Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3651998 A
Publication typeGrant
Publication dateMar 28, 1972
Filing dateSep 23, 1970
Priority dateSep 23, 1970
Publication numberUS 3651998 A, US 3651998A, US-A-3651998, US3651998 A, US3651998A
InventorsRocher George
Original AssigneeMetallurg Exoproducts Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Nozzle for a pouring ladle
US 3651998 A
Abstract
A nozzle for insertion into the central opening of a nozzle seat in a pouring ladle has a stationary member and a rotatable member. The stationary member is secured within the central opening of the nozzle seat and has a closed upper surface, a central passageway and a plurality of spaced openings communicating with the central passageway. The rotatable member is positioned within the central passageway of the stationary member to define an annular gap therebetween. The rotatable member also has a plurality of spaced channels leading to a central aperture so upon rotation of the rotatable member, the openings of the stationary nozzle and the channels of the rotatable member are aligned to provide a continuous exit for liquid from the ladle. An inert gas is directed into the gap to prevent liquid metals from entering therein and also to lubricate the system.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Rocher [4 1 Mar. 28, 1972 NOZZLE FOR A POURING LADLE Primary Examiner-Stanley H. Tollherg [72] Inventor: George Rocher, Pittsburgh, Pa. :jj ':;":g 'B a :f & w bb orneye ur en, 0 mson e [73} Assignee: Metallurgical Exoproducts Corporation,

McKees Rocks, Pa. 57 ABSTRACT [22] Filed: Sept 1970 A nozzle for insertion into the central opening of a nozzle seat [2]] Appl 74,733 in a pouring ladle has a stationary member and a rotatable member. The stationary member 1s secured within the central opening of the nozzle seat and has a closed upper surface, a :Lf'il t al a ageway and a plurality of Spaced openings comn municating with the central passageway. The rotatable [5 8] gf r g g member is positioned within the central passageway of the stationary member to define an annular gap therebetween. The

rotatable member also has a plurality of spaced channels lead- [56] References Cited ing to a central aperture so upon rotation of the rotatable UNITED STATES PATENTS member, the openings of the stationary nozzle and the channels of the rotatable member are aligned to provide a continugazing-leg e: a]. g: ous exit for liquid from the ladle. An inert gas is directed into n 1 s e a new the gap to prevent liquid metals from entering therein and also to lubricate the system.

10 Claims, 6 Drawing Figures PATENTEnmm m2 SHEET 1 BF 2 INVEN TOR.

George Rocher y WWW flwwfwwb Hi5 ATTORNEYS NOZZLE FOR A POURING LADLE This invention relates to a stopper arrangement for a pouring ladle and, more particularly, to the nozzle itself.

Heretofore, the metals industry, primarily the steel industry, has employed an antiquated stopper rod assembly for opening and closing the exit passageway from a pouring ladle containing liquid metal. This stopper rod assembly, as employed heretofore, utilizes a nozzle held in place by a nozzle plate mounted to the bottom of the ladle and secured in place by a cementitious refractory rammed between the nozzle and the well area in the bottom of the ladle. A long refractorywrapped steel rod called a stop rod vertically extends within the ladle and is connected to a cross member called a gooseneck above the top of the ladle. The bottom of the stopper rod has a refractory nozzle head mounted thereon to cooperate with the nozzle to open and close the nozzle opening. A cumbersome hydraulic cylinder arrangement is positioned on the outside of the ladle and is connected to the gooseneck to raise and lower it, thus serving as the control for opening and closing the nozzle.

Not only is the above-described system cumbersome, but after every pour a crew of men must climb into the ladle after it is cooled to reset the next nozzle. In addition, many numerous problems result from attempting to maintain the long stopper rod in proper position so that the nozzle head fits snugly into the nozzle central opening. Any form of misalignment causes improper shut-offs and leaky pours.

With the advent of continuous casting which employs an intermediate ladle called a tundish, the requirements for precise pouring control has increased, thereby increasing the need for improved stopper assemblies.

My invention eliminates the stopper rod assembly as known heretofore, thereby eliminating the inherent problems associated with it. Further, my invention can be substantially preassembled thereby avoiding many of the time-consuming, nozzle setting efforts required in the past. Since my invention employs a gap between coacting members, normal expansion and contraction is easily accommodated. Because the control of my nozzle is direct, all the many problems associated with indirect control are eliminated thereby permitting a better feel on the part of the operator to provide a more accurate and efficient shut off.

