Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3646384 A
Publication typeGrant
Publication dateFeb 29, 1972
Filing dateJun 9, 1970
Priority dateJun 9, 1970
Also published asDE2122607A1
Publication numberUS 3646384 A, US 3646384A, US-A-3646384, US3646384 A, US3646384A
InventorsFrank M Lay
Original AssigneeIbm
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
One-sided plasma display panel
US 3646384 A
Abstract
A thin glass sheet carries seats of spaced, parallel electrodes on opposite surfaces thereof and a gaseous atmosphere overlies one surface. Applying an alternating current voltage exceeding a critical value across selected electrodes of each set causes a gas discharge to take place on the surface carrying the gas at the area of selected electrode crossing with localized visible light output.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Lay [ 51 Feb. 29, 1972 [54] ONE-SIDED PLASMA DISPLAY PANEL 1 72] Inventor: Frank M. Lay, Kingston. N.Y.

[73] Arstsignec: lntemattamal Business Machines Corporation, Armonk, NY.

[22] Filed: June 9, 1970 [2]] Appl. No.: 44,845

[52] US. Cl. ..3l3/l09.5, 313/220, 315/169 R, 340/343 [51] Int. Cl ..1-l0lj 61/30 [58] Field of Search ..313/108 B, 109.5, 220; 315/169 R, 169 TV; 340/166 EL, 343, 344

[56] References Cited UNITED STATES PATENTS 2,972,707 2/1961 Wood ..315/169X 3,499,l67 3/1970 Bakeretal .l ..3l3/220X 562,429 6/1896 Skinner ..340/343 Primary Examiner-Raymond F. Hossfeld Attorney-Sughrue, Rothwell, Mion, Zinn & Macpeak ABSTRACT A thin glass sheet carries seats of spaced, parallel electrodes on opposite surfaces thereof and a gaseous atmosphere overlies one surface. Applying an alternating current voltage exceeding a critical value across selected electrodes of each set causes a gas discharge to take place on the surface carrying the gas at the area of selected electrode crossing with localized visible light output.

6 Claims, 2 Drawing Figures PATENTED I972 3,646,384

INVENTOR FRANK M. LAY

ag, il-Kane! M ATTORNEYS ONE-SIDED PLASMA DISPLAY PANEL BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to planar display panels and more particularly to a simplified, low-cost display panel which eliminates the need for uniformity in spacing or accurate registration between panel components.

2. Description of the Prior Art Relatively thin, planar display panels employing a localized plasma effect have been manufactured in the past, in two forms. In one form, glass plates approximately 54; inch in thickness are separated by a gas filled gap about mils in width and the gap is maintained by thin glass spacers. The inner faces of the plates carry horizontal and vertical sets of transparent electrodes covered by a thin glass insulating layer. The intersections of these electrodes establish the spots that form the displayed pattern. Alternatively, instead of using two spaced glass plates, a three layer glass sandwich may be employed with holes in the middle layer through which the discharge occurs, although, in all other respects, this arrangement is similar to the first described plasma readout panels. The three layer panel involves inherently a registration problem since the perforated center plate or middle layer must have the perforations accurately aligned with the points of intersection between the transparent electrodes carried by the outer plates. With the two layer panel, there is inherently a uniformity problem since it is hard to maintain a uniform gas chamber of the order of several mils over the complete surface ofa large panel.

SUMMARY OF THE INVENTION The present invention provides a practical solution involving a single layer approach which solves both the registration and uniformity problems. The present invention is directed to a flat panel constructed from a single thin sheet of insulated material with sets of spaced parallel electrodes positioned on opposite sides of the insulator sheet with one set orthogonal to the other. The invention makes use of a gaseous atmosphere applied to one of the surfaces and by raising an alternating current voltage above a predetermined value, a localized gas discharge takes place on the surface subjected to the gas, with localized visible light output.

