Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3653885 A
Publication typeGrant
Publication dateApr 4, 1972
Filing dateApr 20, 1970
Priority dateOct 31, 1966
Also published asDE1597891A1
Publication numberUS 3653885 A, US 3653885A, US-A-3653885, US3653885 A, US3653885A
InventorsAugostini Peter P, Levy Mortimer
Original AssigneeXerox Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process of stabilizing a migration image comprising selenium particles
US 3653885 A
Abstract
An image comprising migration material residing on a metallic conductive substrate and formed in accordance with the migration imaging process is stabilized and fixed onto the substrate by heating the substrate and the migration material to produce a chemical reaction therebetween resulting in a permanent stable image having high density and resolution.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Levy et al.

[151 3,653,885 51 Apr. 4, 1972 [54] PROCESS OF STABILIZING A MIGRATION IMAGE COMPRISING SELENIUM PARTICLES [72] Inventors: Mortimer Levy, Rochester; Peter P. Au-

gostini, Webster, both of N .Y.

[73] Assignee: Xerox Corporation, Rochester, NY.

[22] Filed: Apr. 20, 1970 [21] Appl. No.: 29,932

Related US. Application Data [63] Continuation-impart of Ser. No. 590,959, Oct. 31,

1966, abandoned.

2,962,376 11/1960 Schaffe rt ..96/1.5 3,083,117 3/1963 Schmiedel et al ..1 17/1 7.5 3,138,458 6/1964 Kimble et al ..96/1 3,383,209 5/1968 Cassiers et al. .96/1.3 3 ,440,045 4/1969 Lind ....96/1 3,440,046 4/1969 Droege et al. ..96/27 3,520,681 7/1970 Goffe ..96/1

FOREIGN PATENTS OR APPLICATIONS 1,035,892 7/ 1966 Great Britain ..96/1 .5

Primary Examiner-Charles E. Van Horn Attorney-James J. Ralabate, David C. Petre and Raymond C. Loyer [57] ABSTRACT An image comprising migration material residing on a metallic conductive substrate and formed in accordance with the migration imaging process is stabilized and fixed onto the substrate by heating the substrate and the migration material to produce a chemical reaction therebetween resulting in a permanent stable image having high density and resolution.

12 Claims, 8 Drawing Figures Patented April 4, 1972- 3,653,885

F/ 6.-IA FIG. 1B. Fla/c;

INVENTORS MORTIMER LEVY BY PETER P. AUGOSTINI ATTORNEY PROCESS OF STABILIZING A MIGRATION IMAGE COMPRISING SELENIUM PARTICLES This application is a continuation-in-part of our copending application, Ser. No. 590,959 filed Oct. 31, 1966 and now abandoned.

BACKGROUND OF THE INVENTION This invention relates in general to imaging, and more specifically, to an improved migration imaging system.

There has been recently developed a migration imaging system capable of producing high quality images of high density, continuous tone and high resolution. This system is described and claimed in copending applications, Ser. Nos. 837,591 and 837,780 both filed June 30, 1969. In a typical embodiment of this imaging system, a migration imaging structure consisting of a conducting substrate with a layer of softenable or soluble material containing migration material is coated onto the conductive substrate. An electrostatic latent image is formed on the surface of the layer. The softenable layer is then developed by dipping the plate into a solvent which attacks only the soluble layer. A portion of the migration material migrates through the softenable layer as it is softened or dissolved, leaving an image on the conductive substrate. Through the use of various materials, either positive-topositive or positive-to-negative images may be made depending on the materials used and the charging polarities. Those particles in the softenable layer which do not migrate to the conductive substrate are washed away by the solvent with the softenable layer.

