Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3645267 A
Publication typeGrant
Publication dateFeb 29, 1972
Filing dateOct 29, 1969
Priority dateOct 29, 1969
Also published asDE2049498A1
Publication numberUS 3645267 A, US 3645267A, US-A-3645267, US3645267 A, US3645267A
InventorsNorman R Hagfors
Original AssigneeMedtronic Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Medical-electronic stimulator, particularly a carotid sinus nerve stimulator with controlled turn-on amplitude rate
US 3645267 A
Abstract
Electronic circuitry for providing electrical stimulation signals to a selected portion of the body including circuitry for automatically gradually increasing the amplitude of only the initial output stimulating signals to a predetermined level which is maintained until turnoff.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [151 3,645,267

Hagfcrs Feb. 29, 1972 [54] MEDICAL-ELECTRONIC 2,866,461 12/1958 Suzuki.. ..l28/419 STIMULATOR, PARTICULARLY A 3,098,976 7/1963 Leakey ..307/293 CAROTID SINUS NERV-E STIMULATOR 3,376,429 4/1968 Atkins et al ..307/141 WITH CONTROLLED TURN-0N AMPLITUDE RATE [72] Inventor: Norman R. Hagfors, Minneapolis, Minn. [73] Assignee: Medtr0nic,1nc., Minneapolis, Minn. [22] Filed: Oct. 29, 1969 [21] Appl. No.: 872,150

[52] US. Cl. ..l28/421, 128/419 C, 307/141.4, 307/293, 328/77 [51] Int. Cl. ..A6ln 1/36 [58] Field oiSearch ..l28/419-422; 328/8, 9, 76, 77, 85, 90; 307/293, 141, 141.4

[56] References Cited UNITED STATES PATENTS 2,321,659 6/l943 Connerty et al. ...,,,..128/422 3,516,413 6/1970 McDonald etal. ..128/422 Primary Examiner-William E. Kamm Attorney-Lew Schwartz and Donald R. Stone [57] ABSTRACT .output stimulating signals to a predetermined level which is maintained until turnoff.

11 Claims, 4 Drawing Figures OUT PAIENIEDFEB 29 I972 3,645,267 SH'EET- 1 0r 2 ELECTRONIC PULSE STIMULATOR IIIIHHIIIHHIIIIIIIIIIIIIIIIHHIIIHIHHIIHlllIIIllIllHllllllllllllllllllllllllllIIHIIII AMPLITUDE TIME PRIOR ART PIES H mlllllllllllilllllllllINlllllIlHHlllllIIIIIIHIHIIIIIIIHIII AMPLITUDE l w'" I 1 nn INVIiNIOR. Moe/14441 E Aha/ oes BY MEDICAL-ELECTRONIC STIMULATOR, PARTICULARLY A CAROTID SINUS NERVE STIMULATOR WITH CONTROLLED TURN-ON AMPLITUDE RATE BACKGROUND OF THE INVENTION This invention is concerned with medical-electronic pulse stimulators, and more particularly with an improvement to automatically provide for the gradual increase of the amplitude of the initial output signals from the pulse stimulating circuitry. Electrical stimulation of nerves, muscles, or other tissue, for medical purposes, is well known in the art. Some examples of well-known circuitry are heart pacers and carotid sinus nerve stimulators. The electrical stimulation of nerves, muscles or other tissue is often accompanied by undesirable side effects caused by stimulation of adjacent nerve fibers, for example. It has been discovered that in many cases these side effects are transitory in nature and persist for only a short period of time after stimulus by means of electrical signals is first applied. It is theorized that the stimulating signals, when turned on at full stimulating amplitude, cause the afferent nerve fibers to fire giving a sensation of electrical shock. It appears that these afferent fibers then accommodate to the stimulus signal, and will no longer fire.

