Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3655559 A
Publication typeGrant
Publication dateApr 11, 1972
Filing dateApr 9, 1970
Priority dateApr 11, 1969
Also published asDE2017253A1
Publication numberUS 3655559 A, US 3655559A, US-A-3655559, US3655559 A, US3655559A
InventorsBrian Holt
Original AssigneeCiba Geigy Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Alkylated diphenylamines as stabilizers
US 3655559 A
Abstract
The use of tris 2,4,4'-alkyldiphenylamines for stabilizing organic material and compositions thereof especially synthetic lubricating oils. Such compositions are stabilized against oxidative deterioration.
Images(7)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Holt [451 Apr. 11, 1972 [54] ALKYLATED DIPHENYLAMINES AS [56] References Cited STABILIZERS UNTT ED STATES PATENTS [72] Inventor: Brian Holt, Royton, Lancs., England 3,052,632 9/1962 Loefiler ..252/5 1.5 [73] Assigneez CIBA-GEIGY Corporation, Ardsley, NY. 3 2 2 340 1 9 Foster et 1 252 50 [22] Filed: Apr. 9, 1970 2,009,480 7/1935 Craig ..260/576 X [21] APPI' 27,176 7 Primary Examiner-Daniel E. Wyman Assistant Examiner-W. Cannon [30] Foreign Application Priority Data Attorney-Karl F. Jorda and Martin J. Spellman Apr. 11, 1969 Great Britain ..l8,617/69 [57] ABSTRACT [52] U.S. Cl ..252/5L5 A, 252/50, 252/56 S, The use of tris 2,4,4'-alkyldiphenylamines for stabilizing or- 260/ 5-9, 260/576 ganic material and compositions thereof especially synthetic Int. Cl. lubricating oils Such compositions are stabilized against 0)(. [58] Field of Search ..252/50, 51.5, 56, 51.5 A, 401; id i d i ti 14 Claims, No Drawings ALKYLATED DIPHENYLAMINES AS STABILIZERS DETAILED DESCRIPTION The present invention relates to the use of alkylated diphenylamines and to organic material stabilized by the presence therein of the alkylate diphenylamines.

According to the present invention, there is used a compound having the formula:

eight carbon atoms and may be, for instance a tertiary-butyl,

tertiary-.pentyl (lzl-dimethylpropyl), tertiary-hexyl (1:1- dimethylbutyl), tertiary-octyl (121:3:3-tetramethylbutyl) or a nonyl or dodecyl group, derived from propylene trimer or tetramer respectively which are commercially-available mixtures of isomeric nonenes or dodecenes. The substituents R and R may be, for example, an ethyl, isopropyl or a tertiarybutyl group.

Examples of'preferred used compounds of formula I include 2:2-diethyl-4:4-di-t-butyl-diphenylamine, 2:2-diethyl-4:4'- di-tsoctyl-diphenylamine, 2:4:4'-tri-t-butyhdiphenylamine and particularly 2:23:424BQ-tetra-t-butyldiphenylamine.

The compounds having the formula I are produced by ortboalkylating in a first stage, diphenylamine with a straightor branched-chain olefine having from two to four carbon atoms per; molecule in the presence of a catalyst comprising aluminum, and in a second stage, contacting the thus orthoalkylated diphenylamine with a secondary olefme having from four to- L2 carbon atoms per molecule, in the presence. of a. Friedel-Crafts or Bronsted acid catalyst.-

The compounds of formula I are thus. conveniently produced for instance, by first alkylating diphenylamine in one or both of the ortho- (2 and 2' positions) of the diphenylamine molecule, and subsequently alkylatin'g the orthoalkylatedgmaterial in both of the para: (.4 and.4') positions.-

The proportion, of olefine to that of diphenylamine. in the orthoralkylation reactionmixture isdesirably substantially. the