Three basic migration imaging structures exist: A layered configuration, which comprises a conductive substrate, a layer of softenable material and an overcoating of migration material (usually particulate) embedded in the upper surface of the softenable layer; a binder structure, in which the migration material is dispersed throughout the soluble layer which overcoats a conducting substrate; and finally an overcoated structure, in which a conductive substrate is overcoated with a layer of softenable material followed by an overcoating of migration material and a second overcoating of softenable material which sandwiches the migration material. The migration imaging process consists of the combination of steps which include charging, exposing and development with a solvent liquid or vapor or a combination of vapor followed by liquid. If vapor development is used alone, the softenable layer may be stripped away leaving the migration image on the substrate. The characteristics of these images are dependent on such process steps as charging potential, light exposure and development as well as the particular combination of process steps. High density, continuous tone and high resolution are some of the photographic characteristics possible. The image is characterized as a fixed or unfixed powder image which can be used in a number of applications such as microfilm, hard copy, optical masks and stripout applications using adhesive materials. Alternative embodiments of these concepts are further described in the above cited copending applications.

Another recently developed imaging system, utilizes nonphotoconductive particles contained in a non-photoconductive soluble layer on a conductive substrate. In this system, an electrostatic latent image is formed such as by corona charging through a mask or stencil. When the imaged sheet is exposed to a solvent for the softenable layer only, the particles migrate to the substrate in image configuration. The unwanted particles are washed away with the soluble layer. This system is also described and claimed in copending applications referred to above.

To prevent abrasion of the image formed by the migration imaging method or loss of density, it is necessary to fix the image during development or by additional steps after development. In fixing during development, the developing liquid softens the conducting substrate or a thin film on the substrate so that the image particles can become embedded in the substrate or thin film. In fixing after development, the developing liquid evaporates leaving a coating of dissolved plastic over the image. Thus, by using additional process steps after development, the image can be fixed by either overcoating the image particles or by embedding them in the conducting substrate or in a thin film on the substrate. As techniques require additions to the solvent developer or a special coating step, it can be seen that there is a definite need for a simple and efficient image stabilizing step for migration images which avoids softening or overcoating the substrate, and yet produces images having high resolution and excellent density.

It is, therefore, an object of this invention to provide a method of stabilizing migration images which overcome the above noted disadvantages.

It is another object of this invention to provide a simple and effective method of stabilizing migration images.

It is yet another object of this invention to provide a method of stabilizing selenium containing images.

It is a further object of this invention to provide an improved migration imaging process.

The foregoing objects and others are accomplished in accordance with this invention by forming a migration image on a substrate followed by heating or chemically reacting the image forming material with the conductive substrate so as to produce a reaction between the substrate and imaging material, resulting in a permanent, stable image having high density and resolution. The advantages of this improved method will become apparent upon consideration of the following disclosure of the invention; especially when taken in conjunction with the accompanying drawings wherein:

FIG. 1A is a schematic sectional view of a layered structure for carrying out the invention.

FIG. 1B is a schematic sectional view of binder structure used in carrying out the invention.

FIG. 1C is a schematic sectional view of an overcoated structure for carrying out the invention.

FIG. 2A is a schematic sectional view of the structure of FIG. 1A during the charging step.

FIG. 2B is a schematic sectional view of the structure of FIG. 1A during the exposure step.

FIG. 2C is a schematic sectional view of the structure of FIG. 1A during the development step.

FIG. 2D is a schematic sectional view of the structure of FIG. 1A following development.

FIG. 2E is a schematic sectional view of the structure of FIG. 1A during the stabilizing step.

FIG. 1A shows a migration imaging plate comprising a conductive substrate 11 having thereon a softenable layer 12 overlaying the conductive substrate, and a layer 13 comprising migration materialusually in particulate form.

The substrate 11 upon which the softenable plastic and particulate migration material are formed may be any suitable conductive substrate which will react chemically with the migration material. Typical substrates are copper, chromium, brass, cadmium, silver and gold. The substrate may be in any form such as a metallic sheet, web, foil, cylinder or the like. If desired, the conductive metal may be coated over an insulator such as paper, glass or plastic.