The apparatus of this invention overcomes the above-mentioned undesirable side effects by providing circuitry for gradually increasing the amplitude of the initial stimulating signals to a predetermined stimulus level. It has been found that if the stimulus is turned on gradually, the afferent nerve fibers accommodate to the stimulus signal without depolarizing and provide little or no sensation of electrical shock, and that the stimulating signals may thereafter be maintained at the predetermined level without adverse reaction. Therefore, the apparatus of this invention has been designed for implantable, transcutaneous, and external stimulators to provide pulse or other stimulus turn-on characteristics which will be accommodated by the afferent nerve fibers to prevent a transitory response.

SUMMARY OF THE INVENTION Briefly described, the apparatus of this invention comprises amplifier means connected between a selected portion or all of the circuitry for providing stimulating signals and the source of energy which provides the electrical power to the circuitry. The amplifier means is controlled by electrical time constant circuitry which is connected by switch means across the source of electrical energy. In the preferred embodiment of the drawings, the time constant means is shown as a serial RC circuit, that is, a resistor and a capacitor connected in series. When the switch is closed, the time constant causes a gradual buildup of charge in the capacitor. The charge on the capacitor is used to control the initial output of the amplifier which in turn controls the current reaching the circuitry for providing stimulating signals, in this circuit a train of pulses. By gradually increasing the initial output of the amplifier, the initial amplitude of the train of output pulses will also be gradually increased to its maximum or predetermined level. As described above, this gradual increase of the initial amplitude of the signals which provide stimulus will reduce or remove the transitory response that causes an uncomfortable feeling in the patient receiving the stimulation.

IN THE DRAWINGS FIG. 1 is a combination schematic and block diagram showing an embodiment using the apparatus of this invention;

FIG. 2 is a schematic diagram of electronic pulse stimulating circuitry using another embodiment of the apparatus of this invention;

FIG. 3 is a graph indicating a typical envelope for a train of prior art stimulating pulses; and

FIG. 4 is a graph indicating the envelope of a train of stimulating pulses provided by the apparatus of this invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1 there is shown in block diagram an electronic stimulator 10. Stimulator 10 has a pair of input terminals 11 and 12 adapted to be connected to a source of electrical energy, and a pair of output terminals 13 and 14 across which the stimulator provides a train of output pulses. A source of electrical energy, here shown as batteries 15, is connected between input terminal 11 and one side of a switch 16. The ap paratus of this invention for gradually increasing the initial output amplitude of the stimulating signals is shown enclosed within dotted lines and indicated generally as 20. Apparatus 20 comprises a capacitor 17 and resistor 18 serially connected across source 15 and switch 16. Apparatus 20 also includes a transistor 19, having an emitter connected to input terminal 12, a collector connected to the other side of switch 16, and a base connected to a junction between capacitor 17 and resistor 18.

To best understand the operation of the apparatus of FIG. i, assume first that switch 16 is open. Therefore, there will be no charge on capacitor 17 and no output signals from stimulator 10. When output signals are desired, switch 16 is closed. This will connect the electrical time constant apparatus, comprising the serial RC circuit of capacitor 17 and resistor 18, across source 15. As capacitor 17 cannot charge instantaneously, there will be no current flow through the amplifier comprising transistor 19, and therefore no power to stimulator l0, instantaneously.

As the electrical time constant apparatus remains connected across source 15, a charge will buildup in capacitor 17 I and the resulting voltage change at the junction between capacitor 17 and resistor 18 will be felt on the base of the amplifier comprising transistor 19 to turn it on and provide a current flow through terminals 11 and 12 to stimulator 10. This current flow will allow operation of the electronic stimulator 10 which will in turn provide the desired train of output signals. As the charge across capacitor 17 continues to gradually increase, the current fiow through transistor emitter-follower connected 19 will also gradually increase until the maximum current fiow from source 15 is reached. During this time the resulting gradual increase of current flow to stimulator 10 will cause a corresponding gradual increase in the output amplitude of the initial signals. This gradual increase of the amplitude of only the initial output signals to a maximum or predetermined amplitude is the desired result to alleviate the undesirable feelings caused in the patient receiving the train of pulses, which undesirable feeling is present when the initial turn-on of the train of pulses is at full amplitude and is apparently caused by stimulation of adjacent nerve fibers.

