Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3646241 A
Publication typeGrant
Publication dateFeb 29, 1972
Filing dateMar 4, 1970
Priority dateMar 5, 1969
Also published asDE6908662U
Publication numberUS 3646241 A, US 3646241A, US-A-3646241, US3646241 A, US3646241A
InventorsOtt Dieter
Original AssigneeOtt Dieter
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Stop actuation device in organs
US 3646241 A
The innovation pertains to a stop actuation device in organs with a keyboard, stop draws and electrical and/or electropneumatical operation of the stop control assembly from the keyboard assembly, which incorporates a preselection device for different stop combinations that can be activated over control mechanisms at the keyboard touch assembly.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Ott Feb. 29, 1972 [54] STOP ACTUATION DEVICE IN ORGANS 3,422,718 1/1969 Noehren ..84/1.03 X 1,173,905 2 1916 W 1t ..84 85 [721 3% 9" g 2,699,085 11955 zu ci: .84/1.14X mmgem many 3,172,939 3/1965 Campbel1, Jr. et a1.. .....84/1.03 [22] Filed: Mar. 4, 1970 3,250,168 5/1966 Sepp, Jr. ..84/343 3,420,940 1/ 1969 Glass et a1. .....84/1.03 [21] App1.No.: 16,348 3,422,718 1/1969 Noehren ..84/ 1.03 X

0 F A u u m m D Primary Examiner-Laramie E. Askin [3 1 orelgn pp ca on o y Assistant Examiner-U. Weldon Mar. 5, 1969 Germany ..G 69 08 662 An whinemore, Hulbort 8; Belknap [52] U.S. Cl. ..84/1.03, 84/1.17, 84/1.24 [57] ABSTRACT [51] lnt.Cl ..Gl0f1/00 [5s 1 Field of Search ..84/1.17, as, 343,332, 369, 1 Pmams mp 84/470 453 337 01 l 03 345 with a keyboard, stop draws and electrical and/or electropneumatical operation of the stop control assembly from the keyboard assembly, which incorporates a preselection device [56] References cued for different stop combinations that can be activated over con- UNITED STATES PATENTS trol mechanisms at the keyboard touch assembly.

3,213,179 10/1965 Clauson 84/1.03 Q 1 Claims, 4 Drawing Figures STOP ACTUATION DEVICE IN ORGANS BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a stop actuation device in organs with electrical operation of stop mechanisms.

2. Description ofthe Prior Art Notably, the keyboard touch assembly of an organ includes essentially two groups of control elements: the keyboards, and the draws that control the stops. Frequently, these stop draws are controlled from the keyboard assembly, and operated electrically from the sound box. In such a system, the stop draws are layed out in the form of electrical switches. Stop switches of this type have been known for a long time, and are designed in varying configurations. In order to facilitate the operation of the organ, attempts have been made for a long time to provide the organist with touch assists which would enable him to preset certain combinations of stops by pushing buttons on the keyboard assembly. The most popular touch assists are known under the designations of free combinations" and set combinations.

The so-called free combinations, as a rule, involve a large number of identical smaller switches, which are in parallel with the draw switches; they close the same circuit as the actual draw switches, however, they only become actuated when selected over a relay. This, in turn, enables to preset the desired combination, using these additional switches, so that this particular combination is available when the selection is made. The disadvantage of this design is in that the keyboard assembly must be equipped with a very large number of switches and control'elements, which makes the keyboard extremely cluttered. On the other hand, the advantage of this layout is in that the organist can view the preset combination by looking at the positions of the additional switches.

The so-called set combinations involve the storage of preselected combinations by (polarized) relays. Thus, in a five-unit combination, five storage relays are assigned to each draw switch, thus allowing for five alternate preselections.

. This layout has the disadvantage of involving considerable expenditures, and accordingly, the design and construction costs are increased considerably; simultaneously, there is a difficulty involved in that the organist can only establish the preset combination by using the appropriate draw switch. On the other hand, the set combination has the advantage that in the keyboard assembly, only the conventional draw switches are actuated; they are operated manually and can be remote-controlled through the combination-switching.

SUMMARY OF THE INVENTION This invention eliminates the difficulties entailed in those two systems and develops a stop actuation device in this frame of reference, which enables the organist, in the simplest manner and fashion, to have ready and available an arbitrary number of stop combinations, which can be actuated arbitrarily in the simplest form or manner, simultaneously allowing the organist an unobstructed view of the selected stop combinations.

The invention consists of having each controlling element of the stop combination at the keyboard assembly connected with a scanning subassembly of the preselector device, whereby each scanning subassembly is equipped with a receptacle for a stop-programming carrier, and is also connected to the control elements of the touch unit. With such a layout of the stop actuation system, the simplified design of the keyboard assembly, such as used with the set combination system, can be retained. The keyboard assembly thus only incorporates the actual stop switches, and the control elements of stop combinations. However, the stop combinations are not represented in the form of a multitude of memory relays as in the set combination," or by a multitude of reversible auxiliary switches, such as used in free combinations, but rather by a punched draw programming carrier. The number of possible perforations on the program carrier is identical to the number of stop switches incorporated into the keyboard assembly. To simplify the preparation of an organ recital, it is advantageous to provide the stop program carrier with a number of prepunched ranges, which, if required, can be easily perforated. These ranges can be identified conventionally (e.g., using numerals), so that the organist needs only to perforate the ranges required for a certain stop combination using his finger, or a pencil in order to prepare the program carrier for use for a given combination of stops.