Preferably a neon atmosphere at 200 torr. is maintained on one side of the glass sheet, confined by a clear glass cover with the matrix electrodes constituting three lines per inch. A 500 volt, peak-to-peak firing voltage is selectively applied to given row and column electrodes to effect bistable action. A thin insulation layer may overlie the electrodes exposed to the gases.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view of a prior art three layer plasma display panel;

FIG. 2 is a perspective view, partially broken away, of the preferred embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT Prior to referring to FIG. 2 illustrating one embodiment of the present invention, reference to FIG. 1 illustrates a prior art plasma display panel 1, constituting a matrix display formed as a sandwich of three thin plates 2, 3, and 4. The center plate 3 is honeycombed with either etched or ultrasonically drilled holes 5. Transparent, thin film electrodes 6 and 7 are deposited on the outer surfaces of the two outer plates 2 and 4. The panel is evacuated and the array is filled with a mixture of neon-nitrogen gas or the like. The application of coincident voltages of appropriate magnitude to selected crossed grids, that is, electrodes 6 and 7, allow selected display elements to be ignited. Voltages applied to the crossed electrodes are coupled capacitively into the cell so that only AC excitation voltages are required. Display is seen through one set of highly transparent electrodes either 6 or 7, and the gas discharge is confined totally to the cylindrical cavity formed by the three glass sheets 2, 3, and 4. However, since the display panels can be manufactured such that approximately 18,000 tiny spots may be provided within a 4 inch square area, registration of the three plates is extremely critical. In addition, the manufacture of such display panels has been relatively expensive.

Referring to FIG. 2, the gas discharge display panel 10 of the present invention comprises in the form shown, a rectangular support or base 12 of some thickness which may constitute a block of electrical insulator material. Block 12 constitutes the physical support means or substrate for the panel including, an outer clear glass envelope 14 which acts in this case as a cover for base 12 and is hermetically sealed thereto, preferably about edge 16. While the envelope 14 may comprise clear glass, it is obvious that it may be formed of some other insulator, being at least translucent, so as to allow observation of a localized area of visible light output from the display panel 10.

The principal component of the panel comprises a thin electrical insulator sheet 18 which may also be of glass, ceramic, etc. A first set of metal electrodes 20 are preferably first applied to the top of the substrate 12 by electrodeposition or any other conventional process, the electrodes 20 being spaced from each other and parallel. In the illustrated embodiment there are approximately three lines per inch. The thin insula tor l8 (soft glass, hard glass, ceramic) is applied on top of the substrate 12 overlying conductors 20 of a thickness typically in the range of a micron to several mils. On the upper surface 22 of the thin insulator sheet 18 there is formed a second set of electrodes 24 which are similarly formed, consisting of thin strips of metal which lie preferably orthogonal or approximately so to the underlying conductors 20. As such, the upper and lower conductors or electrodes 24 and 20 extend in crossed paths, spaced from each other by the thickness of the insulator sheet 18. The hermetically sealed cover or envelope 14 confines an inert gaseous atmosphere such as neon, indicated at 26, in contact with one surface 22 of the insulator sheet 18 carrying conductive electrodes 24.

The invention involves the phenomena of localized gas discharge which takes place on the surface of the insulator 18 creating localized areas of visible light output as identified at 28, in this case, on either side of the upper electrode 24. Alternating current voltage is selectively applied to the electrode by conventional switch means. However, to illustrate in the most simple manner the application of the same, a source of alternating voltage (not shown) is connected to terminals 30 with lead 32 connecting one of the terminals 30 to a selected upper electrode 24 while lead 34 connects the other terminal 30 to a selected underlying or bottom electrode 20. In the area of the intersection of these spaced electrodes, corona discharge occurs on the upper surface 22 of the insulator, that is, that surface which faces the inert gas atmosphere 26.

The crossed but spaced electrodes define individual gaseous display cells and, in the illustrated embodiment, a matrix constituting three lines per inch has been successfully fired in a neon atmosphere of 200 torr. With the application of an alternating current firing voltage of about 500 volts (peak-topeak), the device shown is bistable in a neon atmosphere of :10 percent nitrogen (at torr.). The upper set of electrodes 24 which are normally exposed to the inert gaseous atmosphere, may be protected by a thin layer 36 of electrical insulation material which has the effect of slowing down the sputtering process and increases the memory margin.

What is claimed is:

1. A gas discharge display panel comprising: an insulator substrate, a first set of spaced parallel electrodes on one surface of said substrate, a glass sheet overlying said first set of electrodes, a second set of spaced electrodes carried on the outer surface of said glass sheet orthogonally to said first set, a clear glass envelope overlying one surface of said sheet carrying said second electrode set and spaced therefrom, a confined neon atmosphere within the space between the one surface and said clear glass envelope, and means for supplying an alternating current voltage of sufficient magnitude across selected electrodes of each set to cause a discharge on the surface of said glass sheet facing the gaseous atmosphere with calized visible light output in the crossing area of selected electrodes.

