US3653385A - Production of focal brain lesions by inductive heating - Google Patents

Production of focal brain lesions by inductive heating Download PDF

Info

Publication number
US3653385A
US3653385A US82366A US3653385DA US3653385A US 3653385 A US3653385 A US 3653385A US 82366 A US82366 A US 82366A US 3653385D A US3653385D A US 3653385DA US 3653385 A US3653385 A US 3653385A
Authority
US
United States
Prior art keywords
alloy
heating
brain
electroseed
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US82366A
Inventor
Charles Burton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3653385A publication Critical patent/US3653385A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • A61N1/406Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia using implantable thermoseeds or injected particles for localized hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants

Definitions

  • ABSTRACT A metallic pellet or seed is physically implanted into the brain in a position where a brain lesion is to be produced.
  • the seed is composed of a metallic alloy of predetermined composition capable of being inductively heated by radio frequency energy.
  • the composition of the alloy the seed reaches but does not exceed a predetermined temperature, and the desired size and degree of lesion is controlled as a function of time during which the radio frequency field is in operation.
  • Induction heating is a well-established industrial method which permits the rapid and clean through-heating, melting, or precise surface hardening of metals by an external alternating electromagnetic field. This field induces currents in the metal eddy which are opposed by the resistance of the metal, resulting in the generation of internal heat.
  • a second effect adding to the dissipation of energy as heat is the induction of hysteresis loops for the alternation of the magnetic poles within the metal. No physical contact between the source of electromagnetic energy and the metal is required.
  • the implanted metal can be heated at a frequency and power level innocuous to the body and brain tissue.
  • the heating can be accomplished in increments over a period of time, as required to achieve the desired lesion.
  • a typical utilization of the known art involves the use of an industrial induction generator operating in the 300-400kc/s range with a plate power input of up to 23kw is modified for medical application, to include an elliptical single-turn onefourth inch by one-half inch water-cooled copper coil, so that human heads can be accommodated.
  • the induction coil current flow is approximately 500 amperes. Insulation of the coil is required to prevent radio frequency burns, and a suitable plastic resin compound is utilized for this purpose and applied in dip coats.
  • the efficiency of the system approximates 60 percent, owing to a relatively efficient coupling".
  • the efficiency of the system ranges from 0.1 percent to 0.001 percent because of the small mass of the implant and its distance from the coil.
  • the unique properties of induction heating apply.
  • One of these properties is the skin-effect phenomenon where the current flow and heating are concentrated near the surface of the metal and fall off exponentially toward the center. This skin-effect is enhanced at higher frequencies. In a 300-400 kc/s range, an intense, fast, and localized heat pattern can be produced. This frequency, at the power level used, is innocuous to living tissue. In the evaluation of lesions in over 200 experimental animals and 12 human beings, there has been no observable effect of the RF induction field on anything other than the implant.
  • the ideal metallic implant which can be termed an electroseed, must be composed of a material that will beat well, but neither react nor cause reaction in brain tissue, and be of suitable size and shape for surgical implantation. It is known that some intracerebral missile fragments tend to migrate through the brain over a period of time, but in the case of electroseeds, this behavior does not occur. Unheated electroseeds have been observed to remain in position after follow-up periods as long as two years. After the production of a lesion, pathologic examination reveals that the electroseeds are quite anchored by surrounding thermo-coagulated protein.
  • Subcortical implantation is a simple surgical procedure which is usually perfonned under local anesthesia through a small twist drill hole in the skull.
  • a No. 14 gauge needle is guided freehand or by stereotaxis to the target area.
  • the needle stylet extends beyond the distal end of the needle so that when it is withdrawn, a tissue defect is created. Needle position is verified by polaroid X-ray films or by a fluoroscopic image intensification unit. Air may be injected into the ventricular system to serve as a point of reference.
  • the electroseed is then dropped into the needle and extended from the distal end thereof into the preformed tissue defect.
  • the electroseed is implanted by extrusion through a needle, it requires a cylindrical or spherical configuration.
  • solid cylinders with length-to-diameter ratios greater than unity heat more rapidly than spheres, hollow cylinders, or cylinders composed of rolled foil.
  • electroseed parameters related to maximal heating in a radio frequency induction field the fundamental assumption was made that an electroseed heating in air would bear a constant relationship to one heating in-vivo.
  • electroseeds Prior to clinical experimentation on human beings, electroseeds have been tested in dummy heads constructed of plastic and filled with gelatin. Heating of the implanted seeds is accomplished by placing the head within the RF-induction coil.
  • the heat produced by the electroseed over a given period of time is not only a function of the radio frequency energy supplied and the amount of time over which the energy is supplied, but also a function of how long the seed is heated for a given exposure.
  • Type-430 stainless steel has been the material used in the past, being the most satisfactory material known. However, it continues to heat with increased power to approximately 2,000 F. in air. The ideal temperature for producing coagulation varies between 150 to 200 F. Since the degree of coupling between the radio frequency generator and the thermoseed is less than 1 percent, it will be readily appreciated that controlling the heat ofthe thermoseed by regulating power supplied by the radio frequency generator is extremely difficult to do in practice.