My invention is a nozzle which comprises a stationary and a rotatable member. The stationary member is secured within the bottom opening of the ladle, that is, in the well or nozzle seat. The stationary member has a closed upper surface and a series of openings leading to a central passageway. The rotatable member is positioned within the stationary member to form a gap therebetween. The rotatable member also has a plurality of channels leading to a central aperture so that rotation thereofpermits alignment of the openings and channels to exit the liquid metal from the ladle. An inert gas is directed into the gap to lubricate the system and to prevent metal from entering therein.

In the accompanying drawings, 1 have shown the presently preferred embodiments of my invention in which:

FIG. 1 is a vertical section through my nozzle, showing the nozzle in the open position;

FIG. 2 is a section taken along line llll ofFlG. 1;

FIG. 3 is a break away section showing the nozzle in closed position;

FIG. 4 is a section taken along line lV-lV ofFlG. 3;

FIG. Sis a section taken along line V-V of FIG. 1; and

FIG. 6 is a vertical section showing a modified gap arrangement.

My nozzle, generally designated 10, is employed with a variety of types of ladles which contain molten metal. It will be recognized by those skilled in the art that this includes, but is not limited to pouring ladles, transfer ladles, tundishes and, in general, any form of ladle wherein a liquid metal is contained therein for purposes of pouring and exiting therefrom. My nozzle 10 is secured in the bottom of the ladle in a nozzle seat 11. This nozzle seat 11 is a refractory which has a central opening and which is secured in the bottom well of the ladle and is held in place by cementitious material as well as a nozzle plate affixed to the bottom of the ladle and not shown.

My nozzle 10 includes a stationary member 12 and a rotatable member 14, see FIG. 1. The stationary member 12 is secured within the opening of the nozzle seat 11 and is held in place by a cementitious material 13 between the stationary member 12 and the nozzle seat 11. it will be recognized that the nozzle plate (not shown) can also be employed to aid in the securement and the holding of the stationary member 12 within the central opening of the nozzle seat 1 1.

The stationary member 12 is annular and has a central passageway 15 extending from a closed, dome-shaped upper surface 16 downward therethrough. A plurality of spaced openings 17 extend through the stationary member 12 and communicate with the central passageway 15. l have shown four such openings 17 in the particular embodiments depicted in the figures, but it will be recognized that more or less openings can be employed. These openings 17 are positioned just above the nozzle seat 11, within the interior of the ladle and are inclined downward into the central passageway 15.

The stationary member extends down through the opening of the nozzle seat 11 and below the bottom of the ladle, not shown. As will be explained in detail hereinafter, the stationary member 12 may be a single component or may be two separate components integrally connected.

The rotatable member 14 is also annular and is positioned within the central passageway 15 of the stationary member 12. The cross section of the rotatable member 14 is slightly smaller than the cross section of the central passageway 15 so that a narrow gap 18 is defined by the outer surface of the rotatable member 14 and the surface of the stationary member 12 which defines the central passageway 15. The rotatable member 14 also has a central aperture 19 which extends vertically completely therethrough.

The rotatable member 14 has a plurality of channels 20 leading through the rotatable member 14 into the central aperture 19. The number of channels 20 will be the same as the number of openings 17 in the stationary member since, as will be described hereinafter, the channels 20 are aligned with the openings 17 by rotation of the rotatable member 14 to permit exit of the liquid from the ladle through and out of the central aperture 19, see FlG. 2. The channels 20 are also inclined to form a continuous axial alignment with the openings 17.

The rotatable member 14 is maintained within the central passageway 15 of the stationary member 12 by a bottom plate 21 of appropriate material such as steel which is secured to the bottom of stationary member 12 by standard fastener means 22. A biasing means such as spring 23 is positioned between the bottom plate 21 and the rotatable member 14 to urge the rotatable member 14 upward toward the inner surface of domed surface 16 to maintain the appropriate axial alignment of the openings 17 and channels 20. A shown in F 1G. 1, the springs 23 are positioned in a cutaway portion of rotatable member 14, although this could easily be a bottom recess or other similar type arrangement in rotatable member 14. It is important that the springs 23 are maintained apart from any molten metal and, therefore, the springs must be displaced from the area of the central aperture 19.