Referring now to FIG. 2 there is shown another embodiment of the apparatus of this invention. In FIG. 2 the disclosed schematic is that of a radiofrequency pulse transmitter of a type presently in use in the art, for transmitting a train of stimulating pulses via RF to an implanted receiver which is connected to the tissue that is to be stimulated.

In FIG. 2, output terminals 13 and 14, source 15 and switch 16 bear the same numbers as for FIG. 1. Also, the improvement comprising the apparatus of this invention is again enclosed in dotted lines and denoted as 20. Source 15 has one terminal connected to a positive bus 21, and another terminal connected through switch 16 to a negative bus 22. A capacitor 23, for voltage stabilization purposes, is connected between buses 21 and 22. A transistor 24 has its emitter connected to bus 21. The base of transistor 24 is connected through a pair of diodes 25 and 26 to bus 21, and through a resistor 27 and a variable resistor 28 to bus 22. A transistor 30 has its emitter connected to bus 22. The base of transistor 30 is connected through a resistor 33 to the collector of transistor 24, and through a resistor 34 to bus 22. The collector of transistor 30 is connected through a resistor 32 and a capacitor 31 to the base of transistor 24. A transistor 35 has its emitter connected to bus 21. The base of transistor 35 is connected through a resistor 36 to the collector of transistor 30, and through a resistor 37 to bus 21. The collector of transistor 35 is connected through a serial combination of a resistor 38 and a Zener diode 39 to bus 22. A junction between resistor 38 and diode 39 is connected to bus 22 through a serial combination of a potentiometer 40 and a resistor 41. A transistor 42 has its base connected to the wiper arm of potentiometer 40, and its emitter connected through a resistor 43 to a junction 44. Junction 44 is connected through a capacitor 45 to bus 22, and directly to output terminal 13. A pair of serially connected resistors 46 and 47 are connected between junction 44 and bus 22. A transistor 50 has its base connected to a junction between resistors 46 and 47, and its collector connected directly to output terminal 14. A capacitor 51 is connected between the collector and emitter of transistor 50. The emitter of transistor 50 is connected through an RF tank circuit 53 to bus 22. Tank circuit 53 comprises a parallel combination of a variable inductance 54, a capacitor 55 and a capacitor 56.

The apparatus of this invention is connected as follows: a transistor 60 has its emitter connected to the collector of transistor 42. The collector of transistor 60 is connected to bus 21. The base of transistor 60 is connected through a resistor 61 to bus 21, and through a capacitor 62 to bus 22. A capacitor 63 is connected between the emitter of transistor 60 and bus 22 to provide lower circuit impedance in a manner well known in the art.

In reviewing the operation of the apparatus of FIG. 2, it will be apparent to one of normal skill in the art that transistors 24 and 30 and their associated electrical components comprise a pulse generator that will act to provide output pulses as long as switch 16 is closed. When switch 16 is closed the voltage from source 15 will be felt between buses 21 and 22. There will be a current flow through diodes 25 and 26, resistor 27 and variable resistor 28. Capacitor 31 will not be charged, and the drop across diodes 25 and 26 will forward bias the emitter-base junction of transistor 24 to turn it on. The tum-on of transistor 24 will cause a current flow through resistors 33 and 34 thus causing a forward bias at the emitter-base junction of transistor to turn it on. When transistor 30 turns on a charging path will be provided for capacitor 31, and when the charge on capacitor 31 has reached a sufficient level it will bias off transistor 24, which will in turn bias off transistor 30. The charge on capacitor 31' will then discharge through the path comprising resistor 37, resistor 36, resistor 32, capacitor 31, resistor 27 and resistor 28. When a sufficient lowering of the charge on capacitor 31 has been accomplished transistor 24 will again turn on and the cycle will repeat. Thus there is an output train of pulses generated as long as switch 16 is closed.

It will also be apparent to one of normal skill in the art that transistor 35 and Zener diode 39, along with their associated electrical components, comprise a voltage regulator. Operating in a manner apparent to one of normal skill in the art, the output pulse from the pulse generator causes a current flow through resistors 36 and 37 to forward bias the emitter-base junction of transistor 35 thus causing a current flow through resistor 38, potentiometer and resistor 41. Diode 39 acts to regulate the voltage of this portion of the circuit.