  • thermoseed which will heat only to the desired range in a surplus of radio frequency energy supplied.
  • Another object of the invention lies in the provision of an improved thermoseed of the class described which will possess all of the advantages of known stainless steel thermoseeds, and which may be fabricated using known techniques.
  • a further object of the invention lies in the provision of an improved thermoseed of the class described formed from alloys having a predetermined Curie point within the desired range for effecting coagulation.
  • FIG. 1 is a graph showing the heating with time of electroseeds formed from various alloys in air in the presence of excess radio frequency power.
  • FIG. 2 is a graph showing the heating of type 430 stainless steel in albumin.
  • FIG. 3 is a similar graph showing the heating of type 430 stainless steel in rat cortex.
  • FIG. 4 is a similar graph showing the heating of type 430 stainless steel in cat cortex with normal blood flow.
  • FIG. 5 is a graph showing the heating of a palladium nickel alloy in albumin.
  • FIG. 6 is a similar graph showing the heating of the same alloy in rat cortex with no blood flow.
  • FIG. 7 is a similar graph showing the same palladium-nickel alloy heated in cat cortex with normal blood flow.
  • FIG. 8 is a similar graph showing the heating of a copper nickel alloy in albumin.
  • FIG. 9 is a similar graph showing the heating of a nickelchromium alloy in albumin.
  • FIG. 10 is a similar graph showing the heating of a nickeliron alloy in albumin.
  • FIG. 11 is a similar graph showing a slightly different nickeliron alloy heated in albumin.
  • Type 430 stainless steel the most widely used of the known materials in the art, heats almost instantaneously to 800 F., and within a minute reaches l,500 in albumin, a protein material. Using the same material in rat cortex and cat cortex, heats as high as l,900 are obtained within 3 minutes.
  • FIG. 5 illustrates a similar experiment substituting a thermoseed formed of an alloy consisting of by weight 78.7 percent palladium, and the remainder nickel.
  • a thermoseed formed of an alloy consisting of by weight 78.7 percent palladium, and the remainder nickel.
  • thermoseed of this alloy in FIG. 6, results in a substantially constant Curie temperature of 206 F., a very usable value.
  • FIG. 8 illustrates the heating of a copper-nickel alloy thermoseed, the copper forming 25.8 percent by weight of the alloy. It will be observed that heating in this case to the Curie point requires 3 minutes, and a maximum of approximately 290 is reached at that point. However, because of the lack of flatness in the heating curve, this alloy is less desirable than other alloys described herein.
  • FIG. 9 illustrates a nickel-chromium alloy, in which nickel comprises 93.75 percent by weight of the alloy.
  • the albumin test reveals that the thermocoagulation temperature is reached after approximately 1 minute, and the temperature continues to rise relatively slowly thereafter until approximately 10 minutes, at which point the temperature exhibits a marked drop.
  • FIG. 10 illustrates a nickel-iron alloy, nickel comprising 31.12 percent by weight of the alloy. Coagulation temperature is reached in approximately 30 seconds, and maximum temperature is approximately 300, again in albumin, a sharp drop again being exhibited after 5 minutes.
  • FIG. 11 illustrates a slightly modified nickel-iron alloy, in which the nickel comprises 31.08 percent by weight.
  • thermocoagulation temperature in albumin is reached almost instantaneously, and maximum temperature of approximately 330 is reached after 9 minutes.
  • the rise in temperature is erratic, exhibiting heat loss between 3 and 4 minutes, and between 6 and 8 minutes over somewhat similar patterns.
  • the pattern of heating of the alloys illustrated in FIGS. 8 through 111, inclusive may be reasonably expected to be duplicated at substantially lower temperatures in cortex, with reasonable utility from the standpoint of obtaining relatively flat portions ofcurves in the desired thermocoagulation temperature range.
  • the temperature of the thermoseed maintained at a useable level, the control of the formation of the lesion is more closely regulated to the exposure time within the RF field, a value which can be simply determined by stop-watch, and controlled by interrupting the flow of current to the RF generator.
  • the RF generator may be allowed to supply an excess of power to the thermoseed, and the presumption is made that the thermoseed will very quickly be operating at its Curie point.
  • thermoseed in albumin maintained at 30 C. (78.75 F.)
  • a very close approximation can be made of its behavior in brain cortex with normal blood flow. This may be conveniently done by immersing a basin containing the albumin in a temperature controlled bath. Comparing FIGS. 5, 6 and 7 in the drawing, using a palladium-nickel alloy, it will be observed that the Curie point in albumin is approximately 238 F, The Curie point in rat cortex with no blood flow is 206 F and in cat cortex with normal blood flow is 203 F. Thus, the actual difference is approximately 30 F., which can be taken into account insofar as the predicted Curie temperature in brain cortex with normal blood flow is concerned. This relationship has been firmly established in multiple experiments and designates the albumin standard as a basis for accurate detennination of thermoseed heating in brain tissue.
  • thermoseed In the method of producing a lesion in living brain tissue by inserting a thermoseed into the tissue in the area where the lesion is required, and subjecting said thermoseed to an externally produced radio frequency field, the improvement comprising: implanting in living brain tissue an electroseed formed of a metallic alloy having a physiologic Curie point of approximately 238 F. as measured in an albumin standard solution, and utilizing this implant .to produce coagulative lesions in brain tissue in a temperature range of 1 10 through 212 F.
  • a brain implant for producing coagulative lesions composed of a metallic alloy, said alloy comprising at least 18 percent nickel by weight and the balance selected from the group consisting of chromium, palladium iron and copper and having a Curie point in air between 250 and 300 F.
  • a brain implant in accordance with claim 2 composed of an alloy comprising 18 to 24 percent by weight of nickel.
  • An electroseed in accordance with claim 2 composed of an alloy consisting of approximately 78.7 percent palladium by weight, and the balance nickel.