For each stop to be included into a combination, it is necessary to make an appropriate punch on the respective program carrier that applies to the particular combination. Since an arbitrary large number of program carriers conceivably can be prepared, the number of possible combinations is also arbitrarily large.

As a matter of expediency, the preselector assembly is designed in a modular form, i.e., it consists of several identical sensing units. It has been found from practical experience that, as a rule, four to six sensing units are sufficient, since it is possible for the organist, or hisassistant, to exchange, without difficulty, the program carriers, as desired, and four to six sensing units can provide an arbitrary number of stop combinations.

The preselector unit may be part of the keyboard assembly, whereby the slots for insertion of the program carrier may be located within the organists reach. Alternately, the preselector unit can be also designed as an easily movable component; this would make it possible to set it at the most accessible place by the keyboard assembly, or somewhere where it is out of sight of the audience.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. I shows a perspective view of the keyboard assembly of an organ with the proposed new stop actuation system.

FIG. 2 shows the top view of a program carrier.

FIG. 3 shows a perspective side view of the scanning subassembly; several identical subassemblies of this kind are combined into the preselector unit.

FIG. 4 shows a longitudinal section of the scanning subassembly from FIG. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic or the organs keyboard assembly. The keyboard assembly (1) is equipped with keyboards (2a), (2b), and (2c); of these, only the latter is shown in detail. On both sides of the keyboards are bars for the stop switches (3a) through (3g); these switches can be operated by pushbuttons and actuate electrically the controls which are enclosed in the organ.

Under the lower keyboard (2c) is a number of control-andoperating elements; of these, the elements designated by (6) are used to select the stop combinations. It is visualized that in this case there are six such stop combination control-andoperating elements (6). Element (8), referred to as annulator," is designed to cancel out the selected stop combinations.

In the layout shown on the illustrations, a preselection device is arranged under the bottom stop switch bar (3g) in the right half of the keyboard assembly. This preselection device is equipped with guide slots (4); these slots open upward and are designed for the introduction of punched program carriers. Under every guide slot (4) is an indicator subassembly (5), timed for a preferred and limited time-element, when a program carrier, inserted into the appropriate guide slot, is chosen by the actuation of the appropriate control-andoperating element (6) on the keyboard assembly. This provides an additional control over the selection of available combinations. Accordingly, every control-and-operating element (6) at the keyboard assembly can be provided with an indicator unit (7) which responds when a program carrier is inserted into the appropriate slot.

The preselection subassembly, which incorporates the slots (4) and the indicator units (5), can also be alternately and advantageously designed as an independent and easily movable unit; it can also be connected to the keyboard assembly. This, in turn, enables to optimize the location of the preselector subassembly with respect to the organists position, so that the organist, while operating the organ, can arbitrarily exchange the program carriers. Moreover, this creates the opportunity to set up the preselector unit out of the view of the audience, so that the program carriers can be exchanged by an assistant organ operator. This assistant operator will be always informed by the indicator device (5) as to which keyboard program of those that are available in the preselection unit has been selected by the organist, and hence, which program is no longer required.

It appears feasible and expedient to use card-shaped program carriers (program cards); these carriers are provided with prepunched holes in a certain program arrangement. The prepunched regions are adequately attached to the carrier, so that there is no possibility for them to separate on their own from the carrier card and to cover the prepunched opening. On the other hand, the prepunched regions enable the operator to expose or punch the desired perforations, which are required for the formation of a given stop combination program, by finger, or else using a pencil, or any other pin-type tool. Such a program carrier (9) is shown on FIG. 2; the not (1-45) yet punched areas are designated by numeral (11), whereas the punched ranges are designated by (12). Item can be equipped with an appropriate legend; the cutoff guiding edge conventionally indicates the appropriate position of the program carrier that is suitable for insertion.

The preselector subassembly (4), outlined on FIG. 1, is preferably designed from modules and is preferably composed of four to six scanning groups or subassemblies (15). Each scanning group consists of a box-shaped housing, which is limited on its exterior by carrier plate (18), and on the other side by carrier plate (24). Both carrier plates can be equipped with printed circuits, whereby in the suggested model, carrier plate (18) has a number of photoelectric cells (31), which corresponds to the number of perforations, whereas carrier plate (24), also using a printed electrical circuit, carries a number of fittings for light sources, e.g., small incandescent lamps (35).

The overlapping edge of plate (18) is equipped with terminal bars (19) for connecting plugs; thus, the module (15) is actually put into operating position by pushing it into the preselector unit. A masking plate (20) is arranged at a distance, which is determined by the interval between distance plate (30) and carrier plate (18); this masking plate, which is aligned and flushed, has a bore with each cell (31). At the same time, plate (20), along with guides (21), forms the vertical storage container for a program carrier, whereby the latter is inserted in the opening in the direction of arrows (16) and/or 17).