Transistor 42 in combination with potentiometer 40 operate as an output amplitude adjustment, with the capability of varying the amplitude of the output according to the positioning of the wiper arm of potentiometer 40. Assuming first that the apparatus 20 is not present, and that, as in the prior art, the collector of transistor 42 is connected directly to bus 21, then the current flow through transistor 40 will cause the forward biasing of the emitter-base junction of transistor 42, causing a current flow through resistor 43 to junction 44. This will charge transistor 45 and be felt across the serial combination of resistors 46 and 47. Transistor 50 will then be turned on to provide energy to the tank circuit 53 and the RF oscillator interconnection of these components will cause a train of RF output pulses at terminals 13 and 14, the amplitude of which is controlled by the setting of potentiometer 40.

Returning now to the apparatus of FIG. 2, in which the apparatus 20 is present, it can be seen that the output of transistor 42 will not be provided to the RF oscillator until the amplifier comprising transistor 60 has been turned on. It can also be seen that the time constant apparatus, comprising the serial combination of resistor 61 and capacitor 62 across the power supply, controls the tum-on of transistor emitter-follower connected 60. That is, when switch 16 is closed there will have been no charge on capacitor 62 and there will therefore not be an instantaneous forward biasing of the emitterbase junction of transistor 60. As capacitor 62 gradually charges through resistor 61, the forward bias of the emitterbase junction of transistor 60 will gradually increase, and the current flow therethrough to the collector of transistor 42 will correspondingly gradually increase. When capacitor 62 is fully charged then the maximum current flow will be available through transistor 60 and transistor 42.

It thus becomes apparent that the amplitude of the initial pulses available through transistor 42 to the RF oscillator is gradually increased, and that only the initial pulses of the resulting train of RF pulses will be correspondingly gradually increased. Thus the RF receiver which is connected to the tissue of the patient will receive a train of pulses of which the initial pulses gradually increase in amplitude to a predetermined value, and the possibility of an unpleasant feeling due to the transitory side effects caused by the immediate full amplitude tum-on of the train of pulses will be alleviated.

In testing the apparatus of FIGS. 1 and 2, it has been determined, for the RF pulse transmitter of FIG. 2, that the connection of apparatus 20 at the position in the circuitry as shown in FIG. 2 is preferable to that of FIG. 1 for purposes of conservation of energy. The connection possibility suggested in the embodiment of FIG. 1, that is, where the apparatus 20 is placed between the source of energy 15 and all of circuitry 10, is be lieved to be the preferred embodiment for purposes of stability. Other embodiments than those shown in the drawings have been used, for example the placement of apparatus 20 so as to provide gradual increase of power supply voltage to both the voltage regulator and output amplitude adjustment apparatus of FIG. 2, and it will be apparent that the placement of apparatus 20 to select gradual control of any selected portion of the pulse stimulator circuitry is in any case within the scope of this invention.

FIGS. 3 and 4 are graphs of the pulse train amplitude versus time for representing the difference between the prior an output pulse trains and the pulse trains from apparatus utilizing this invention. FIG. 3 is a prior art output pulse train where it can be seen that almost instantaneously the train of pulses reaches its full amplitude. It is this sudden rise to full amplitude which is believed to cause the side effects and unpleasant feelings'in the patient, probably due to stimulation of adjacent tissue to the tissue it is desired to stimulate. FIG. 4, a graph on the same scale as FIG. 3, depicts the gradual rise to full amplitude of the initial pulses of the output pulse train of stimulators including the invention disclosed herein. It is believed that with this gradual turn-on of only the initial portion of the stimulating signals, the adjacent fibers will accommodate to the stimulus signals without depolarizing and will provide little or no sensation to the patient.

What is claimed is:

1. In electronic circuitry for providing output electronic stimulating signals to a selected portion of the body the signals providing a plurality of pulses, the circuitry adapted to be connected to a source of electrical energy, the improvement comprising: means for gradually increasing the amplitude of the initial pulses of the output stimulating signals to a predetermined value; energy terminal means adapted to be connected to the source of electrical energy; and further means for connecting said means for gradually increasing the amplitude between said energy terminal means and a selected portion of the electronic circuitry.