The softenable plastic layer 12 may be any suitable material which is softened in a liquid or vapor solvent; and in addition, is substantially electrically inert during the imaging and developing cycle. Typical materials are Staybelite Ester 10, a partially hydrogenated rosin ester, Foral Ester, a hydrogenated rosin triester and Neolyne 23, an alkyd resin, all from Hercules Powder Co.; SR 82, SR 84, silicone resins, both obtained from General Electric Corporation; Sucrose Benzoate, Eastman Chemical; Velsicol X-37, Hydrogenated Velsicol X-37, Velsicol Chemical Corp., Hydrogenated Piccopale 100, a highly branched polyolefin, Piccotex 100, polystyrene-vinyl toluene, Piccolastic A-75, and 125, all polystyrenes, Piccodine 2215, a polystyrene-olefin copolymer, all from Pennsylvania Industrial Chemical Co.; Araldite 6060 and 6071, epoxy resins of Ciba; R5061A, a phenyl-methyl silicone resin from Dow Corning; Epon 1001, a bisphenol A- epichlorohydrin epoxy resin, from Shell Chemical Corp., and

PS-2, PS-3, both polystyrenes and ET-693, a phenol-formaldehyde resin, from Dow Chemical. Other materials useful as the softenable layer are described in copending application, Ser. No. 837,780 filed June 30, I969, which is incorporated herein by reference.

The above group of materials is not intended to be limiting, but merely illustrative of materials suitable for the softenable plastic layer. The softenable plastic layer may be of any suitable thickness. In general, the thicker the layer the greater the potential needed for charging. A thickness from about 1 to 4 microns has been found satisfactory, but layers outside this range will also work.

The material 13, which constitutes the migration material, may be any suitable migratable material which reacts with the metal selected for the substrate. Typical migration materials are photoconductors such as particulate vitreous selenium, and alloys of selenium such as tellurium and selenium, cadmium sulfide, cadmium sulfoselenide and arsenic triselenide. Other migration material, photoconductive or non-photoconductive, is described in the above mentioned copending application, Ser. No. 837,780. Of course, the migration material is selected on the basis of its reactivity with the metal employed at the substrate. The size of the migration particles range from about 0.01 to 1.5 microns in diameter and may be prepared by vacuum evaporation techniques such as those disclosed in copending application, Ser. No. 423,167, filed on Jan. 4, 1965, and now abandoned. Another convenient method of forming the particulate migration layer is by simply dusting or cascading the material on glass carrier beads over the soluble layer softened by solvent vapor. This method is disclosed in copending application, Ser. No. 483,675, filed on Aug. 30, 1965. The thickness of the migration layer is from about 0.2 to

14 microns with the thicker layers being in the binder form.

In FIG. 1B, the binder form of the structure is shown in which the migration particles 13 are dispersed throughout soluble layer 12.

The structure of FIG. 1C shows the overcoated structure in which the migration particles 13 are sandwiched between two layers of soluble matrix material 12 which overlays conductive substrate 11. Both the binder and overcoated structure shown in FIGS. 13 and 1C, respectively contain essentially the same basic materials as illustrated for the layered structure shown in FIG. 1A.

In FIG. 2A the layered structure of FIG. 1A is uniformly charged over its entire surface by a corona discharge device 14, such as that shown in US. Pat. No. 2,777,957 to Walkup. The potential required for migration imaging has been shown to depend on a number of factors. For example, the form of the imaging structure such as the three illustrated in FIGS. 1A, 1B and 1C, the thickness and material used in the soluble layer, the type of migration material used, the developing solvent, the combination of process steps, the polarity of the potential and the light exposure, etc. If the potential is too high, the migration particles are usually deposited on the conducting substrate randomly without regard to light exposure. If, on the other hand, the potential is too low, none of the particles are deposited. In general, the potential may range from a few volts to 400 volts with a soluble layer of about 2 microns in thickness depending upon the material used. Generally, it may be said that the potential increases with the thickness of the soluble matrix layer for a given matrix material. For a few combinations of material, images can be obtained with potentials for only one polarity. For some combinations of migration materials and soluble layers, the maximum potential is higher for positive than for negative polarity. For example, this was observed with selenium vacuum evaporated on several different matrix materials.

Other methods of forming an electrostatic image on the surface of the photoconductive layer are also included within the scope of this invention. Such methods include corona charging through a stencil as shown in copending application, Ser. No. 483,675, filed on Aug. 30, 1965. In addition, the migration imaging structure may be charged through a liquid by an electrode using a low viscous liquid such as a silicone oil.