2. A display panel comprising:

an electrical insulator in the form of a thin sheet, means for maintaining an inert ionizable gas atmosphere on one side of said sheet, at least one conductor formed on said one side of said sheet, at least one conductor formed on the side of said sheet opposite to said one side, said two conductors partially overlapping to form a crossover point, and means connected to said two conductors for applying a potential difference across said crossover point to cause a gasv discharge in said inert ionizable gas atmosphere in the vicinity of the crossover point.

3. The display panel of claim 2 further including a first plurality of parallel conductors on said one side of said sheet and a second plurality of parallel conductors on said opposite side, said second plurality of conductors being orthogonal to said first plurality of conductors, and means coupled to pairs of electrical conductors comprising one conductor of said first plurality and one conductor of said second plurality for selectively applying an alternating potential difference at the crosspoint of said conductor pairs.

4. The display panel as claimed in claim 3 wherein said thin insulator sheet is supported by an electrical insulator block which underlies the same and said inert gaseous atmosphere is confined to the display surface thereof by an overlying glass envelope hermetically sealed to said block.

5. The display panel of claim 3 further including an insulation layer overlying and in contact with said first plurality of conductors.

6. In a gas discharge display device wherein a potential difference applied at selective locations across an ionizable gas atmosphere retained in a display panel causes selective discharges along with the generation of positive and negative charges tending to counteract the potential difference and extinguish the discharge, subsequent reversals of the potential difference causing successive pulsating discharges at the selected locations, the improvement comprising:

a display panel including a dielectric sheet, one surface of which is in contact with said ionizable gas atmosphere;

a first plurality of conductors spaced along said one surface;

a second plurality of conductors spaced along a second surface of said dielectric sheet parallel to said first surface, and remote from said gas atmosphere, said second plurality of conductors at least partially overlapping said first plurality of conductors to form a plurality of crossover points; and