Abstract

A metallic pellet or seed is physically implanted into the brain in a position where a brain lesion is to be produced. The seed is composed of a metallic alloy of predetermined composition capable of being inductively heated by radio frequency energy. By virtue of the composition of the alloy, the seed reaches but does not exceed a predetermined temperature, and the desired size and degree of lesion is controlled as a function of time during which the radio frequency field is in operation.

Description

IJnited States Patent Burton 51 Apr.4,1972
[54] PRODUCTION OF FOCAL BRAIN LESIONS BY INDUCTIVE HEATING 2! Appl. No; 82,366
[52] U.S. Cl... ..l28/303.17, 128/1 [51] Int. Cl ..A6lb l7/36, A6ln 3/00 [58] FieldofSearch ..128/l R, 1.2, 1.3,303.1,303.12,
Seeliger et al ..128/303. 1 7 X Bagley ..l28/303.17
Primary Examiner-Channing L. Pace Attorney-Charles E. Temko [5 7] ABSTRACT A metallic pellet or seed is physically implanted into the brain in a position where a brain lesion is to be produced. The seed is composed of a metallic alloy of predetermined composition capable of being inductively heated by radio frequency energy. By virtue of the composition of the alloy, the seed reaches but does not exceed a predetermined temperature, and the desired size and degree of lesion is controlled as a function of time during which the radio frequency field is in operation.
[56] References Cited 4 Claims, 11 Drawing Figures v UNITED STATES PATENTS 2,888,928 6/1959 Seiger ..128/303.l7
DD-Nl IN CAT OOQTE X PD'78.7 /o C -lO345, CENTER NOQ MAL BLOOD FLOW 6lOKl-lz 8 5 9 0 DOW E R 24 0 F MINUTES Patented C Sheets-Sheet l R THERMOCOAGULATION 430 STAINLESS STEEL IN ALBUMIN MINUTES 430 STAINLESS STEEL IN CAT COQTEX 6IOKHz NORMAL BLOOD FLOW 040345, CENTER 85 /0 DOWEQ 40o CU-Nl l600F pD-Nl Nl-FE (3|.I2) Nl-FE (3!.08)
NI 300 cm I2 00 IN AIR GIOK Hz, 85 POWED C'IO345/ CENTER 200 8 00 O 4O 60 so I00 I20 I I "30200220240 260 250 O SECONDS I600F |54O 800 430 STAINLESS STEEL IN RAT CORTEX 800 NO BLOOD FLOW 040345, CENTER 6IO KHz %POWED 400 MINUTES l 2 MINUTES Patented A ril 4, 1972 3,653,385
3 Sheets-Sheet 2 320F PD-Nl IN ALBUMIN PD-78.7 /o 25C-73.4F DD-Nl IN CAT OOQTEX PD'78.7 /o c|O34-5,CENTER v NOR MAL BLOOD FLOW 610ml 85 /0 DOWEF 24o 240F THERMOCOAGU- 203"F LATION MINUTES MINUTES PD-N| IN RAT CODTEX NO BLOOD FLOW D-78 .7 /o c-l0345, CENTER 6IO KHz 85 /O POWEQ PRODUCTION OF FOCAL BRAIN LESIONS BY INDUCTIVE HEATING This invention relates generally to the known art of radio frequency thermo-coagulation of human tissue, and more particularly to improved means and methods of thermo-coagulative neurosurgery.
BACKGROUND OF THE INVENTION With the advent of modern neurosurgery, the surgeon has gained access to the depths of the brain. In the past few decades, a great effort has been expended in the attempt to find a safe and effective means for producing controllable subcortical lesions. The need for this is as great as the spectrum of disease potentially amendable to such therapy. Such conditions include movement disorders, of which Parkinson's Disease is an example, intractable pain, focal epilepsy, various vascular malformations, and certain cancers, such as those arising from the breast and prostate, where palliation may be achieved by hypophysectomy.
Many imaginative lesion-producing techniques have been developed, but so far none has been entirely satisfactory. Most of the systems developed have necessitated physical connections from an external energy source to a probe or electrode, which could not remain in place over a period of time without the risk of infection. The major disadvantage of other systems, such as proton beam radiation, focused ultrasonics, lies in their destruction of normal brain tissue as well as that in the target area.
Induction heating is a well-established industrial method which permits the rapid and clean through-heating, melting, or precise surface hardening of metals by an external alternating electromagnetic field. This field induces currents in the metal eddy which are opposed by the resistance of the metal, resulting in the generation of internal heat. A second effect adding to the dissipation of energy as heat is the induction of hysteresis loops for the alternation of the magnetic poles within the metal. No physical contact between the source of electromagnetic energy and the metal is required.
In the present state of the art, it is known that if a small piece of appropriate metal is implanted into the brain, and the head then introduced into an electromagnetic induction field of radio frequency, the implanted metal can be heated at a frequency and power level innocuous to the body and brain tissue. In addition, it is known that the heating can be accomplished in increments over a period of time, as required to achieve the desired lesion.
A typical utilization of the known art involves the use of an industrial induction generator operating in the 300-400kc/s range with a plate power input of up to 23kw is modified for medical application, to include an elliptical single-turn onefourth inch by one-half inch water-cooled copper coil, so that human heads can be accommodated. The induction coil current flow is approximately 500 amperes. Insulation of the coil is required to prevent radio frequency burns, and a suitable plastic resin compound is utilized for this purpose and applied in dip coats.
In the industrial use of induction heating, in which the mass of metal is large and lies in close approximation to the coil, the efficiency of the system approximates 60 percent, owing to a relatively efficient coupling". In neurosurgical applications, the efficiency of the system ranges from 0.1 percent to 0.001 percent because of the small mass of the implant and its distance from the coil.
When an alternating current is induced in metal, the unique properties of induction heating apply. One of these properties is the skin-effect phenomenon where the current flow and heating are concentrated near the surface of the metal and fall off exponentially toward the center. This skin-effect is enhanced at higher frequencies. In a 300-400 kc/s range, an intense, fast, and localized heat pattern can be produced. This frequency, at the power level used, is innocuous to living tissue. In the evaluation of lesions in over 200 experimental animals and 12 human beings, there has been no observable effect of the RF induction field on anything other than the implant.
The ideal metallic implant, which can be termed an electroseed, must be composed of a material that will beat well, but neither react nor cause reaction in brain tissue, and be of suitable size and shape for surgical implantation. It is known that some intracerebral missile fragments tend to migrate through the brain over a period of time, but in the case of electroseeds, this behavior does not occur. Unheated electroseeds have been observed to remain in position after follow-up periods as long as two years. After the production of a lesion, pathologic examination reveals that the electroseeds are quite anchored by surrounding thermo-coagulated protein.