stoichiometric proportion required to react one or two moleculesv of olefinerespectively per molecule of diphenylamine. Thus.- for the reaction of olefine at; only one orthoposition in the diphenylamine molecule, the proportion. of olefine todiphenylamine isdesirably within the range of from lt. 0;to l 1 moles per moleof diphenylamine. However,,if reaction at: both ortho-positions is desired, the proportion of olefineto diphenylamine is advantageously within-the, range of from 2,0 to 2.5 moles of" olefine per molecule of dipheny m ne Thecatalystused in theorthoalkylation step may be, for example, aluminum metal; itself;,aluminum amalgam alone or in combination with an alloy. for instance,,aluminum.and. nickel; oraluminum or aluminumamalgam in combinationwith mercury. salts for instance, mercuric chloride. -,A preferred form of catalystis aluminum metalor acompound of aluminum, with diphenylaminecontaining a; FriedelsCrafts catalystzor Fullers earth, especially mixtures of. aluminum metal with. diphenylamine containing; aluminum. chloride, boron tri-fluoride or Fullensearth. A'particularly preferred form of catalystfor the orthoalkylation: step consists of a mixture of aluminum chloride with an alkali metal, especially sodium metal which provides a particularly active form of orthoalkylation catalyst probably consisting of aluminum metal in combination with aluminum chloride.

Normal catalytic amounts of the catalyst are desirably employed in the orthoalkylation process, for example, an amount of catalyst within the range of from 0.1 percent to 10 percent by weight based on the weight of diphenylamine starting material. The total content of aluminum in the catalyst, where a mixed catalyst is used, may vary widely but is preferably within the range of from 10 percent to percent by weight based on the total weight of the catalyst.

If desired, the orthoalkylation reaction may be carried out at substantially atmospheric pressure but is advantageously effected at superatmospheric pressure and at an elevated temperature. The reaction is preferably conducted in a pressure reactor, optionally equipped with an agitating device. The reaction temperature may be, for example, within the range of from to 400 C.

Preferably, the orthoalkylation step is effected by reacting the diphenylamine and the gaseous olefine reactant in a sealed reactor at a superatmospheric pressure within the range of from 2 to 400 atmospheres. The progress of the reaction may be followed by observing the degree of the drop in pressure as the gaseous olefine is consumed.

On completion of the orthoalkylation reaction, the desired 2- and/or 2:2'-di-ortho-alkylated diphenylamine may be separated from the reaction mixture by conventional techniques, for example by fractional distillation under reduced pressure.

Subsequent to the orthoalkylation step, the orthoalkylated compound is further alkylated by contacting said orthoalkylated diphenylamine with the secondary olefine having from four to 12 carbon atoms per molecule in the presence of a Friedel-Crafts or Bronsted acid catalyst, and preferably at atmospheric pressure. It is particularly preferred to use a Friedel-Crafts catalyst in the further aklylation step. Suitable Friedel-Qrafts catalysts include ferric chloride, stannic chloride, zinc chloride, boron trifuloride and diethyl ether complexes thereof, titanium tetrachloride and, preferably, aluminum chloride especially in a substantially anhydrous form.

Suitably secondary olefines include iso-butylene, 2-methyl pentene-l diisobutylene and propylene trimer.

' If a Bronsted acid catalyst is employed it may be, for example, sulphuric acid, phosphoric acid, an organic sulphonic acid, adialkyl sulphate or a mixture of two or more thereof.

lfsulphuric acid. is present as a catalyst, it may be for'example, in. the form of concentrated sulphuric acid, oleum or an aqueous solution of the acid, but is preferably sulphuric acid monohydrate,.namely an. equimolar mixture of concentrated sulphuric acid (H 50 and water. If phosphoric acid is present as catalyst, it may be, for example, in. the form of orthophosphoric acid or an aqueous solution of the orthophosphoric acid,.for instance a' substantially equimolar mixture of 'orthophosphoric acid (HgPOQand water.

The proportion. of Friedeli-Crafts or Bronstedacid'catalyst whichzis employed in the process of the present invention is conveniently within the range of from 0.01 to L5 moles of catalyst per mole of orthoalkylated diphenylamine compound, a proportion of Friedel-Crafts or Bronsted acid catalyst within. the range. of from: 0.1. to 0.5 mole of catalyst per mole of orthoalkylated diphenylamine compound being especially preferred.

The para-alklylation step is advantageously carried out in the absenceaof. an'added inert solvent. Thus if the olefine is a liquid. olefine such as diisobutylene the para-alkylation step is conveniently effectedby charging the reactants into a reactor and using-iexcess liquid olefine as thereaction solvent. On the other hand, ifthe olefine reactant is gaseous, the reaction mixture is desirablycharged into a reactor and the gaseous olefine blown through'the molten orthoalkylated diphenylamine starting. material containing the Bronsted acid or Friedel-Crafts catalyst. The rate at which the gaseous olefine is blown through the reaction melt is advantageously within the range of from 50 milliliters to 300 milliliters per minute, per mole of o-alkylated diphenylamine.