The insertion of the program carrier card is secured at the other side by a frosted (opal) glass plate (22), which covers frame (23) in which the light sources are arranged. The scanning elements (3]) respond when the light sources (35) are activated by pulses by the actuation of a stop combination control-and-operating element. Since the program, scanned in this manner, and carried by program carrier (9) is transmitted as bootstrap routines to the actuation elements of the touch (music) system, it follows that the function of the program carrier, upon scanning, is completed, regardless of how long the given stop combination is retained. Thus, immediately after I the program carrier has been scanned, it can be exchanged, so that the scanning subassembly can be immediately available for access to another program.

In order to identify the scanning subassembly as to whether or not the given program carrier has been scanned by the organist, it is desirable to provide the scanning subassembly with an indicator device (26); this indicator device will respond depending on the actuation of the stop combination control elements. By depressing button (27 the indicator device can be reset into zero position, particularly when the program carrier has been re laced.

A funne -shaped gate with retaining elements can be arranged for every pickup and storage slot 16) of the scanning subassemblies (15); this gate with retaining elements will store a number of programed cards. An exit slot for the cards must be provided at the bottom end of the storage slot; this exit slot will have a provision for locking by an appropriate catcher element. The retaining elements and the catcher element will be designed to respond during the actuation of stop combination control elements. Thus, the catcher element will release the card in storage (16), and the card will fall out at the bottom, whereas at the same time, the next card that is being held in readiness, will slide through the guiding funnel-shaped gate into storage (16) and will be stored for scanning by the catcher element which has been meanwhile put into locking position. This enables the organist to use a sequence of different program carriers by repeated actuation of each stop combination control element, without any further manual handling.

Of special significance for the practical handling of the new stop actuation device is the prepunched program carrier card which enables to provide the desired stop combination in the simplest fashion into the program carrier, without resorting to any other auxiliary means. Moreover, of considerable significance is the fact that the program carriers can be introduced into the vertically arranged scanning systems very easily, without making any particular effort as to maintaining the exact position of the card in storage. The required alignment of the card takes place exclusively under the influence of gravity.

Of significance are also the aforementioned indicator devices, which enable the organist to have a complete view, at any and all times, of the overall state of the program, taking into account the engaged or scanned program carriers. Of considerable import is also the feasibility of arranging the preselector subassembly as an easily mobile unit, that is independent of the keyboard assembly.

I claim:

1. In an organ of the class including keyboards and stop draws and electrical operation of stop mechanisms from the keyboard assembly, a stop actuation device comprising a mobile preselector unit comprising stop program code cards containing a plurality of prepunched areas which can be easily perforated, a plurality of modular scanning subassemblies each of which consists of a box-shaped housing open at one end and having a storage area bounded on two opposite sides by carrier plates equipped with printed circuits, one of said carrier plates carrying a plurality of light sources and the other of said plates carrying a plurality of photoelectric cells corresponding to the light sources, said storage area consisting of an elongated masking plate having an elongated guide element on each edge of one face thereof, and also having a plurality of bores each corresponding to and aligned with a cell, said cells adapted to receive light rays under control of said card which is removably inserted into the storage area.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1173905 *Jan 19, 1911Feb 29, 1916Welte & Sons Inc MVariable automatic stop-control for musical instruments.
US2699085 *Oct 12, 1949Jan 11, 1955Wurlitzer CoCombination stop action
US3172939 *Feb 26, 1960Mar 9, 1965 Electronic organ with punch card registration selection system
US3213179 *Apr 17, 1963Oct 19, 1965Clauson Ralph AOrgan combination action
US3250168 *Feb 14, 1963May 10, 1966Steinthal & Co Inc MPreselector for the tonal control elements of an organ
US3420940 *Oct 21, 1965Jan 7, 1969Fuechsel Charles FAutomatic player for electronic musical instrument
US3422718 *May 17, 1965Jan 21, 1969Noehren Robert GApparatus for combination action in an organ
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3755608 *Dec 6, 1971Aug 28, 1973North American RockwellApparatus and method for selectively alterable voicing in an electrical instrument
US3833750 *Feb 1, 1973Sep 3, 1974Syn Cordion Musical Inst CorpReed accordion with programmable electronic organ sound
US3992969 *Jun 18, 1975Nov 23, 1976Kimball International, Inc.Changeable preset system for electronic organs
US4023457 *Aug 21, 1975May 17, 1977Rodgers Organ CompanyOrgan stop switching system
US4128032 *Oct 30, 1975Dec 5, 1978Matsushita Electric Industrial Co., Ltd.Electronic music instrument
US4185531 *Jun 24, 1977Jan 29, 1980Oberheim Electronics, Inc.Music synthesizer programmer
U.S. Classification84/345, 984/12, 84/686
International ClassificationG10B3/10, G10B3/00
Cooperative ClassificationG10B3/10
European ClassificationG10B3/10