Subcortical implantation is a simple surgical procedure which is usually perfonned under local anesthesia through a small twist drill hole in the skull. A No. 14 gauge needle is guided freehand or by stereotaxis to the target area. The needle stylet extends beyond the distal end of the needle so that when it is withdrawn, a tissue defect is created. Needle position is verified by polaroid X-ray films or by a fluoroscopic image intensification unit. Air may be injected into the ventricular system to serve as a point of reference. The electroseed is then dropped into the needle and extended from the distal end thereof into the preformed tissue defect.
Following a survey of ferromagnetic metals, iron was found to be the most readily available material for an electroseed. Carbon steels have excellent heating properties, but caused too much tissue reaction. Although this reaction could be alleviated by coatings of teflon enamel or gold, the possibility remains of scratching the protective coating during the implantation. Even alloy steels with a chromium content of over 1 1 percent (stainless steels) undergo a typical rusting reaction if the oxide coat is disturbed ornot allowed to form. The most satisfactory material known in the prior art is type 430 stainless steel having a chromium content of 17 percent. Heating properties have been enhanced by pot annealing the steel at a temperature of 1,600 P. with very slow cooling. Because the electroseed is implanted by extrusion through a needle, it requires a cylindrical or spherical configuration. Experimentation has indicated that solid cylinders with length-to-diameter ratios greater than unity heat more rapidly than spheres, hollow cylinders, or cylinders composed of rolled foil.
In the determination of electroseed parameters related to maximal heating in a radio frequency induction field, the fundamental assumption was made that an electroseed heating in air would bear a constant relationship to one heating in-vivo. Prior to clinical experimentation on human beings, electroseeds have been tested in dummy heads constructed of plastic and filled with gelatin. Heating of the implanted seeds is accomplished by placing the head within the RF-induction coil.
It is known that brain neurons are quite heat sensitive, and that point of contact temperatures over 120 F. destroy the cells. It is therefore essential to produce lesions at contact temperatures high enough to destroy the neurons and coagulate protein, but not so high as to cause liquification of brain tissue. Unfortunately, it is not possible in the present state of the art to accurately predict lesion size and shape, although it is possible to gradually increase the lesion size until the desired clinical result is obtained. In this fashion, patients with intractable pain and motion disorders have been successfully treated.
Several factors influence heat production in the electroseed. Theoretical calculations indicate that the rate of heat generation in electroseeds increases with the diameter of the same under all conditions investigated. The rate of heating increases linearly with the length of the electroseed in the practical range of from 0.5 to l.0cm. There is a consistent increase in the rate of heat generation with increase in magnetic permeability of the metal comprising the electroseed. The rate of heating may increase or decrease with an increase in resistivity, depending upon the combination of other parameters, such as permeability, radius and frequency. Although one might expect that increasing hysteresis loop area would increase electroseed heating, it has been found that following pot annealing with its concomitant decreased hysteresis loop, heating is enhanced. Hysteresis heating is not as significant as that due to eddy currents.
Experimental in-air determinations of electroseed heating in regard to angular orientation of the plane of the coil and radial position in the coil, have been made. It has been determined that heating rate is maximum when the long axis of the electroseed is at an angle of 90 to the plane of the coil, and degrades rapidly to at which time heat production is nil.
BRIEF DESCRIPTION OF THE PRESENT INVENTION One of the principal problems encountered in the practice of the above described therapy is the obtaining of accurate control of the degree of and extent of the coagulation produced in tissue being treated. Since the degree of coagulation obtained is a function of the degree of heat produced by the electroseed, and the amount of time for which the heat is transmitted to the area to be coagulated, it is apparent that the electroseed ideally should be capable of maintaining a reasonably fixed temperature over a substantial period of time, once it has been initially heated from body temperature. Where this is not the case, the heat produced by the electroseed over a given period of time is not only a function of the radio frequency energy supplied and the amount of time over which the energy is supplied, but also a function of how long the seed is heated for a given exposure.
Type-430 stainless steel has been the material used in the past, being the most satisfactory material known. However, it continues to heat with increased power to approximately 2,000 F. in air. The ideal temperature for producing coagulation varies between 150 to 200 F. Since the degree of coupling between the radio frequency generator and the thermoseed is less than 1 percent, it will be readily appreciated that controlling the heat ofthe thermoseed by regulating power supplied by the radio frequency generator is extremely difficult to do in practice.
It is, therefore, among the principal objects of the present invention to provide a thermoseed which will heat only to the desired range in a surplus of radio frequency energy supplied.
Another object of the invention lies in the provision of an improved thermoseed of the class described which will possess all of the advantages of known stainless steel thermoseeds, and which may be fabricated using known techniques.
A further object of the invention lies in the provision of an improved thermoseed of the class described formed from alloys having a predetermined Curie point within the desired range for effecting coagulation.
In the drawings,
FIG. 1 is a graph showing the heating with time of electroseeds formed from various alloys in air in the presence of excess radio frequency power.
FIG. 2 is a graph showing the heating of type 430 stainless steel in albumin.
FIG. 3 is a similar graph showing the heating of type 430 stainless steel in rat cortex.
FIG. 4 is a similar graph showing the heating of type 430 stainless steel in cat cortex with normal blood flow.
FIG. 5 is a graph showing the heating of a palladium nickel alloy in albumin.
FIG. 6 is a similar graph showing the heating of the same alloy in rat cortex with no blood flow.
FIG. 7 is a similar graph showing the same palladium-nickel alloy heated in cat cortex with normal blood flow.
FIG. 8 is a similar graph showing the heating of a copper nickel alloy in albumin.
FIG. 9 is a similar graph showing the heating of a nickelchromium alloy in albumin.
FIG. 10 is a similar graph showing the heating of a nickeliron alloy in albumin.
FIG. 11 is a similar graph showing a slightly different nickeliron alloy heated in albumin.