The gap 18 extends from at least the aligned openings 17 and channels 20 downward to a point below the bottom of the ladle. The gap 18 terminates at a packing material 24 such as asbestos which is between the stationary member 12 and the rotatable member 14 to completely seal off the bottom of the gap 18 to prevent any leakage therefrom. A duct 25 extends through the stationary member 12 into the bottom area of the gap 18. Duct 25 has an internally threaded inlet connection 26 to permit a standard hose connection to be made thereto. An inert gas such as argon is directed through duct 25 into gap 18 to lubricate the system and prevent liquid metal from entering the gap. The inert gas then bubbles through the molten metal and acts as a purge which will improve the internal characteristics of the final product. The inert gas is prevented from escaping from the bottom of the gap 18 by the packing material 24.

The portion of the stationary nozzle member 12 below the packing material 24 can be a continuous extension of a single component or can be a separate integrally connected com-' ponent 27, as shown in FIG. 1 wherein annular connecting ring 30 threadably engages the upper component 12 and the lower component 27 to form the integral connection. In either event, the lower portion of stationary member 12 contains a horizontal slot 28 of sufficient length to permit a lever 29 to be inserted therethrough and into threadable engagement with a suitable recessed receiving means in rotatable member 14 to permit rotation thereof to open and close the alignment of channels 20 with openings 17, see FIG. 5.

The operation of my nozzle is as follows. While the ladle is being filled with molten metal, the rotatable member 14 is in position with respect to the stationary member 12 so that the channels 20 are not aligned with the openings 17, see FIGS. 3 and 4. The inert gas such as argon is directed into gap 18 and out through openings 17 into the molten metal to create a purge thereof. When it is desired to pour the molten metal, the lever 29 is turned until the channels 20 are in alignment with the openings 17, see FIGS. 1 and 2, thereby permitting the molten metal to exit from the ladle through the central aperture I9 of rotatable nozzle member 14. It can be seen that since the lever contact is direct to the rotatable member 14, exacting control of the pouring stream can be maintained. It will be recognized that various mechanized means may be employed to rotate the rotatable member 14 instead of lever 29 which is intended for manual operation.

Because of the necessity of maintaining a continuous high pressure flow of inert gas in the gap 18, the gap may be modified in the vicinity of the openings 17. Such an arrangement is shown in FIG. 6 in which like parts to earlier described components are similarly numbered, but are followed by a prime. The surfaces 30 and 31 of stationary member 12' and rotatable member 14, respectively, which define the gap 18' are recessed so that the major portion of 18 has an enlarged cross section as compared to the cross section of 18' in the vicinity of the openings 20' and channels 17'. In other words, this decrease in cross section causes restricted flow thereby increasing the pressure to keep the molten metal from entering gap 18'. It should be noted that in FIG. 6 the stationary member 12 is shown as one continuous component above and below the packing 24 which is positioned immediately below gap 18'.

While I have shown and described preferred embodiments of my invention, it may be otherwise embodied within the scope of the appended claims.

lclaim:

l. A nozzle for insertion into the central opening of a nozzle seat in a pouring ladle comprising:

A. a stationary nozzle member secured within the central opening of the nozzle seat and having a closed upper surface, a central passageway extending downward from said closed upper surface, a plurality of spaced openings therethrough, said openings positioned adjacent the closed upper surface and communicating with the central passageway and a duct therethrough positioned substantially below the spaced opening and also communicating with the central passageway;

a rotatable nozzle member positioned within said central passageway and extending downward from above said plurality of spaced openings to define an annular gap between said stationary and rotatable nozzle members, said gap extending from said plurality of spaced openings at least to said duct, said rotatable nozzle member having a central aperture therethrough and a plurality of spaced channels adapted upon rotation of said rotatable nozzle member to align with the openings of said stationary nozzle member to provide a continuous exit for liquid from the ladle out of the central aperture; and C. means secured to said rotatable nozzle member to permit rotation thereof. 2. The nozzle of claim 1 wherein the plurality of spaced openings and the plurality of spaced channels are inclined downwardly into the central passageway and central aperture, respectively.

3. The nozzle of claim 1 wherein packing means are positioned between the rotatable nozzle member and the stationary nozzle member at the bottommost portion of said gap.

4. The nozzle of claim 1 wherein biasing means are positioned at the bottom of said rotatable nozzle member to urge said rotatable member upward.

5. The nozzle of claim I wherein the surface of the stationary and rotatable nozzle members which define said gap are recessed respectively to form a gap of relatively large cross section substantially along the gaps length and terminating at the gap's upper end in a restricted gap of relatively small cross section.

6. The nozzle of claim 1 wherein said rotation permit means is a lever threadably secured to said rotatable nozzle and extending through a slot in said stationary nozzle.