2. The improvement of claim 1 in which said means for gradually increasing the amplitude includes: input and output terminals for connection, respectively, to said energy terminal means and the selected portion of the electronic circuitry; amplifier means connected between said input and output terminals and having a control terminal; electrical time constant means; and means connecting said time constant means to said control terminal and across said energy terminal means.

3. The improvement of claim 2 in which said electrical time constant means comprises: resistance means and capacitance means; means for connecting said resistance means between said control terminal and one polarity of said energy terminal means; and means for connecting said capacitance means between said control terminal and another polarity of said energy terminal means.

4. The improvement of claim 3 in which said amplifier means comprises: a transistor having input and output electrodes connected to said input and output terminals, and having a control electrode connected to said control terminal.

5. The improvement of claim 4 in which said transistor is connected in emitter-follower configuration.

6. in electronic pulse stimulator apparatus for providing an output train of pulses, the stimulator adapted to be connected to a source of electrical energy and including pulse generator means and output amplitude control means, the improvement comprising: energy terminal means adapted to be connected to the source of electrical energy; means for automatically gradually increasing the amplitude of the initial pulses of the output train of pulses to a predetermined value; and means for connecting said means for gradually increasing the amplitude between said energy terminal means and the output amplitude control means.

7. The improvement of claim 6 in which said means for gradually increasing the amplitude includes: amplifier means connected between said energy terminal means and the output means for connecting said time constant means across said energy terminal means; and means connecting said time constant means to said amplifier means for the control thereof.

8. The improvement of claim 7 in which said electrical time constant means comprises: resistance means and capacitance means connected in series across said energy terminal means; and said capacitance means connected to said amplifier means for controlling the output thereof dependent on the electrical charge in said capacitance means.

9. The improvement of claim 8 in which said amplifier means comprises: a transistor having input, output and control electrodes; said input and output electrodes connected to, respectively, said energy terminal means and said output amplitude control means; and said control electrode connected to said capacitance means.

10. The improvement of claim 9 in which said transistor is connected in emitter-follower configuration.

11. in a carotid sinus nerve stimulator for providing stimulating signals to a selected nerve fiber between being turned on and turned 05, the improvement comprising: means automatically responsive to the stimulator being turned on for gradually increasing the amplitude of the initial stimulating signals to a predetennined level maintained until the stimulator is turned off; said means comprising time constant means connected to control the initial current flow through at least a position of the nerve stimulator; and including energy terminal means adapted to be connected to a source of energy; and said time constant means comprising an RC circuit connected between at least a position of the nerve stimulator and said terminal means.

R 3 331 UNITED STATES PA'l-ENT OFFICE CERTIFICATE OF "CORRECTION Patent No.- 3,645,267 Dated February 29 1972 Inventor(s) Norman R. Hragfors It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Abstract, "turnoff" should be -turnoff-'-. Y Column 1, line 14 "well-known" should be --well known-. Column 2 line 39, "transistor emitter-follower connected". should be ---e mitter -fol'lower connected. transistor w Column 2, line 55,. "radiofrequency" should be -radio frequency-. Column '4, line 7,, "transistor emitter-follower connected" should be -emitterfollower connected transistor--. Column 6, line 28, "position" should be portion. Column 6, line 31, "position" should be portion--.

, Signed and sealed this 27th dayv of June 1972. v

(SEAL) Attest:

EWARD M.FLETCHER,J'R. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents *zgygga UNITED STATES PATENT OFFICE CERTIFICATE OF "CORRECTION Patent No. 3,645,267 Dated February 29, 1972 Inventor(s) Norman R. Hagfors Itis certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Abstract, "turnoff" should be turnoff-. Y I Column 1, line 14 "well-known" should be -.Well known. Column 2, line 39, "transistor emitter-follower connected". should be -emitterfol'lower connected transistor.-

Column 2 line 55,. "radiofrequency" should be -radio frequency-.