Referring to FIG. 1 in the drawing, it will be understood that the illustrated examples are for purposes of illustration only, and not to be construed as limiting with respect to the extent of the present invention. It will be observed that when heated in air, the Curie points of each alloy are reached within a range of 60 to 200 seconds after the supply of power is initiated, and in each case is above 300 F., or far in excess of the desired operative temperature of to 200 F. Although the initial rise in temperature is relatively rapid, it will be apparent from a consideration of the graph that the total amount of heat transmitted for purposes of coagulation is much less during the first 20 seconds than during the second 20 seconds in each case. Excess operating temperature is reached in each case within the first 20 seconds. The highest temperature reached is 400 F., with the copper-nickel alloy.
This performance can be contrasted with the showings in FIGS. 2 to 4 in the drawings. Type 430 stainless steel, the most widely used of the known materials in the art, heats almost instantaneously to 800 F., and within a minute reaches l,500 in albumin, a protein material. Using the same material in rat cortex and cat cortex, heats as high as l,900 are obtained within 3 minutes.
FIG. 5 illustrates a similar experiment substituting a thermoseed formed of an alloy consisting of by weight 78.7 percent palladium, and the remainder nickel. When immersed in albumin, the Curie temperature of approximately 230 F. is reached in 20 seconds, and the temperature remains substantially constant thereafter, until 2 minutes has elapsed.
In FIG. 6, placing a thermoseed of this alloy in rat cortex with no blood flow, results in a substantially constant Curie temperature of 206 F., a very usable value.
As seen in FIG. 7, in cat cortex, with normal blood flow, a still more usable value of 203 F. is obtained.
FIG. 8 illustrates the heating of a copper-nickel alloy thermoseed, the copper forming 25.8 percent by weight of the alloy. It will be observed that heating in this case to the Curie point requires 3 minutes, and a maximum of approximately 290 is reached at that point. However, because of the lack of flatness in the heating curve, this alloy is less desirable than other alloys described herein.
FIG. 9 illustrates a nickel-chromium alloy, in which nickel comprises 93.75 percent by weight of the alloy. Here, the albumin test reveals that the thermocoagulation temperature is reached after approximately 1 minute, and the temperature continues to rise relatively slowly thereafter until approximately 10 minutes, at which point the temperature exhibits a marked drop.
FIG. 10 illustrates a nickel-iron alloy, nickel comprising 31.12 percent by weight of the alloy. Coagulation temperature is reached in approximately 30 seconds, and maximum temperature is approximately 300, again in albumin, a sharp drop again being exhibited after 5 minutes.
FIG. 11 illustrates a slightly modified nickel-iron alloy, in which the nickel comprises 31.08 percent by weight. Here thermocoagulation temperature in albumin is reached almost instantaneously, and maximum temperature of approximately 330 is reached after 9 minutes. However, the rise in temperature is erratic, exhibiting heat loss between 3 and 4 minutes, and between 6 and 8 minutes over somewhat similar patterns.
In the determination of electroseed parameters, related to maximal heating in an RF-induction field, the fundamental assumption was made that a given electroseed heating in air would bear a constant relationship to one heating in-vivo. Early comparative in-air testing was performed using a simple alcohol thermometer to record temperature. The more precise determinations of variation in heating in albumin and rat and cat cortex were performed using a 35 gauge spirally wound copper-constantan thermocouple connected to a grass model 5 polygraph with a Model 5 PSC dc preamplifier. The thermocouple itself was not heated by the RF field. Prior to clinical experimentation on human beings, electroseeds were tested in dummy heads constructed of plastic and filled with gelatin.
Thus, the pattern of heating of the alloys illustrated in FIGS. 8 through 111, inclusive, may be reasonably expected to be duplicated at substantially lower temperatures in cortex, with reasonable utility from the standpoint of obtaining relatively flat portions ofcurves in the desired thermocoagulation temperature range. With ,the temperature of the thermoseed maintained at a useable level, the control of the formation of the lesion is more closely regulated to the exposure time within the RF field, a value which can be simply determined by stop-watch, and controlled by interrupting the flow of current to the RF generator. Operating in this manner, the RF generator may be allowed to supply an excess of power to the thermoseed, and the presumption is made that the thermoseed will very quickly be operating at its Curie point.
For practical and convenient testing, I have found that operating the thermoseed in albumin maintained at 30 C. (78.75 F.), a very close approximation can be made of its behavior in brain cortex with normal blood flow. This may be conveniently done by immersing a basin containing the albumin in a temperature controlled bath. Comparing FIGS. 5, 6 and 7 in the drawing, using a palladium-nickel alloy, it will be observed that the Curie point in albumin is approximately 238 F, The Curie point in rat cortex with no blood flow is 206 F and in cat cortex with normal blood flow is 203 F. Thus, the actual difference is approximately 30 F., which can be taken into account insofar as the predicted Curie temperature in brain cortex with normal blood flow is concerned. This relationship has been firmly established in multiple experiments and designates the albumin standard as a basis for accurate detennination of thermoseed heating in brain tissue.
I wish it to be understood that I do not consider the invention limited to the precise details shown and set forth in this specification, for obvious modifications will occur to those skilled in the art to which the invention pertains.
I claim:
ll. In the method of producing a lesion in living brain tissue by inserting a thermoseed into the tissue in the area where the lesion is required, and subjecting said thermoseed to an externally produced radio frequency field, the improvement comprising: implanting in living brain tissue an electroseed formed of a metallic alloy having a physiologic Curie point of approximately 238 F. as measured in an albumin standard solution, and utilizing this implant .to produce coagulative lesions in brain tissue in a temperature range of 1 10 through 212 F.
2. As a new article of manufacture, a brain implant for producing coagulative lesions composed of a metallic alloy, said alloy comprising at least 18 percent nickel by weight and the balance selected from the group consisting of chromium, palladium iron and copper and having a Curie point in air between 250 and 300 F.
3. A brain implant in accordance with claim 2, composed of an alloy comprising 18 to 24 percent by weight of nickel.
4. An electroseed in accordance with claim 2, composed of an alloy consisting of approximately 78.7 percent palladium by weight, and the balance nickel.

