Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3654906 A
Publication typeGrant
Publication dateApr 11, 1972
Filing dateMay 7, 1970
Priority dateMay 9, 1969
Publication numberUS 3654906 A, US 3654906A, US-A-3654906, US3654906 A, US3654906A
InventorsAiras Timo
Original AssigneeAiras T
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Axial cylinder rotary engine
US 3654906 A
An internal combustion engine has a rotating group of axial cylinders around a swash plate driven crankshaft. Each cylinder has only one port for intake and exhaust this port ending directly at a sliding seal against a plain or substantially plane distributor surface on the gable of the stationary engine frame. This stationary distributor surface is provided with a least two sets of intake and exhaust ports as well as ignition devices so arranged that during a full revolution of the cylinder group two full series of four-cycle sequences occur in each cylinder. The cylinder group and crankshaft rotate at different speeds and the relation between these speeds to each other and to the stationary frame, are determined by a gear. The gear arrangement and ratio is depending of the number of cylinders and the number of four cycle sequences per cylinder group revolution.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Airas [1.5] 3,654,906 1451 Apr. 11, 1972 [54] AXIAL CYLINDER ROTARY ENGINE FOREIGN PATENTS OR APPLICATIONS 2] Inventor: sires, Puiswkaw 3 A Helsinki 450,661 4/1913 France ..123/43 A 1n an [22] Filed: May 7, 1970 QTHER l7UBUCATI9NS [21] APP]- No'z 35,542 S., Engines Havmg The Cylmders Parallel to The [30] Foreign Application Priority Data S y g'i 'fi g 'tn j i) R 1d norneya p uc am, esse eingo Robert R. May 9, 1969 Finland ..l376/69 Snack and Henry Marzullo, Jr.

[52] US. Cl. ..l23/43 A, 91/499, [57] ABSTRACT [51] Int. Cl ..F02b 57/04 An nternal combustion engine has a rotating group of axial [58] Field of Search ..l23/45 R, 45 A, 44 D, 55 R, cylinders around a swash plate driven crankshaft. Each 123/55 SR, 58 B, 58 BA, 58 BB, 43 A, 43 R; cylinder has only one port for intake and exhaust this port 91/499; 417/461 ending directly at a sliding seal against a plain or substantially plane distributor surface on the gable of the stationary engine [56] References Cited frame. This stationary distributor surface is provided with a least two sets of intake and exhaust ports as well as ignition UNITED STATES PATENTS devices so arranged that during a full revolution of the 35,984 10 1970 A d 1 cylinder E full Series mm-cycle Sequences in :3 224 J g gggi 1 3 22 2 each cylinder. The cylinder group and crankshaft rotate at difl2]9377 3/1917 Davidson ""123/43 A ferent speeds and the relation between these speeds to each 2 280 669 4/1942 Sklenar ....123/44 D and the Smiwary frame are determined by a 8 2 234 187 3/1941 Meyer ..123/44 1) The gear arrangement and ratio is depending of the number of cylinders and the number of four cycle sequences per cylinder group revolution.

3 Claims, 5 Drawing Figures l l 1 A 1 L J I g PATENTEDAPR 1 1 I972 SHEET 2 OF 4 W .b m m .WH


m 6 I II m L .HNP P Y KOD D C NZT Fig.3

PATENTEDAPR 1 1 1972 3,65 906 SHEET 3 [IF 4 PATENTEDAPR 11 1912 3,654,906

SHEET l [1F 4 AXIAL CYLINDER ROTARY ENGINE BACKGROUND OF THE INVENTION Various axial cylinder engines are known which comprise two main types, viz, engines having a stationary cylinder block and engines having a rotary cylinder block. It has been proposed to use in the last mentioned type a stationary crankshaft together with a specific crank mechanism comprising rocker arms each of which is common for two cylinders. It has further been proposed to use a rotary crankshaft which is driven by a swash plate or a sloping plate. These prior known engines have been designed with various objects in mind but the proposed solutions have generally rather complicated.

SUMMARY OF THE INVENTION The present invention relates to a four-cycle engine with rotating, axial cylinders. Engines of this type have been designed with various objects in mind. The object of the present invention is to produce an engine with a simple rotation slide distributor or valve system. This object is quite new and it is realized by a substantially plain slide distributor surface between the cylinder group and a stationary gable and by keeping the sliding speed low by means of different and reduced speed of the cylinder group in relation to the swash plate driven crankshaft.

Furthermore the engine according to this invention has an other unique feature in the referred class of engines having the ignition devices in the stationary gable. Among other advantages this feature gives the possibility of using a continuously or periodically acting ignitor which makes possible the use of slower igniting fuels.