If the para-alkylation step is effected using a liquid olefine reactant, the reaction temperature is preferably within the range of from 80 to 200 C. If, however, the para-alkylation reaction step is efiected using a gaseous olefine the reaction temperature is preferably the minimum temperature which is sufficient to maintain a reaction melt through out the reaction period. In the latter case, normally and preferably the temperature of the reaction melt is within the range of from 100 to 200 C. and the reaction is also preferably conducted in an inert atmosphere, for instance a nitrogen atmosphere.

The para-alkylation step is preferably concluded in the presence of a substantial excess of the secondary olefine reactant over the stoichiometric proportion required. Thus, for example. the proportion of secondary olefine is preferably within the range of from 2.0 to 3.0 moles per mole of orthoalkylated diphenylamine.

On completion of the para-alkylation reaction the desired triand/or tetra-alkylated diphenylamine may be isolated from the final reaction mixture by any conventional technique. For instance, the final reaction mixture may be dissolved in an organic solvent, such as toluene or xylene and washed with aqueous sodium hydroxide and then with water, to neutrality. Removal of the organic solvent then provides the crude reaction product which may be further purified, if desired, by distillation, for instance under reduced pressure and/or by recrystallisation from a suitable solvent such as ethanol.

The compounds having the formula:

wherein R is hydrogen or a teriary-butyl group, can be also produced by contacting in a single stage diphenylamine with iso-butylene in the presence of a Friedel-Crafts or Bronsted acid catalyst.

The process of producing a compound of formula II is conveniently effected by charging the diphenylamine starting material and the F riedel-Crafts or Bronsted acid catalyst into a reactor and heating the mixture to a temperature above its melting point, for instance to a temperature within the range of from 60 to 200 C. more preferably within the range of from lto 200 C., and passing the iso-butylene through the reaction melt. The rate at which the iso-butylene is passed through the melt is desirably within the range of from 50 milliliters to 300 milliliters per minute. Desirably the process is conducted in an inert atmosphere, especially in an atmosphere of nitrogen.

In order to produce predominantly the preferred used compound of Formula II, that is 2:2:4:4-tetra-tertiary butyl diphenylamine, the iso-butylene gas is advantageously passed through the molten reaction mixture until the iso-butylene ceases to be absorbed by the melt. The time required to achieve the maximum absorption of isobutylene at the preferred rate of passage through the melt, defined hereinbefore, is normally within the range of from 2 to 10 hours. If, however, it is desired to produce predominantly 2:224-tri-tbutyl dipehnylamine, the passage of iso-butylene is desirably terminated when substantially three molecules of iso-butylene have been absorbed per mole of diphenylamine starting material.

On completion of the reaction, the desired trior tetra-tbutyl diphenylamine may be separated from the other components of the reaction mixture by conventional methods. For example, the crude reaction mixture may be dissolved in an 4 organic solvent such as toluene or xylene, washed with aqueous alkali, especially aqueous sodium hydroxide, and water to neutrality, and subsequently fractionally distilling the washed residue. The product so obtained may be further purified, if desired, by fractional crystallization from an organic solvent, particularly methanol or ethanol.

While the reaction may be effected at an elevated pressure if desired, it is preferred that the reaction is conducted at substantially atmospheric pressure in order to avoid the use of expensive pressure equipment.

The Friedel-Crafts or Bronsted catalyst employed in the process of producing the compound of Formula ll may be any of the catalysts within the groups specified hereinbefore. However, it is particularly preferred to use aluminum chloride in any fonn of this catalyst which possesses a high degree of activity in promoting Friedel-Crafts alkylation processes. A particularly preferred form of the catalyst consists of the freshlyprepared, substantially anhydrous material. The catalyst is desirably employed in conventional catalytic amounts, for example in a proportion within the range of from 0.1 percent to 10 percent by weight based on the total weight of the diphenylamine starting material.

The compositions obtained by the present invention preferably contain a proportion of antioxidant of the present invention within the range of from 1.001 percent to 5.0 percent by weight based on the weight of the organic material. More preferably, the compositions contain a proportion of antioxidant within the range of from 0.1 percent to 4.0 percent by weight based on the weight of the organic material. The amount of antioxidant employed in any particular organic material will depend not only on the nature of the organic material but also on the external conditions under which the material is to be used. Thus organic materials to be used at normal temperatures will usually require a smaller proportion of antioxidant than organic materials, such as synthetic lubricants, designed for use at elevated temperatures.