Claims (4)

1. In the method of producing a lesion in living brain tissue by inserting a thermoseed into the tissue in the area where the lesion is required, and subjecting said thermoseed to an externally produced radio frequency field, the improvement comprising: implanting in living brain tissue an electroseed formed of a metallic alloy having a physiologic Curie point of approximately 238* F. as measured in an albumin standard solution, and utilizing this implant to produce coagulative lesions in brain tissue in a temperature range of 110* through 212* F.
2. As a new article of manufacture, a brain implant for producing coagulative lesions composed of a metallic alloy, said alloy comprising at least 18 percent nickel by weight and the balance selected from the group consisting of chromium, palladium iron and copper and having a Curie point in air between 250* and 300* F.
3. A brain implant in accordance with claim 2, composed of an alloy comprising 18 to 24 percent by weight of nickel.
4. An electroseed in accordance with claim 2, composed of an alloy consisting of approximately 78.7 percent palladium by weight, and the balance nickel.
US82366A 1970-10-20 1970-10-20 Production of focal brain lesions by inductive heating Expired - Lifetime US3653385A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8236670A 1970-10-20 1970-10-20

Publications (1)

Publication Number Publication Date
US3653385A true US3653385A (en) 1972-04-04

Family

ID=22170754

Family Applications (1)

Application Number Title Priority Date Filing Date
US82366A Expired - Lifetime US3653385A (en) 1970-10-20 1970-10-20 Production of focal brain lesions by inductive heating

Country Status (1)