The simplicity of the design makes it particularly attractive in a small size engine. These can be economically made with three or more cylinders, which with the fully balanced transmission mechanism ensures a reliable and extremely smooth running. A simple planetary or two plane gear used for determining the speed ratio and can simultaneously be used for speed reduction from crankshaft to a separate output shaft. This output shaft can alternatively consist of the axle on the slowly running cylinder group.

SHORT DESCRIPTION OF THE DRAWING FIG. 1 is a sectional view of an engine with five cylinders and two sequences per cylinder group revolution according to the invention.

FIG. 2 is a section at the plane 11-11 in FIG. 1 showing the slide distributor surface.

FIG. 3 is a schematic illustration of the working mode of the engine according to FIG. 1.

FIG. 4 shows the planetary gear modified for contrarotating cylinder group and crankshaft for threeor seven-cylinder design.

FIG. 5 is a liquid cooled embodiment of a five-cylinder engine with a combined reduction and distributing gear.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 the stationary engine frame consist of mantle 11 and gables l and 12. In the gable 12 there is a bearing 13 for a crankshaft 3. A cylinder group 2 runs on bearings 15 in the gable l and 16 on the crankshaft 3 respectively of which the inner end runs in a bearing 14 in the cylinder group 2. Thus the crankshaft 3 and the cylinder group can rotate separately and their rotational speed and direction is deter mined by a planetary gear consisting of a sun wheel on the crankshaft 3, planetary wheels 9 on the crankcase end of the cylinder group whilst the outer wheel 8 is fixed to the engine frame 11 and 12. In this case (five cylinders) the crankshaft 3 and cylinder group 2 are rotating in same direction. With Z teeth on the sun wheel 10 and 4 X Z teeth in the outer wheel 8 the speed relation between crankshaft and cylinder group is as five to one. The speed difference is thus four, i.e., the crankshaft makes four revolutions in relation to the cylinder group during one revolution of the latter in the stationary frame and against the slide distributor surface 5.

In this way two complete four-cycle sequences are efi'ected in one cylinder as described more in detail below. A swash plate 4 on the crankshaft 3 gives via connecting rods 16 the necessary reciprocating movement for pistons 6. As embodied in the FIG. 1 the rotational movement of the swash plate is coupled to the cylinder group by means of a ring 7 which is carried by two opposite bearings in the crankcase part of the cylinder group and connected to the swash plate by one or two swiveling pins (not shown in the figure) at -angle to said bearings. Alternatively the syncronization can be effected by, e.g., a pair of matching bevel gear rings.

The channels 5 in each cylinder 6 are sealed against the slide distributor surface in gable 1 by means of whatever known sealing arrangement. Thus this seal can be, e.g., a tube ring or plate made of metal or plastic material. In the gable 1 there are ports 20 for intake of fuel and air (the port 20 is in the sectional upper part of FIG. 1 not visible) and ports 21 for exhaust. The gas distribution is effected by the slide valve action arising from the rotary motion of the cylinder group 2 where the ports 5 pass the openings for ports 20 and 21 in the slide distributor surface.

The ignition is effected by igniting devices at two diametrically located sites 18.

The operation of the engine according to the invention can be described with the air of section IIII from FIG. 1 as shown in the FIG. 2, i.e., against the slide distributor surface in the gable 1.

Due to the rotation of the cylinder group 2 each cylinder 6 and its port 5 are successively passing four zones in the gable 1 during one complete four-cycle sequence. These zones are marked by I, II, III, and IV in FIG. 2 and their divisions is given by radial dotted lines. There are two sets of such zones each covering in the figure The locations of the cylinders are marked by dashed circles and ordinal numbers 6 -6 When the cylinder group is rotating clockwise, e.g., the cylinder 6 passes at first the zone I which is an intake zone with opening to the intake port 2 and thereafter the zone Il during compression cycle whereby the port 5 runs against a closed face. At the end of zone II the one ignition device 18 initiates the working cycle in zone III.

The cylinder then passes an exhaust opening in 21 in the zone IV thus completing one four cycle sequence. The same functions are then repeated during the second half turn back to the initial position.

The diagram in FIG. 3 is a schematic illustration of the movement of piston 6 between top (TDP) and bottom dead point (BDP) during a full 360 revolution of the cylinder group. The figure also shows the initial locations of the other cylinders 6 -6 In an engine thus described the gas distribution is effected through the movement of the cylinder group in relation to the gable 1. An extremely simple and reliable distributor action is obtained without valves and practically no additional parts. Due to the reduced speed at the cylinder group which is onefourth or less of the effective speed of the crankshaft good sealing and wearing properties are obtained as well as moderate frictional less in the slide surface.