Column 4 line 7,, "transistor emitter-follower connected" should be -emitt,erfollowe r connected transistor--.

Column 6 line 28, "position" should be -portion.

Column 6, line 31, "position" should be -portion.

Signed and sealed this 27th day of June 1972. v

(SEAL) Attest:

EDWARD M.FLETCHER,J'R. ROBERT GOTTSCHAIK Attesting Officer Commissioner of Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2321659 *Feb 3, 1941Jun 15, 1943Harold V ConnertyVariable frequency stimulator
US2866461 *Jan 21, 1954Dec 30, 1958Suzuki KensakuApparatus for producing electric anesthesia
US3098976 *Sep 15, 1960Jul 23, 1963Gen Electric Co LtdLow cross-talk delay circuit
US3376429 *Jun 4, 1965Apr 2, 1968Wagner Electric CorpTime delay circuit
US3516413 *May 24, 1966Jun 23, 1970Michael McdonaldCircuit arrangement for an electric muscle stimulator
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3836798 *Aug 15, 1972Sep 17, 1974Greatbatch W LtdDevice for converting nuclear energy into electrical energy
US3920025 *Jul 15, 1974Nov 18, 1975Medtronic IncElectro-medical stimulator system
US4066086 *Sep 13, 1976Jan 3, 1978Medtronic, Inc.Programmable body stimulator
US4102348 *May 13, 1977Jul 25, 1978Kabushiki Kaisha Nippon CoincoLow frequency medical treatment apparatus
US4177819 *Mar 30, 1978Dec 11, 1979Kofsky Harvey IMuscle stimulating apparatus
US4233965 *Jan 16, 1978Nov 18, 1980Cas Products, Inc.Method and apparatus for the therapeutic treatment of living tissue
US4323073 *Aug 21, 1979Apr 6, 1982Cos Electronics CorporationApparatus and method for controlling the application of therapeutic direct current to living tissue
US4340047 *Feb 8, 1980Jul 20, 1982Robert TapperIontophoretic treatment apparatus
US4372319 *Jun 13, 1980Feb 8, 1983Matsushita Electric Works, Ltd.Low frequency therapeutic instrument
US4520825 *Apr 30, 1982Jun 4, 1985Medtronic, Inc.Digital circuit for control of gradual turn-on of electrical tissue stimulators
US4630615 *May 21, 1984Dec 23, 1986Cordis CorporationApparatus for measuring impedance
US4735204 *Oct 30, 1986Apr 5, 1988Cordis CorporationSystem for controlling an implanted neural stimulator
US4738250 *Oct 1, 1985Apr 19, 1988Mems Technology, IncorporatedApparatus and method for micro-electric medical stimulation of cells of living animal tissue
US4769881 *Sep 2, 1986Sep 13, 1988Pedigo Irby RApplying transcutaneous electrical nerve stimulation to a patient
US5146920 *Nov 15, 1990Sep 15, 1992Sanyo Electric Co., Ltd.Wireless low-frequency medical treatment device with pulse interruption based upon electrode contact with the body
US5184617 *Jun 5, 1990Feb 9, 1993Staodyn, Inc.Output pulse compensation for therapeutic-type electronic devices
US5193537 *Jun 12, 1990Mar 16, 1993Zmd CorporationMethod and apparatus for transcutaneous electrical cardiac pacing
US5205284 *Jun 12, 1990Apr 27, 1993Zoll Medical CorporationMethod and apparatus for transcutaneous electrical cardiac pacing with background stimulation
US5243232 *Jul 20, 1992Sep 7, 1993Allen-Bradley Company, Inc.Start-up pulse suppression circuit for industrial controller output
US5282843 *Jan 9, 1992Feb 1, 1994Zmd CorporationElectrodes and method for transcutaneous cardiac pacing
US5727558 *Feb 14, 1996Mar 17, 1998Hakki; A-HamidNoninvasive blood pressure monitor and control device
US6023638 *May 22, 1998Feb 8, 2000Scimed Life Systems, Inc.System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US6107699 *May 22, 1998Aug 22, 2000Scimed Life Systems, Inc.Power supply for use in electrophysiological apparatus employing high-voltage pulses to render tissue temporarily unresponsive
