinners LtdPreparation of detergent compositions
US3095373 *Jan 30, 1959Jun 25, 1963Wyandotte Chemicals CorpFabric softeners
US3360470 *Aug 2, 1966Dec 26, 1967Colgate Palmolive CoLaundering compositions
Non-Patent Citations
Reference
1 *Reference cited by Applicant Goddard et al., MOdified Detergent Properties, Soap and Chemical Specialties, Feb. 1966.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3886075 *Apr 16, 1973May 27, 1975Procter & GambleFabric softening composition containing a smectite type clay
US3928213 *Jun 29, 1973Dec 23, 1975Procter & GambleFabric softener and soil-release composition and method
US3936537 *Nov 1, 1974Feb 3, 1976The Procter & Gamble CompanyQuaternary ammonium compound
US3968042 *Sep 13, 1974Jul 6, 1976Phillips Petroleum CompanyPolysiloxane, quaternary ammonium surfactant
US4000077 *May 4, 1972Dec 28, 1976Colgate-Palmolive CompanyEnhancement of cationic softener
US4073735 *Feb 19, 1976Feb 14, 1978Colgate Palmolive CompanyRinse cycle fabric softener
US4213867 *Dec 29, 1978Jul 22, 1980Domtar Inc.Quaternary ammonium compounds and fatty alcohols or phosphoric esters of fatty alcohols
US4264457 *Feb 4, 1980Apr 28, 1981Desoto, Inc.Cationic liquid laundry detergent and fabric softener
US4388077 *Aug 7, 1981Jun 14, 1983W. E. Greer Ltd.Pretreatment of denin with amphoteric surfactant, builder, and lubricant
US4493773 *Jan 27, 1984Jan 15, 1985The Procter & Gamble CompanyLow phosphate, softening laundry detergent containing ethoxylated nonionic, alkylpolysaccharide and cationic surfactants
US4661269 *Mar 28, 1985Apr 28, 1987The Procter & Gamble CompanyLiquid fabric softener
US4661270 *May 1, 1985Apr 28, 1987Colgate-Palmolive CompanyConcentrated fabric softening composition and methods for making same
US4661289 *Aug 27, 1985Apr 28, 1987Lever Brothers CompanyCationic softener and fungal cellulase
US4724089 *Apr 10, 1986Feb 9, 1988The Procter & Gamble CompanyTextile treatment compositions
US4772403 *Jan 30, 1985Sep 20, 1988Colgate Palmolive CompanyFabric softener composition
US4806255 *Apr 10, 1986Feb 21, 1989The Procter & Gamble CompanyTextile treatment compositions
US4855072 *Jul 2, 1987Aug 8, 1989The Procter & Gamble CompanyLiquid fabric softener
US4976878 *Jan 18, 1990Dec 11, 1990The Procter & Gamble CompanyProcess for recovering gelled aqueous liquid fabric softener
US5466394 *Apr 25, 1994Nov 14, 1995The Procter & Gamble Co.Stable, aqueous laundry detergent composition having improved softening properties
US5584888 *Aug 31, 1994Dec 17, 1996Miracle; Gregory S.Comprising cyclic amidine leaving groups
US5622925 *Nov 8, 1995Apr 22, 1997The Procter & Gamble CompanyMixture of anionic surfactants, fatty acid and quaternary ammonium salt
US5703035 *Oct 16, 1996Dec 30, 1997Witco Surfactants GmbhHighly concentrated aqueous fabric softners having improved storage stability
US6180594Nov 11, 1999Jan 30, 2001Witco Surfactants GmbhLow-concentration, high-viscosity aqueous fabric softeners
US6323172 *Jul 11, 1996Nov 27, 2001The Procter & Gamble CompanyConcentrated, stable fabric softening composition
US6369025 *Jul 11, 1996Apr 9, 2002The Procter & Gamble CompanyConcentrated, water dispersible, stable, fabric softening compositions
US6376455Jan 7, 1999Apr 23, 2002Goldschmidt Rewo Gmbh & Co. KgFabric softener, quaternary fatty acid amino alcohol esters of methylethanolisopropanolamine (meipa) with fatty acids in the ratio of from 1:1.5 to 1:2 with use of monofunctional alcohols or bifunctional alcohols.
US6797689Sep 9, 2002Sep 28, 2004Unilever Home & Personal Care Usa, Division Of Conopco, Inc.Adding fatty complexing agent to composition in an amount such that weight ratio of the mono-ester linked component of compound to fatty complexing agent is from 2.93:1 to 1:5
US6992059Sep 9, 2002Jan 31, 2006Unilever Home & Personal Care Usa Divisionof Conopco, Inc.Fabric conditioning compositions
DE3309569A1 *Mar 17, 1983Oct 27, 1983Colgate Palmolive CoKonzentrierte waescheweichspuelmittel
DE102007012909A1Mar 19, 2007Sep 25, 2008Momentive Performance Materials GmbhMit Duftstoffen modifizierte, reaktive Polyorganosiloxane
DE102007012910A1Mar 19, 2007Sep 25, 2008Momentive Performance Materials GmbhMit Duftstoffen modifizierte, verzweigte Polyorganosiloxane
EP0763592A1Sep 18, 1995Mar 19, 1997THE PROCTER & GAMBLE COMPANYStabilised fabric softening compositions
EP0839899A1Oct 30, 1996May 6, 1998THE PROCTER & GAMBLE COMPANYFabric softening compositions
EP2476743A1Apr 4, 2011Jul 18, 2012Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever HouseMethod of laundering fabric
WO1997003169A1 *Jul 11, 1996Jan 30, 1997Deborah Jean BackConcentrated, stable fabric softening composition
WO1997003170A1 *Jul 11, 1996Jan 30, 1997Back Deborah JeanConcentrated, water dispersible, stable, fabric softening compositions
WO1997003172A1 *Jul 11, 1996Jan 30, 1997Marc Johan DeclercqConcentrated, stable fabric softening compositions including chelants
WO2012136427A1Mar 5, 2012Oct 11, 2012Hindustan Unilever LimitedMethod of laundering fabric
Classifications
U.S. Classification510/331, 510/524, 510/515, 510/496, 510/504, 510/500
International ClassificationD06M13/473, C11D1/62, D06M13/46, C11D3/00, C11D3/20, C11D1/14, D06M13/322
Cooperative ClassificationD06M13/473, D06M13/46, C11D1/62, C11D3/2013, D06M13/322, C11D3/001, C11D3/2044, C11D1/14
European ClassificationC11D3/20B1A2, D06M13/322, C11D1/62, C11D3/20B2A, C11D1/14, D06M13/473, D06M13/46, C11D3/00B3