In FIG. 2B the imaging or exposure step takes place with exposing light 15 selectively impinging upon the charged surface containing, for example, photoconductive particles 13. The exposure for migration images depends upon the photoconductor, potential and its polarity, the combination of the process steps in the form of the imaging structure and the material of the soluble layer and solvent used in development.

. As in xerographic imaging, any amount of light suitable to activate photoconductor material 13, is usually sufficient to form an image. For example, the minimum exposure for maximum density with 4,000 angstrom light is approximately 1.5 x 10 photons/cm. with a structure consisting of selenium vacuum evaporated on Staybelite, 2 microns thick. This same exposure discharges a 50 micron conventional xerographic selenium plate from 600 volts to 500 volts.

In FIG. 2C the development step for the migration imaging structure is illustrated, wherein the structure is developed by immersing in a solvent for soluble layer 12. The solvent liquid 16 may be applied to the structure by spraying, pouring or dipping the structure into the liquid. The development time is not particularly critical inasmuch as the solvent is selected so as to dissolve only the softenable or soluble layer and be relatively neutral with regard to the photoconductive particles and conducting substrate. The development time is divided essentially into two parts; the time for imagewise migration of the particles to the conducting substrate and thetime for flushing away the unmigrated particles. The development time ranges from less than 1 second with a layered structure 3 microns thick, such as that illustrated in FIG. 1A, to about 45 seconds using a binder structure such as that illustrated in FIG. 1B having a binder structure about 12 microns thick. The flushing time, and hence the developing time, can be reduced by increasing the relative motion between the solvent and imaging structure.

The solvent developer liquid 16 may comprise any suitable solvent for the soluble layer 12. Typical solvents are Freon TMC (duPont); trichloroethylene, chloroform, ethyl ether, xylene, dioxane, benzene, toluene, cyclohexane, 1,1 ,ltrichloroethane, pentane, n-heptane, Odorless Solvent 3440 (Sohio); Freon 1 l3 (duPont), m-xylene, carbon tetrachloride thiophene, diphenyl ether, p-cymene, cis-2,2- dichloroethylene, nitromethane, ethanol, ethyl acetate, methyl ethyl ketone, ethylene dichloride, methylene chloride, 1,1-dichloroethylene, trans 1,2-dichloroethylene and super naptholite, (Buffalo Solvents and Chemicals). Other developer liquids are described in copending application, Ser. No. 837,780.

After developing in the solvent liquid as shown in FIG. 2C, the photoconductor 13 is formed in image configuration on substrate 1 l as shown in FIG. 2D. At this point in order to stabilize image 13, and at the same time increase the density of the image, a stabilizing step which comprises reacting image 13 with substrate 11 is carried out as shown in FIG. 2E. The stabilizing step involves heating the image bearing substrate 11 with any suitable heating means such as a conducting coil 19 in order to react the substrate 11 with the photoconductor material and cause a chemical reaction between said photoconductive material and the substrate. Other heating means such as hot air, gas burners, etc., may of course, be used. During the heating step, the photoconductor material in the image area agglomerates usually producing an initial reduction in density due to fading, but after the reaction with the substrate, the photoconductive material appears to wet and spread over the substrate resulting in a stable image having high density and illustrated by 13 As already mentioned above, the substrate may take any form or configuration as long as the reactive metal is at the exposed surface to receive the migration material after development.

For the purpose of illustrating the invention, a conventional migration imaging member containing a copper substrate, and having a 2-micron layer of Staybelite Ester 10, a 50 percent hydrogenated glycerol rosin ester of the Hercules Powder Company, overlaying the copper substrate, with a 0.2-micron layer of vapor deposited selenium deposited in the upper surface of the Staybelite is treated as follows:

The plate is first charged by a corona charging device to a positive potential of about 100 volts (FIG. 2A). The plate is tial of about 60 volts by means of a corona discharge device described by Carlson in U.S. Pat. No. 2,588,699. The charged plate is then exposed to an optical image with an energy in the illuminated areas of about 10 foot-candle-seconds by means of then exposed to an optical image of about 10 foot-ca dl 5 a tungsten chamber and a weak blue filter. The plate is then seconds in the illuminated areas using a tungsten lamp (FIG. developed y immersing it in a bath of eyeloheireme for about 28). Development of the plate is carried out by immersion in 2 secolids' The Plate is removed from the developer bath arid Freon 113, a halogenated hydrocarbon available from the E. I. drled- An excellent image corresponding to the Projected duPont de Nemours Co., Inc. for about 2 seconds and then 10 image is observed outhe P t This image cempnses a thin removed and dried in air (FIGS 2 and 2 The particulate layer of selenium particles in image configuration on a copper image is then stabilized by heating the substrate to a tempera- Substrate EXAMPLE ture of about 100 C. for about 1 minute to react the copper substrate with the selenium particulate image. This reaction The plate of Example I is then placed in a sealed glass yields a black crystalline material having a melting point of chamber and exposed to vapors of mercury for about 5 about LOOOO minutes. At the end of this time, the plate is removed from the During the heating, the selenium in the image ea glass chamber and heated by hot air to a temperature of about glomerates r d i an i i i l reduction i d i f di 100 C. for several minutes, at which time the selenium and but after the reaction, the selenium appears to wet and spread the substrate react, with the Selenium appearing to wet arid over the copper substrate. The fading can be prevented by spread Over the pp Substrate The resultant image shows first converting the surface of selenium in the image areas to a high density, excellent contrast and is resistant l0 abrasion and crystalline form, followed by heating to produce the chemical thoroughly Stable at relatively high temperaturesreaction at the copper-selenium surface. This crystallization can be produced by exposure of the image to any known ele- EXAMPLE In ment or compound which will crystallize the surface of the A i i plate using h copper t d M l Substrate selenium or selenium alloy in the image areas. These agents inas i E l I i lh d i h a 2- i layer f pi elude Vapor treatments with mercury, iodine, Chlorine, 100, (Pennsylvania Industrial Chemical Company). This plate bromine fluorine, amines Such as hexyiamine, For Examis coated with a selenium layer and developed in cyclohexane ple, exposure to mercury vapors for about 5 minutes is usu y as in Example I. The plate is then exposed and developed as in Sufficient to Convert the surface to a Crystalline rorm- Example II and shows a stable image following mercury vapor The reaction temperature is that temperature at which the treatment and heat stabilization as set forth in Example II. selenium will react with the given substrate. This temperature is only critical with respect to the substrate in that it should EXAMPLES IV'IX not exceed a temperature which will p buckle the The procedures set forth in Examples I and II are carried Strate' out with a series of plates which are prepared, imaged, Generally, temperatures in the range of about 90 to 350 C. developed and stabilized under varying conditions with the are sufficient to react the selenium or selenium containing results and process parameters set forth in the table below for alloy with the substrate. 40 all of the samples prepared and tested in the examples.

TABLE Heat Softenahle Photoconductive Mercury stabili- Sample Conductive Plastic (2 Layer (1 micron Developer (1-3 vapor trcatzation, No. Substrate microns thick) thick) Potential Exposure seconds in bath) ment, min. C

I Copper Staybelite Selenium 100 4,000 Angstrom light Z... Freon 113 5 100 2.. do. Picc0tex d +100 do. o 5 100 3.. Copper foil Staybelite +100 do. Carbon tetrachlo 5 100 4 +100 (10. 1% 5 I00 5 Cyclohexane... 5 100 6 -d0 do 5 100 7 Cadmium sulfide. .do 320 8... Polyvinyl carbazole- 270 9 Copper do Cadmium sul- 320 ioselenlde.

1 (0.1 micron) on 3 mil Mylar.

3 5 mil.

' (300 angstroms) on Glass Slide.