US6212426Nov 1, 1999Apr 3, 2001Scimed Life Systems, Inc.Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US6421556Feb 28, 2001Jul 16, 2002Scimed Life Systems, Inc.Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US6428537May 22, 1998Aug 6, 2002Scimed Life Systems, Inc.Electrophysiological treatment methods and apparatus employing high voltage pulse to render tissue temporarily unresponsive
US6522926Sep 27, 2000Feb 18, 2003Cvrx, Inc.Devices and methods for cardiovascular reflex control
US6679269May 30, 2002Jan 20, 2004Scimed Life Systems, Inc.Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US6850801Sep 26, 2001Feb 1, 2005Cvrx, Inc.Mapping methods for cardiovascular reflex control devices
US6985774Sep 26, 2001Jan 10, 2006Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7010345Oct 26, 2001Mar 7, 2006Medtronic, Inc.Method and apparatus to minimize effects of a cardiac insult
US7158832Sep 26, 2001Jan 2, 2007Cvrx, Inc.Electrode designs and methods of use for cardiovascular reflex control devices
US7218964Oct 26, 2001May 15, 2007Medtronic, Inc.Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US7254444Oct 17, 2002Aug 7, 2007Encore Medical Asset CorporationElectrical nerve stimulation device
US7389145 *Feb 20, 2002Jun 17, 2008Case Western Reserve UniversitySystems and methods for reversibly blocking nerve activity
US7616997Mar 27, 2003Nov 10, 2009Kieval Robert SDevices and methods for cardiovascular reflex control via coupled electrodes
US7623926Apr 5, 2004Nov 24, 2009Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7769441Nov 3, 2005Aug 3, 2010The Board Of Regents Of The University Of OklahomaCardiac neuromodulation and methods of using same
US7801614Oct 23, 2006Sep 21, 2010Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7813812Jul 7, 2006Oct 12, 2010Cvrx, Inc.Baroreflex stimulator with integrated pressure sensor
US7840271Jul 20, 2005Nov 23, 2010Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7860563Nov 23, 2005Dec 28, 2010The Board Of Regents Of The University Of OklahomaCardiac neuromodulation and methods of using same
US7949400Nov 10, 2009May 24, 2011Cvrx, Inc.Devices and methods for cardiovascular reflex control via coupled electrodes
US8005539Jan 30, 2009Aug 23, 2011Medtronic, Inc.Implantable medical device crosstalk evaluation and mitigation
US8019426Jul 16, 2007Sep 13, 2011Encore Medical Asset CorporationElectrical nerve stimulation device
US8060206Jul 7, 2006Nov 15, 2011Cvrx, Inc.Baroreflex modulation to gradually decrease blood pressure
US8086314Oct 29, 2002Dec 27, 2011Cvrx, Inc.Devices and methods for cardiovascular reflex control
US8109879Jan 10, 2006Feb 7, 2012Cardiac Pacemakers, Inc.Assessing autonomic activity using baroreflex analysis
US8131374Aug 5, 2011Mar 6, 2012Encore Medical Asset CorporationElectrical nerve stimulation device
US8224437Oct 3, 2008Jul 17, 2012Cvrx, Inc.Baroreflex activation for sedation and sleep
US8249705Mar 6, 2008Aug 21, 2012Cvrx, Inc.Devices, systems, and methods for improving left ventricular structure and function using baroreflex activation therapy
US8249708Jan 30, 2009Aug 21, 2012Medtronic, Inc.Implantable medical device crosstalk evaluation and mitigation
US8260412Jan 30, 2009Sep 4, 2012Medtronic, Inc.Implantable medical device crosstalk evaluation and mitigation
US8290595Jul 7, 2006Oct 16, 2012Cvrx, Inc.Method and apparatus for stimulation of baroreceptors in pulmonary artery