FIG. 4 shows a detail of a different arrangement of the gear suitable for, e.g., three or seven cylinder embodiment of the invention with contrarotating crankshaft and cylinder group. For the function described above with two working cycles (ignitions) per cylinder group revolution in this embodiment the speed relation shall be as 3:1 between the crankshaft and cylinder group. This is obtained by means of a planetary gear where the outer wheel 8 is mounted on the cylinder group 2 crankcase part and the planet wheels 9 are running on bearings fixed to the stationary gable 12. For Z teeth in the sun wheel 10 the outer wheel shall have 32 teeth. In other respects the operation of this embodiment is equal to that of the described engine according to the FIGS. 1 to 3.

The other parts as fuel, ignition, and lubricating systems can be of conventional type and are therefore not described here. As, however, the ignition timing can be determined by the position of ignition device in the distribution surface this device can be of continuously or periodically acting type as, e.g., a glow-plug. This allows for the use of a wide variety of fuels. Similarly the fixed position for other strokes gives the possibility of using the compression for, e.g., fuel injection. Air or gas starting is also possible without complicated valve arrangements.

Alternative cooling systems with air, water, oil, or other fluids can be used. A combination of air and liquid cooling is indicated in F IG. 1 with fluid cooling space 22, 23 in the gable l and in the mantle 11 respectively. FIG. shows an altemative with fluid cooling through ports in the slow running shaft 19 fixed to the cylinder block. The cooling agent is taken into the shaft via a casing 31 fixed to the gable l. Fluid from and to cooler is conducted via ports 29 and 30 to two toroidal chambers 35 and 36 which again communicate directly with ports in the axle 19 and thus with the cooling space 37 in the cylinder block. Alternatively the stub 30 may be placed on the gable l in order to direct the cooling agent directly from the chamber 32 inside the casing 31 into the cooling space 22 in the gable l or vice versa. The chambers 35 and 36 are sealed mutually by the seal 33, outward by seal 34 and towards the lubricated bearing by a double seal 32.

The right hand side of FIG. 5 illustrates a possible arrangement of cylindrical or helical gear consisting of a primary transmission 10-25 to an output shaft 24 and a secondary gear 26-27. Alternatively the output can be taken via a gear wheel 28 in the secondary gear 26-27. The wheel 27 is fixed to the crankcase part of the cylinder group 2 thus determining the speed ratio between the cylinder group 2 and crankshaft 3. This gear arrangement is suitable for, e.g., five cylinders (with two ignitions per revolutions) or seven cylinders (with three ignitions per revolution) embodiments.

in the FIG. 5 there are shown two carburators 38 which in an practical application will be placed in a horizontal plane,

Le, in a plane in right angle to the sectional plane of the gear of the FIG. 5.

Having thus described my invention and in what manner the same is to be performed I declare that what I claim is:

1. An internal combustion engine comprising a stationary engine frame including a cylindrical mantle between two gables, a cylinder block rotatable within said frame and comprising an odd number of at least three cylinders extending in the axial direction of said mantle, a piston in each of said cylinders, a crankshaft in the center of and rotatable with respect to said frame and said cylinder block, first bearing means rotatably supporting said crankshaft on said frame and second bearing means supporting said cylinder block for rotation relative to said crankshaft at a slower speed than the later, a swash plate rotatable on said crankshaft and connected to said pistons for rotation with said cylinder block, a substantially planar distribution surface on one of said gables of said frame, at least two sets of intake and exhaust ports and igniting devices in said distribution surface, a port in each of said cylinders adjacent to and sealing against said distribution surface for co-operation with said intake and exhaust ports and said igniting devices, said cylinder ports each having a diameter less than that of said cylinder and a gear means coupled between said crankshaft, said cylinder block and said frame respectively for determining such relative rotational speeds of said crankshaft and said cylinder block with respect to said frame that each cylinder passes at least two complete four stroke sequences during a full revolution of said cylinder block.

2. An internal combustion engine as in claim 1, wherein said gear means determining the rotational speeds of said cylinder block and said crankshaft comprises a two plane cylindrical gear the first plane of which forms a speed reduction transmission between said crankshaft and a separate output shaft.