Country Link
US (1) US3653385A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138998A (en) * 1976-08-18 1979-02-13 Rca Corporation Indicating temperature within living tissue
EP0333381A2 (en) * 1988-03-16 1989-09-20 Metcal Inc. Thermal seed for treatment of tumors
WO1989008430A1 (en) * 1988-03-11 1989-09-21 The University Of Virginia Alumni Patents Foundati Video tumor fighting system
WO1992017121A1 (en) * 1991-04-05 1992-10-15 Metcal, Inc. Instrument for cutting, coagulating and ablating tissue
US5197940A (en) * 1990-01-29 1993-03-30 Hypertherm Corp. Local application tumor treatment apparatus
US5300750A (en) * 1988-03-16 1994-04-05 Metcal, Inc. Thermal induction heater
US5429583A (en) * 1993-12-09 1995-07-04 Pegasus Medical Technologies, Inc. Cobalt palladium seeds for thermal treatment of tumors
US5779694A (en) * 1990-01-10 1998-07-14 The University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
US6306075B1 (en) * 1998-08-03 2001-10-23 John H. Shadduck Non-contact magnetoresonant implant system and techniques for periodic corneal re-shaping
US20030236518A1 (en) * 2002-05-15 2003-12-25 Marchitto Kevin S. Method and device for anastomoses
US20040122494A1 (en) * 2002-01-18 2004-06-24 Eggers Philip E. System, method and apparatus evaluating tissue temperature
US6850804B2 (en) 2002-01-18 2005-02-01 Calfacior Corporation System method and apparatus for localized heating of tissue
US20050027284A1 (en) * 2003-06-19 2005-02-03 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
WO2005107858A1 (en) 2004-04-30 2005-11-17 Advanced Neuromodulation Systems, Inc. Method of treating mood disorders and/or anxiety disorders by brain stimulation
US6993394B2 (en) 2002-01-18 2006-01-31 Calfacion Corporation System method and apparatus for localized heating of tissue
US20060212090A1 (en) * 2005-03-01 2006-09-21 Functional Neuroscience Inc. Method of treating cognitive disorders using neuromodulation
US20060212091A1 (en) * 2005-03-01 2006-09-21 Functional Neuroscience Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20090149898A1 (en) * 2007-12-07 2009-06-11 Northstar Neuroscience, Inc. Systems and Methods for Providing Targeted Neural Stimulation Therapy to Address Neurological Disorders, Including Neuropyschiatric and Neuropyschological Disorders
EP2377574A3 (en) * 2010-04-13 2011-11-30 BIOTRONIK SE & Co. KG Implant and applicator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888928A (en) * 1957-04-15 1959-06-02 Seiger Harry Wright Coagulating surgical instrument
US3058470A (en) * 1956-04-26 1962-10-16 Siemens Reiniger Werke Ag Apparatus for electrical highfrequency surgery
US3100489A (en) * 1957-09-30 1963-08-13 Medtronic Inc Cautery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058470A (en) * 1956-04-26 1962-10-16 Siemens Reiniger Werke Ag Apparatus for electrical highfrequency surgery
US2888928A (en) * 1957-04-15 1959-06-02 Seiger Harry Wright Coagulating surgical instrument
US3100489A (en) * 1957-09-30 1963-08-13 Medtronic Inc Cautery device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138998A (en) * 1976-08-18 1979-02-13 Rca Corporation Indicating temperature within living tissue
EP0434684A1 (en) * 1988-03-11 1991-07-03 Univ Virginia Video tumor fighting system.
WO1989008430A1 (en) * 1988-03-11 1989-09-21 The University Of Virginia Alumni Patents Foundati Video tumor fighting system
US4869247A (en) * 1988-03-11 1989-09-26 The University Of Virginia Alumni Patents Foundation Video tumor fighting system
EP0434684A4 (en) * 1988-03-11 1991-08-07 The University Of Virginia Alumni Patents Foundation Video tumor fighting system
US5300750A (en) * 1988-03-16 1994-04-05 Metcal, Inc. Thermal induction heater
US5133710A (en) * 1988-03-16 1992-07-28 Metcal, Inc. Thermal seed for treatment of tumors
EP0333381A2 (en) * 1988-03-16 1989-09-20 Metcal Inc. Thermal seed for treatment of tumors
EP0333381A3 (en) * 1988-03-16 1990-07-04 Metcal Inc. Thermal seed for treatment of tumors
US5779694A (en) * 1990-01-10 1998-07-14 The University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
US5197940A (en) * 1990-01-29 1993-03-30 Hypertherm Corp. Local application tumor treatment apparatus
WO1992017121A1 (en) * 1991-04-05 1992-10-15 Metcal, Inc. Instrument for cutting, coagulating and ablating tissue
US5425731A (en) * 1991-04-05 1995-06-20 Metcal, Inc. Instrument for cutting, coagulating and ablating tissue
US5429583A (en) * 1993-12-09 1995-07-04 Pegasus Medical Technologies, Inc. Cobalt palladium seeds for thermal treatment of tumors
US6306075B1 (en) * 1998-08-03 2001-10-23 John H. Shadduck Non-contact magnetoresonant implant system and techniques for periodic corneal re-shaping
US20040122494A1 (en) * 2002-01-18 2004-06-24 Eggers Philip E. System, method and apparatus evaluating tissue temperature
US6850804B2 (en) 2002-01-18 2005-02-01 Calfacior Corporation System method and apparatus for localized heating of tissue
US6993394B2 (en) 2002-01-18 2006-01-31 Calfacion Corporation System method and apparatus for localized heating of tissue
US7048756B2 (en) 2002-01-18 2006-05-23 Apasara Medical Corporation System, method and apparatus for evaluating tissue temperature
US20030236518A1 (en) * 2002-05-15 2003-12-25 Marchitto Kevin S. Method and device for anastomoses
US7588565B2 (en) * 2002-05-15 2009-09-15 Rocky Mountain Biosystems, Inc. Method and device for anastomoses
US20050027284A1 (en) * 2003-06-19 2005-02-03 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20050033379A1 (en) * 2003-06-19 2005-02-10 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US8467878B2 (en) 2003-06-19 2013-06-18 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US8190264B2 (en) 2003-06-19 2012-05-29 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20100114193A1 (en) * 2003-06-19 2010-05-06 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20070005115A1 (en) * 2003-06-19 2007-01-04 Lozano Andres M Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US7653433B2 (en) 2003-06-19 2010-01-26 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US7346395B2 (en) 2003-06-19 2008-03-18 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20060064138A1 (en) * 2004-04-30 2006-03-23 Francisco Velasco Method of treating mood disorders and/or anxiety disorders by brain stimulation
US7313442B2 (en) 2004-04-30 2007-12-25 Advanced Neuromodulation Systems, Inc. Method of treating mood disorders and/or anxiety disorders by brain stimulation
WO2005107858A1 (en) 2004-04-30 2005-11-17 Advanced Neuromodulation Systems, Inc. Method of treating mood disorders and/or anxiety disorders by brain stimulation
US20060212091A1 (en) * 2005-03-01 2006-09-21 Functional Neuroscience Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20060212090A1 (en) * 2005-03-01 2006-09-21 Functional Neuroscience Inc. Method of treating cognitive disorders using neuromodulation
US9931500B2 (en) 2005-03-01 2018-04-03 Andres M. Lozano Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20090149898A1 (en) * 2007-12-07 2009-06-11 Northstar Neuroscience, Inc. Systems and Methods for Providing Targeted Neural Stimulation Therapy to Address Neurological Disorders, Including Neuropyschiatric and Neuropyschological Disorders
US8538537B2 (en) 2007-12-07 2013-09-17 Advanced Neuromodulations Systems, Inc. Systems and methods for providing targeted neural stimulation therapy to address neurological disorders, including neuropyschiatric and neuropyschological disorders
EP2377574A3 (en) * 2010-04-13 2011-11-30 BIOTRONIK SE & Co. KG Implant and applicator
US9462962B2 (en) 2010-04-13 2016-10-11 Biotronik Se & Co. Kg Implant and applicator