US8315713Apr 30, 2009Nov 20, 2012Medtronic, Inc.Techniques for placing medical leads for electrical stimulation of nerve tissue
US8369954Mar 7, 2011Feb 5, 2013Synecor LlcSystem and method for transvascularly stimulating contents of the carotid sheath
US8417334Oct 26, 2001Apr 9, 2013Medtronic, Inc.Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
US8452394Jan 30, 2009May 28, 2013Medtronic, Inc.Implantable medical device crosstalk evaluation and mitigation
US8473057Oct 30, 2009Jun 25, 2013Medtronic, Inc.Shunt-current reduction housing for an implantable therapy system
US8478414Apr 30, 2008Jul 2, 2013Cvrx, Inc.Baroreflex activation for pain control, sedation and sleep
US8498698Aug 31, 2009Jul 30, 2013Medtronic, Inc.Isolation of sensing and stimulation circuitry
US8527045Oct 30, 2009Sep 3, 2013Medtronic, Inc.Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US8532779Jan 30, 2009Sep 10, 2013Medtronic, Inc.Implantable medical device crosstalk evaluation and mitigation
US8532793Apr 30, 2009Sep 10, 2013Medtronic, Inc.Techniques for placing medical leads for electrical stimulation of nerve tissue
US8560060Aug 31, 2009Oct 15, 2013Medtronic, Inc.Isolation of sensing and stimulation circuitry
US8560076Nov 5, 2010Oct 15, 2013Cvrx, Inc.Devices and methods for electrode implantation
US8583236Mar 8, 2010Nov 12, 2013Cvrx, Inc.Devices and methods for cardiovascular reflex control
US8594794Jul 17, 2008Nov 26, 2013Cvrx, Inc.Baroreflex activation therapy with incrementally changing intensity
US8606359Apr 13, 2007Dec 10, 2013Cvrx, Inc.System and method for sustained baroreflex stimulation
US8611996Jan 30, 2009Dec 17, 2013Medtronic, Inc.Implantable medical device crosstalk evaluation and mitigation
US8688210Jan 30, 2009Apr 1, 2014Medtronic, Inc.Implantable medical device crosstalk evaluation and mitigation
US8712531May 24, 2012Apr 29, 2014Cvrx, Inc.Automatic baroreflex modulation responsive to adverse event
US8718789Apr 19, 2010May 6, 2014Cvrx, Inc.Electrode structures and methods for their use in cardiovascular reflex control
US8755907May 21, 2013Jun 17, 2014Cvrx, Inc.Devices and methods for electrode implantation
US8774918Jan 30, 2009Jul 8, 2014Medtronic, Inc.Implantable medical device crosstalk evaluation and mitigation
US8838246Sep 27, 2006Sep 16, 2014Cvrx, Inc.Devices and methods for cardiovascular reflex treatments
USRE33420 *Sep 12, 1988Nov 6, 1990Cordis CorporationSystem for controlling an implanted neural stimulator
USRE35987 *Feb 8, 1995Dec 8, 1998Staodyn, Inc.Output pulse compensation for therapeutic-type electronic devices
DE3049643A1 *Jun 13, 1980Feb 25, 1982Matsushita Electric Works LtdLow frequency therapeutic device
DE3315513A1 *Apr 29, 1983Nov 3, 1983Medtronic IncDigitale schaltungsanordnung zum steuern eines allmaehlichen einschaltens von elektrischen gewebereizeinrichtungen
EP0033747A1 *Dec 30, 1980Aug 19, 1981Matsushita Electric Works, Ltd.Low frequency therapeutic device
EP0052087A1 *Nov 10, 1981May 19, 1982Fiorello SodiProcess and apparatus for the correction of scoliosis and other spinal deformities
WO2001015772A1Aug 28, 2000Mar 8, 2001Aloha S AApparatus for electrical stimulation of the lymphatic system and uses thereof
Classifications
U.S. Classification607/44, 331/74, 607/63, 307/141.4, 607/72, 327/261, 331/185, 331/113.00R
International ClassificationA61N1/08, A61N1/36
Cooperative ClassificationA61N1/08, A61N1/36017, A61N1/36014
European ClassificationA61N1/36E, A61N1/36E2, A61N1/36, A61N1/08