7. The nozzle of claim 2 wherein said plurality of inclined openings comprises four equally oriented and spaced openings and said plurality of inclined channels comprises four equally oriented and spaced channels.

8. The nozzle of claim 3 wherein said stationary nozzle member includes two separate components and a connecting means integrally connecting said components, the stationary nozzle member above the packing being the first component and the stationary nozzle member below the packing being the second component, said spaced openings and duct being in the first component and said means to rotate extending through a slot in said second component.

9. The nozzle of claim 4 wherein an annular bottom plate is secured to the bottom of the stationary nozzle member to act as the bottom support for said biasing means.

10. In combination with a pouring ladle, a stopper assembly comprising:

A. a nozzle seat positioned in the exit hole of the pouring ladle and having a central opening therethrough;

B. a stationary nozzle member secured within the central opening of the noule seat and having a closed upper surface, a central passageway extending downward from said closed upper surface, a plurality of spaced openings therethrough adjacent said closed upper surface and communicating with the central passageway and a duct therethrough positioned substantially below the spaced opening and also communicating with the central passageway;

C. a rotatable nozzle member positioned within said central passageway and extending downward from above said plurality of spaced openings to define an annular gap between said stationary and rotatable nozzle members, said gap extending from said plurality of spaced openings at least to said duct, said rotatable nozzle member having a central aperture therethrough and a plurality of spaced channels adapted upon rotation of said rotatable nozzle member to axially align with the openings of said stationary nozzle member to provide a continuous exit for liquid from the ladle out of the central aperture;

D. a packing means positioned between the rotatable nozzle member and the stationary nozzle member at the bottommost position of said gap;