3. An lntemal combustlon englne as 1n claim 1 comprising ignition devices for each of said cylinders, said ignition devices being of a periodically acting type.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1219377 *Jul 7, 1915Mar 13, 1917Ira M DavidsonRotating motor.
US1405224 *Apr 29, 1920Jan 31, 1922John GarriguesEngine
US2234187 *Dec 29, 1938Mar 11, 1941Mawen Motor CorpEngine
US2280669 *Nov 15, 1938Apr 21, 1942Ignac SklenarEngine
US3535984 *Mar 28, 1968Oct 27, 1970Trans Wheel IncAxial piston pump-motor system
FR450661A * Title not available
Non-Patent Citations
1 *Hall, E. S., Engines Having The Cylinders Parallel to The Shaft.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3893295 *Dec 21, 1973Jul 8, 1975Airas TExternal combustion swash plate engine employing alternate compression and expansion in each working cylinder
US3939809 *Oct 11, 1974Feb 24, 1976Ulrich RohsAxial-piston combustion engine
US4003352 *Dec 5, 1974Jan 18, 1977Nikolaj Wladimir RogojewLongitudinal-stroke internal combustion engines
US4363294 *May 22, 1979Dec 14, 1982Searle Russell JPiston and cylinder machines
US4497284 *Aug 30, 1982Feb 5, 1985Schramm Buford JBarrel type engine with plural two-cycle cylinders and pressurized induction
US5070825 *Feb 8, 1990Dec 10, 1991Morgan Edward HRotating piston diesel engine
US5564372 *Jun 7, 1995Oct 15, 1996Llewellyn; Dafydd J.Split wabbler design for axial-piston engines
US5709176 *Oct 4, 1996Jan 20, 1998Llewellyn; Dafydd JohnSplit wabbler design for axial-piston engines
US5904044 *Feb 19, 1997May 18, 1999White; William M.Fluid expander
US6250262Sep 23, 1997Jun 26, 2001Noel Stephen DukeAxial piston machines
US6397794Oct 25, 2000Jun 4, 2002R. Sanderson Management, Inc.Piston engine assembly
US6446587Mar 25, 1999Sep 10, 2002R. Sanderson Management, Inc.Piston engine assembly
US6460450Mar 13, 2000Oct 8, 2002R. Sanderson Management, Inc.Piston engine balancing
US6494171May 11, 2001Dec 17, 2002Noel Stephen DukeAxial piston machines
US6829978Aug 15, 2002Dec 14, 2004R. Sanderson Management, Inc.Piston engine balancing
US6854377Nov 2, 2001Feb 15, 2005R. Sanderson Management, Inc.Variable stroke balancing
US6913447Jan 22, 2002Jul 5, 2005R. Sanderson Management, Inc.Metering pump with varying piston cylinders, and with independently adjustable piston strokes
US6915765Oct 25, 2000Jul 12, 2005R. Sanderson Management, Inc.Piston engine assembly
US6925973Feb 11, 2000Aug 9, 2005R. Sanderson Managment, Inc.Piston engine assembly
US7007589Mar 24, 2000Mar 7, 2006R. Sanderson Management, Inc.Piston assembly
US7011469Feb 7, 2001Mar 14, 2006R. Sanderson Management, Inc.Piston joint
US7040263Aug 16, 2004May 9, 2006R. Sanderson Management, Inc.Piston engine assembly
US7117828Jul 23, 2002Oct 10, 2006Shuttleworth Axial Motor Company LimitedAxial motors
US7140343May 27, 2003Nov 28, 2006R. Sanderson Management, Inc.Overload protection mechanism
US7162948Oct 6, 2004Jan 16, 2007R. Sanderson Management, Inc.Variable stroke assembly balancing
US7185578Aug 6, 2004Mar 6, 2007R. Sanderson ManagementPiston assembly
US7210429Jan 8, 2003May 1, 2007Douglas Marshall JohnsRotating positive displacement engine
US7325476May 26, 2005Feb 5, 2008R. Sanderson Management, Inc.Variable stroke and clearance mechanism
US7331271Mar 31, 2003Feb 19, 2008R. Sanderson Management, Inc.Variable stroke/clearance mechanism
US7334548Feb 28, 2006Feb 26, 2008R. Sanderson Management, Inc.Piston joint
US7677210Dec 14, 2006Mar 16, 2010Chasin Lawrence CRotating barrel type internal combustion engine
US8689674Aug 8, 2008Apr 8, 2014Duke Engines LimitedAxial piston machine with rotation restraint mechanism
EP1264963A1 *Mar 14, 1996Dec 11, 2002Noel Stephen DukeAxial piston machines
WO1996029506A1 *Mar 14, 1996Sep 26, 1996Noel Stephen DukeAxial piston machines
WO1998059160A1 *Jun 25, 1998Dec 30, 1998Duke Noel StephenAxial piston rotary machine
WO2003058036A1 *Jan 8, 2003Jul 17, 2003Douglas Marshall JohnsRotating positive displacement engine
WO2007140711A1 *May 31, 2007Dec 13, 2007Han PeizhouInter cooled regenerative internal combustion engine driven by swash plate, with rotated cylinder block
WO2008108670A1 *Mar 6, 2008Sep 12, 2008Duke Engines LtdAxial piston device
WO2009022918A1 *Aug 8, 2008Feb 19, 2009Duke Engines LtdAdvance-retard mechanism for axial piston machine and axial piston machine incorporating such
U.S. Classification123/43.00A, 123/56.4, 91/499, 417/461
International ClassificationF01B3/02, F01B3/00
Cooperative ClassificationF01B3/02, F01B3/0032
European ClassificationF01B3/00B, F01B3/02