means coupled to said first and second pluralities of conductors for selectively applying the potential difference across selected crosspoints to generate a discharge in the gas atmosphere in the vicinity of the selected crosspoints.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US562429 *Jun 23, 1896 Xx electrical adv advertising apparatus
US2972707 *Oct 18, 1954Feb 21, 1961Electro VoiceImage reproducing device
US3499167 *Nov 24, 1967Mar 3, 1970Owens Illinois IncGas discharge display memory device and method of operating
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3753609 *Dec 8, 1971Aug 21, 1973Olivetti & Co SpaLiquid crystal display
US3787106 *Nov 9, 1971Jan 22, 1974Owens Illinois IncMonolithically structured gas discharge device and method of fabrication
US3811061 *Oct 13, 1972May 14, 1974Fujitsu LtdPlane surface discharge plasma display panel
US3860846 *Feb 22, 1974Jan 14, 1975Control Data CorpPlanar plasma discharge display panel
US3864593 *May 23, 1973Feb 4, 1975Ise Electronics CorpFlat fluorescent letter display tubes
US3873169 *May 31, 1973Mar 25, 1975Hitachi LtdMultiple digit display device and method of manufacturing same
US3873171 *May 31, 1973Mar 25, 1975Hitachi LtdMultiple-digit display device and method of manufacturing the same
US3898515 *Mar 6, 1973Aug 5, 1975Fujitsu LtdArrangement of electrodes on a display panel utilizing gas discharge
US4235001 *Apr 27, 1978Nov 25, 1980Haruhiro MatinoGas display panel fabrication method
US4887003 *May 10, 1988Dec 12, 1989Parker William PScreen printable luminous panel display device
US4956577 *Aug 24, 1988Sep 11, 1990Parker William PInteractive luminous panel display device
US5126632 *Mar 15, 1991Jun 30, 1992Parker William PLuminous panel display device
US5198723 *Dec 11, 1989Mar 30, 1993Parker William PLuminous panel display device
US5469021 *Jun 2, 1993Nov 21, 1995Btl Fellows Company, LlcGas discharge flat-panel display and method for making the same
US5587624 *Feb 14, 1995Dec 24, 1996Pioneer Electronic CorporationPlasma display panel
US5634836 *Jun 7, 1995Jun 3, 1997Spectron Corporation Of America, L.L.C.Method of making a gas discharge flat-panel display
US5654727 *Jun 7, 1995Aug 5, 1997Spectron Corporation Of America, L.L.C.Gas discharge flat-panel display
US5954560 *Dec 12, 1997Sep 21, 1999Spectron Corporation Of America, L.L.C.Method for making a gas discharge flat-panel display
US6545422Oct 27, 2000Apr 8, 2003Science Applications International CorporationSocket for use with a micro-component in a light-emitting panel
US6570335Oct 27, 2000May 27, 2003Science Applications International CorporationMethod and system for energizing a micro-component in a light-emitting panel
US6612889Oct 27, 2000Sep 2, 2003Science Applications International CorporationMethod for making a light-emitting panel
US6620012Oct 27, 2000Sep 16, 2003Science Applications International CorporationMethod for testing a light-emitting panel and the components therein
US6646388Dec 13, 2002Nov 11, 2003Science Applications International CorporationSocket for use with a micro-component in a light-emitting panel
US6762566Oct 27, 2000Jul 13, 2004Science Applications International CorporationMicro-component for use in a light-emitting panel
US6764367Aug 9, 2002Jul 20, 2004Science Applications International CorporationLiquid manufacturing processes for panel layer fabrication
US6796867Aug 9, 2002Sep 28, 2004Science Applications International CorporationUse of printing and other technology for micro-component placement
US6801001Aug 9, 2002Oct 5, 2004Science Applications International CorporationMethod and apparatus for addressing micro-components in a plasma display panel
US6822626Aug 9, 2002Nov 23, 2004Science Applications International CorporationDesign, fabrication, testing, and conditioning of micro-components for use in a light-emitting panel
US6864631Oct 15, 2002Mar 8, 2005Imaging Systems TechnologyGas discharge display device
US6902456Aug 20, 2003Jun 7, 2005Science Applications International CorporationSocket for use with a micro-component in a light-emitting panel
US6935913Aug 9, 2002Aug 30, 2005Science Applications International CorporationMethod for on-line testing of a light emitting panel
US6975068Nov 26, 2002Dec 13, 2005Science Applications International CorporationLight-emitting panel and a method for making
US7005793May 24, 2005Feb 28, 2006Science Applications International CorporationSocket for use with a micro-component in a light-emitting panel
US7025648Mar 2, 2004Apr 11, 2006Science Applications International CorporationLiquid manufacturing processes for panel layer fabrication
US7122961Nov 29, 2005Oct 17, 2006Imaging Systems TechnologyPositive column tubular PDP
US7125305Jul 8, 2003Oct 24, 2006Science Applications International CorporationLight-emitting panel and a method for making