E. a biasing means positioned at the bottom of said rotatable nozzle member to urge said rotatable member upward; and

F. means secured to said rotatable nozzle member to permit rotation thereof.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2698630 *Apr 19, 1951Jan 4, 1955Gen Motors CorpValve
US3253307 *Mar 19, 1964May 31, 1966United States Steel CorpMethod and apparatus for regulating molten metal teeming rates
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3887117 *Apr 19, 1974Jun 3, 1975Didier Werke AgSlide closure plates and method for preventing melt penetration
US4588112 *Feb 6, 1984May 13, 1986Akechi Ceramics Kabushiki KaishaNozzle for continuous casting
US4728012 *Mar 19, 1986Mar 1, 1988British Steel CorporationOutlet valves for melt containing vessels
US4756452 *Oct 23, 1987Jul 12, 1988Shinagawa Refractories Co., Ltd.Molten metal pouring nozzle
US4840295 *Sep 19, 1988Jun 20, 1989Foseco International LimitedRotary pouring nozzle for a vessel for holding molten metal
US4913324 *Aug 3, 1988Apr 3, 1990Didier-Werke AgRotary valve for a metallurgical vessel and rotor and stator therefor
US4923225 *Sep 27, 1988May 8, 1990Didier-Werke AgAssembly for connecting a metal member to a ceramic refractory member
US4932570 *Mar 20, 1989Jun 12, 1990Didier-Werke AgRotary and/or slide valve for a metallurgical vessel
US4949886 *Sep 19, 1988Aug 21, 1990Didier-Werke AgHorizontal or vertical rotary valve for a metallurgical vessel
US5037017 *Oct 13, 1989Aug 6, 1991Didier-Werke AgHorizontal or vertical rotary valve for a metallurgical vessel
US5058784 *Oct 17, 1990Oct 22, 1991Didier-Werke AgClosing and/or regulating apparatus for tapping molten metal from a metallurgical vessel
US5080265 *Oct 17, 1990Jan 14, 1992Didier-Werke AgApparatus for closing and/or regulating the tapping of molten metal
US5083688 *Dec 21, 1989Jan 28, 1992Didier-Werke AgRotary valve for a metallurgical vessel and rotor and stator therefor
US5085344 *Nov 27, 1990Feb 4, 1992Didier-Werke AgApparatus for closing and/or regulating the discharge or tapping of molten metal
US5106060 *Aug 15, 1991Apr 21, 1992Didier-Werke AgComponents for forming a closing and/or regulating apparatus for tapping molten metal from a metallurgical vessel
US5106106 *Dec 21, 1990Apr 21, 1992Didier-Werke AgSealing structure for use in guiding molten metal from a metallurgical vessel and a seal thereof
US5121860 *Mar 7, 1991Jun 16, 1992Didier-Werke AgShut-off and control valve for use in continuous casting of a thin strip or slab
US5127557 *May 29, 1991Jul 7, 1992Didier-Werke AgShut-off and control valve for use in continuous casting of a thin strip or slab
US5161718 *Apr 11, 1991Nov 10, 1992L'orealAssembly for dispensing at least one liquid product or a product in the form of a cream
US5173242 *Jul 30, 1991Dec 22, 1992Didier-Werke AgMeans and method for forming a sealed connection
US5223157 *Apr 11, 1990Jun 29, 1993Didier-Werke AgRegulating device for regulating the flow of molten metal from a metallurgical vessel
US5230813 *Dec 11, 1991Jul 27, 1993Didier-Werke AgStator and rotor members for use in apparatus for closing and/or regulating the discharge or tapping of molten metal
US5325999 *Sep 17, 1993Jul 5, 1994L'orealAssembly for dispensing at least one liquid product or a product in the form of a cream
US5330162 *May 25, 1993Jul 19, 1994Meichuseiki Kabushiki KaishaDipping and pouring apparatus for molten metal
US5356035 *Feb 3, 1992Oct 18, 1994Cyrk, Inc.Ornamented candy dispenser
US5382003 *Oct 14, 1993Jan 17, 1995Sankaranarayanan; RamaniFlow control device for the suppression of vortices
US5603859 *Jan 14, 1992Feb 18, 1997Foseco International LimitedVessel outlet
US8501085Aug 9, 2010Aug 6, 2013Rolls Royce CorporationSystem, method, and apparatus for pouring casting material in an investment cast
DE3725637A1 *Aug 3, 1987Feb 23, 1989Didier Werke AgRotational locking device for tapping hole of vessel
DE3725637C2 *Aug 3, 1987Feb 1, 1990Didier-Werke Ag, 6200 Wiesbaden, DeTitle not available
DE3731600A1 *Sep 19, 1987Apr 6, 1989Didier Werke AgDrehschiebeverschluss fuer ein metallurigsches gefaess sowie rotor und/oder stator fuer einen solchen drehverschluss
DE3744883C2 *Sep 19, 1987Jul 9, 1992Didier-Werke Ag, 6200 Wiesbaden, DeRotary slide valve
DE3805070A1 *Feb 18, 1988Aug 31, 1989Didier Werke AgRotary gate for a metallurgical vessel and a rotor and stator for a rotary gate of this kind
DE3809071A1 *Mar 18, 1988Sep 28, 1989Didier Werke AgDreh- und/oder schieberverschluss fuer einen ausguss eines metallschmelze enthaltenden gefaesses, sowie verschlussteile fuer einen solchen verschluss
DE3809072A1 *Mar 18, 1988Sep 28, 1989Didier Werke AgDreh- und/oder schieberverschluss und dessen verschlussteile
DE3819784A1 *Jun 10, 1988Dec 21, 1989Didier Werke AgRotary gate for a metallurgical vessel and a rotor and stator for a rotary gate of this kind
DE3926249A1 *Aug 9, 1989Apr 5, 1990Stopinc AgFeuerfeste stator/rotor-einheit fuer einen verschluss am ausguss eines metallschmelze enthaltenden behaelters
EP0310296A2 *Sep 22, 1988Apr 5, 1989Foseco International LimitedRotary pouring nozzle for a vessel for holding molten metal
EP0332867A1 *Feb 16, 1989Sep 20, 1989Didier-Werke AgTurning and/or sliding lock and its locking parts
EP0356618A1 *Apr 26, 1989Mar 7, 1990Didier-Werke AgShut-off and/or control element for tapping molten metal melts from a metallurgical container
EP0361052A2 *Aug 16, 1989Apr 4, 1990Stopinc AktiengesellschaftRefractory stator-rotor unit for a nozzle gate in a vessel holding molten metal
EP0423449A2 *Aug 9, 1990Apr 24, 1991Didier-Werke AgShut-off and/or control element for a metallurgical container
EP0474863A1 *Jun 1, 1989Mar 18, 1992Shinagawa Refractories Co., Ltd.Apparatus for controlling flow rate of molten metal
WO2011019664A1 *Aug 9, 2010Feb 17, 2011Rolls-Royce CorporationSystem, method, and apparatus for pouring casting material in an investment cast
Classifications
U.S. Classification222/598, 251/352, 222/548, 222/603
International ClassificationB22D41/42, B22D41/22, B22D41/14
Cooperative ClassificationB22D41/14, B22D41/42
European ClassificationB22D41/42, B22D41/14