Similar Documents

Publication Publication Date Title
US3653385A (en) Production of focal brain lesions by inductive heating
Brezovich et al. Local hyperthermia with interstitial techniques
Roth et al. The heating of metal electrodes during rapid-rate magnetic stimulation: a possible safety hazard
Zervas et al. Pathological characteristics of experimental thermal lesions: comparison of induction heating and radiofrequency electrocoagulation
Kobayashi et al. Magnetic induction hyperthermia for brain tumor using ferromagnetic implant with low curie temperature: I. Experimental study
WO1995015786A1 (en) Cobalt palladium seeds for thermal treatment of tumors
WO2003059447A1 (en) Method and device to treat vulnerable plaque
US20050021088A1 (en) Systems containing temperature regulated medical devices, and methods related thereto
Xu et al. Measurement of specific absorption rate and thermal simulation for arterial embolization hyperthermia in the maghemite-gelled model
Molloy et al. Thermodynamics of movable inductively heated seeds for the treatment of brain tumors
US20120101363A1 (en) Methods and apparatus for patient treatment using magnetic medical hardware
Chen et al. Development of Ni‐4 wt.% Si thermoseeds for hyperthermia cancer treatment
Tucker Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer
Stauffer et al. System for producing localized hyperthermia in tumors through magnetic induction heating of ferromagnetic implants
CN100435763C (en) The whole body heat treatment for tumour of implementing heating inside blood vessel by combining heat seed and blood vessel bracket
Satoh et al. Interstitial helical coil microwave antenna for experimental brain hyperthermia
CN108578893B (en) Magnetic hysteresis heating treatment device for ultrasonic positioning in cavity
JP2599619B2 (en) Hyperthermia implant material
Moidel et al. Materials for selective tissue heating in a radiofrequency electromagnetic field for the combined chemothermal treatment of brain tumors
JPH0261036A (en) Temperature sensitive amorphous alloy
CN101803948A (en) Reverse temperature control combined probe type tumor thermal-therapeutic apparatus
JPS61154680A (en) Low frequency heating treatment apparatus
CN201719369U (en) Reverse temperature control combined probe-type tumor hyperthermia instrument
JPH04116146A (en) Temperature-sensitive amorphous alloy coated with polymer
Tanaka et al. A closed-loop transcutaneous power transmission system with thermal control for artificial urethral valve driven by SMA actuator