US7137857Apr 17, 2003Nov 21, 2006Science Applications International CorporationMethod for manufacturing a light-emitting panel
US7140941Feb 3, 2006Nov 28, 2006Science Applications International CorporationLiquid manufacturing processes for panel layer fabrication
US7157854May 20, 2003Jan 2, 2007Imaging Systems TechnologyTubular PDP
US7164394Mar 21, 2002Jan 16, 2007Hitachi, Ltd.Plasma display apparatus
US7176628May 19, 2005Feb 13, 2007Imaging Systems TechnologyPositive column tubular PDP
US7288014Jan 14, 2004Oct 30, 2007Science Applications International CorporationDesign, fabrication, testing, and conditioning of micro-components for use in a light-emitting panel
US7405516Apr 18, 2005Jul 29, 2008Imaging Systems TechnologyPlasma-shell PDP with organic luminescent substance
US7535175Feb 2, 2007May 19, 2009Imaging Systems TechnologyElectrode configurations for plasma-dome PDP
US7604523Jun 10, 2005Oct 20, 2009Imaging Systems TechnologyPlasma-shell PDP
US7622866Feb 2, 2006Nov 24, 2009Imaging Systems TechnologyPlasma-dome PDP
US7628666Feb 3, 2006Dec 8, 2009Imaging Systems TechnologyProcess for manufacturing plasma-dome PDP
US7638943Jan 30, 2006Dec 29, 2009Imaging Systems TechnologyPlasma-disc article of manufacture
US7679286Sep 5, 2006Mar 16, 2010Imaging Systems TechnologyPositive column tubular PDP
US7727040Jan 27, 2006Jun 1, 2010Imaging Systems TechnologyProcess for manufacturing plasma-disc PDP
US7730746Jul 10, 2006Jun 8, 2010Imaging Systems TechnologyApparatus to prepare discrete hollow microsphere droplets
US7772773Feb 2, 2007Aug 10, 2010Imaging Systems TechnologyElectrode configurations for plasma-dome PDP
US7772774Feb 8, 2007Aug 10, 2010Imaging Systems TechnologyPositive column plasma display tubular device
US7789725Oct 19, 2007Sep 7, 2010Science Applications International CorporationManufacture of light-emitting panels provided with texturized micro-components
US7791037Mar 9, 2007Sep 7, 2010Imaging Systems TechnologyPlasma-tube radiation detector
US7808178Feb 6, 2007Oct 5, 2010Imaging Systems TechnologyMethod of manufacture and operation
US7833076Jul 14, 2008Nov 16, 2010Imaging Systems Technology, Inc.Method of fabricating a plasma-shell PDP with combined organic and inorganic luminescent substances
US7863815Jan 19, 2007Jan 4, 2011Imaging Systems TechnologyElectrode configurations for plasma-disc PDP
US7923930Jul 23, 2007Apr 12, 2011Imaging Systems TechnologyPlasma-shell device
US7932674Feb 6, 2006Apr 26, 2011Imaging Systems TechnologyPlasma-dome article of manufacture
US7969092Mar 30, 2007Jun 28, 2011Imaging Systems Technology, Inc.Gas discharge display
US7978154Feb 5, 2007Jul 12, 2011Imaging Systems Technology, Inc.Plasma-shell for pixels of a plasma display
US8035303May 18, 2009Oct 11, 2011Imaging Systems TechnologyElectrode configurations for gas discharge device
US8043137May 13, 2009Oct 25, 2011Science Applications International CorporationLight-emitting panel and a method for making
US8106586May 31, 2008Jan 31, 2012Imaging Systems Technology, Inc.Plasma discharge display with fluorescent conversion material
US8110987Nov 21, 2008Feb 7, 2012Imaging Systems Technology, Inc.Microshell plasma display
US8113898Oct 8, 2009Feb 14, 2012Imaging Systems Technology, Inc.Gas discharge device with electrical conductive bonding material
US8129906Feb 26, 2009Mar 6, 2012Imaging Systems Technology, Inc.Lumino-shells
US8138673Nov 22, 2008Mar 20, 2012Imaging Systems TechnologyRadiation shielding
US8198811May 30, 2010Jun 12, 2012Imaging Systems TechnologyPlasma-Disc PDP
US8198812Jan 6, 2009Jun 12, 2012Imaging Systems TechnologyGas filled detector shell with dipole antenna
US8246409Aug 18, 2011Aug 21, 2012Science Applications International CorporationLight-emitting panel and a method for making
US8278824Aug 9, 2010Oct 2, 2012Imaging Systems Technology, Inc.Gas discharge electrode configurations
US8299696Dec 7, 2009Oct 30, 2012Imaging Systems TechnologyPlasma-shell gas discharge device
US8339041Nov 15, 2010Dec 25, 2012Imaging Systems Technology, Inc.Plasma-shell gas discharge device with combined organic and inorganic luminescent substances
US8368303Feb 13, 2012Feb 5, 2013Imaging Systems Technology, Inc.Gas discharge device with electrical conductive bonding material
US8410695Oct 4, 2010Apr 2, 2013Imaging Systems TechnologyGas discharge device incorporating gas-filled plasma-shell and method of manufacturing thereof
US8618733Jan 3, 2011Dec 31, 2013Imaging Systems Technology, Inc.Electrode configurations for plasma-shell gas discharge device
EP0052376A2 *Nov 17, 1981May 26, 1982Fujitsu LimitedGas discharge display panel
Classifications
U.S. Classification313/584, 315/169.1, 315/169.4
International ClassificationH01J17/49
Cooperative ClassificationH01J17/49, H01J17/492
European ClassificationH01J17/49, H01J17/49D