EXAMPLEI An imaging plate such as that illustrated in FIG. 1A is prepared by roll-coating a Z-micron layer of Staybelite Ester l0 (Hercules Powder Company) on a 3-mil Mylar polyester film (E. I. duPont de Nemours & Co., Inc.) having a thin coating of copper about 0.1 micron thick. A thin layer of vitreous selenium approximately 1 micron in thickness, is then deposited onto the Staybelite by inert gas deposition using the process set forth in copending patent application, Ser. No. 423,167, filed on Jan. 4, 1965. The plate is then electrostatically charged under dark room conditions to a positive poten- What I claim is:

1. A method for stabilizing a migration image comprising a. providing a migration imaging member having a conductive substrate comprising a metallic layer and an electrically insulating solvent soluble over-layer containing migration material, said migration material comprising selenium particles b. forming an electrostatic latent image on said member;

c. developing said image by applying a solvent for said electrically insulating layer to said member wherein a portion of the selenium particles deposit in image configuration on said conductive substrate and wherein another portion of selenium particles and said electrically insulating layer are removed from said substrate; and

d. heating said substrate and said selenium particles residing thereon to a temperature not exceeding the temperature which will warp or buckle said substrate whereby a chemical reaction occurs between said metallic layer and said selenium particles.

2. The method as defined in claim 1 wherein said electrostatic latent image is formed by uniformly charging said migration imaging member and selectively illuminating said charged member with a pattern of activating radiation.

3. The method of claim 1 wherein the conductive substrate comprises copper.

4. The method of claim 1 wherein the conductive substrate comprises brass.

5. The method of claim 1 wherein the conductive substrate comprises cadmium.

6. The method of claim 1 wherein the conductive substrate comprises silver.

7. The method of claim 1 wherein the conductive substrate comprises gold.

8. The method of claim 1 wherein the migration material comprises vitreous selenium.

9. The method of claim 1 wherein the migration material comprises a vitreous alloy containing at least 50 percent selenium by weight.

10. The method of claim 8 wherein the developed image of claim 1 is treated with a crystallizing agent prior to step (d).

l 1. The method of claim 10 wherein the crystallizing agent comprises vapors of mercury.

12. The method of claim 1 wherein the conductive substrate comprises chromium.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2735784 *Jul 30, 1953Feb 21, 1956 Process of electrostatic printing
US2962376 *May 14, 1958Nov 29, 1960Haloid Xerox IncXerographic member
US3083117 *Jun 10, 1958Mar 26, 1963Schmiedel UlrichProcess of developing electrostatic images
US3138458 *Sep 30, 1955Jun 23, 1964Minnesota Mining & MfgElectrophotography
US3383209 *Nov 26, 1962May 14, 1968Gevaert Photo Prod NvElectrophotographic process including selective wetting by the developer liquid
US3440045 *Aug 30, 1965Apr 22, 1969Azoplate CorpElectrophotographic process for the manufacture of a highly heat-resistant image
US3440046 *Oct 22, 1965Apr 22, 1969Battelle Development CorpLight induced imaging of selenium in the presence of cadmium or mercury vapors
US3520681 *Jun 1, 1965Jul 14, 1970Xerox CorpPhotoelectrosolography
GB1035892A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3839031 *Sep 2, 1969Oct 1, 1974Xerox CorpElectrode development migration imaging method
US3901699 *Jul 24, 1974Aug 26, 1975Xerox CorpMigration and agglomeration imaging method
US3901702 *Mar 1, 1973Aug 26, 1975Xerox CorpImaging element with absorbent blotter overlayer migration
US3909262 *Dec 12, 1973Sep 30, 1975Xerox CorpImaging migration member employing a gelatin overcoating
US3918969 *Jan 28, 1974Nov 11, 1975Xerox CorpMigration imaging method employing a uniform exposure step
US3964904 *Aug 22, 1974Jun 22, 1976Xerox CorporationManifold imaging member and process employing a dark charge injecting layer
US4052208 *Jun 5, 1975Oct 4, 1977Martinelli Michael APositive
US4082549 *Oct 27, 1972Apr 4, 1978Xerox CorporationAgglomeration imaging process
US4133683 *Jan 29, 1973Jan 9, 1979Xerox CorporationImproved contrast by contacting with solvent or chemical reactant
US5514505 *May 15, 1995May 7, 1996Xerox CorporationSelective transparentization of photosensitive migration marking particles embedded near the surface of a softenable layer supported by an electroconductive substrate
Classifications
U.S. Classification430/41, 430/97
International ClassificationG03G17/00, G03G13/22, G03G17/10, G03G13/00
Cooperative ClassificationG03G13/22, G03G17/10
European ClassificationG03G13/22, G03G17/10