A particular class of organic material susceptible to oxidative deterioration for which the compounds used according to the present invention are particularly valuable as antioxidants is that consisting of synthetic lubricants, especially those derived from carboxylic esters and intended for use at temperatures at or above 400 F.

Examples of such esters include lubricants based on a diester of a dibasic acid and a monohydric alcohol, for instance dioctyl sebacate or dinonyl adipate; on a triester of 1:111- trimethylol propane and a monobasic acid or mixture of such acids, for instance 1:1:l-trimethylol propane tripelargonate, 1:1:1-tn'methylol propane tricaprylate or mixtures thereof; on a tetraester of pentaerythritol and a monobasic acid or mixture of such acids, for instance pentaerythritol tetracaprylate; or on complex esters derived from lzlzl-trimethylol propane, caprylic acid and sebacic acid; or on mixtures thereof.

In addition to the compound of formula I, the synthetic lubricant may also contain other additives such as further antioxidants, metal passivators, rust inhibitors, viscosity index improvers, pour-point depressants, dispersants or detergents, extreme pressure or antiwear additives, antifoams, antiknock additives and antiicing additives or carburetor detergents.

Suitable examples of further antioxidants include those contained in the following groups (a) to (h):

a. Alkylated and non-alkylated aromatic amines and mixtures thereof, for example dioctyldiphenylamine; mono-t-octylphenyl-a and B-naphthylamines; dioctylphenothiazine; Phenyl-a-naphthylamine;

b. Hindered phenols, for example 2,6di tertiarybutyl-pcresol; 4,4-bis-( 2,6-diisopropylphenol); 2,4,6- triisopropylphenol; 2,2 thio-bis-( 4-methyl-6-tert-butylphenol) c. Alkyl, aryl or alkaryl phosphites, for example, triphenylphosphite; trinonylphosphite; diphenyldecylphosphite;

d. Esters of thiodipropionic acid, for example, dilaurylthiodipropionate;

e. Salts of carbamic and dithiophosphoric acids, for example, antimony diamyldithiocarbamate, zinc diamyldithiophosphate;

f. Metal salts, complexes of organic cholating agents for example, copper bis (trifluoroacetylacetonates), copper phthalocyanines, tributyl ester of EDTA, monosodium salt;

g. Free radical antioxidants and their precursors, for example, amine oxides and nitroxides;

h. Combinations of two or more antioxidants from any of the above sections, for example, an alkylated amine and a hindered phenol. Examples of suitable metal passivators include those of the following types:

a. for copper, for example, benzotriazole, 5,5-methylenebisbenzotriazole, tetrahydrobenzotriazole, 2,5-dimercaptothiadiazole, salicylidene-propylenediamine, salts of salicylalaminoguanidine; and quinizarin;

b. for magnesium, for example, propyl gallate;

c. for lead, for example, sebacic acid.

Rust inhibitors which may be employed in the lubricant compositions include those of the following groups:

a. Organic acids, and their esters, metal salts, anhydrides for example, N-oleoyl sarcosine, sorbitan mono-oleate, lead naphthenate and dodecenylsuccinic anhydride.

b. Nitrogen-containing materials, for example,

i. primary, secondary or tertiary aliphatic or cycloaliphatic amines and amine salts of organic and inorganic acids, for example, morpholine, stearyl amine and triethanolamine caprylate.

ii. heterocyclic compounds, for example, imidazolines, and

oxazolines.

c. Phosphorous-containing materials, for example, inorganic phosphates, phosphonic acids and amine phosphates.

d. Sulphur-containing materials, for example, barium dinonylnaphthalene sulphonates.

Suitable viscosity index improvers or pour-point depressants are, for instance, polyacrylates, polybutenes and polyvinyl pyrrolidones.

Examples of dispersant or detergents include metal sulphonates especially calcium, barium and magnesium salts, metal phenates and polybutenyl succinimides.

Extreme pressure or antiwear additives appropriate for use in the lubricant composition include sulphur and/or phosphorus and/or halogen containing materials, for instance, sulphurized sperm oil, tritolyl phosphate and chlorinated paraffins.

Siliconcs are particularly suitable as antifoams and lead alkyls are eminently suitable as antiknock additives for the lubricant compositions of the invention.

Examples of antiicing additives or carburetor detergents include, for instance, glycol ethers, imidazolines and amine phosphates.

Other organic materials susceptible to oxidative degradation for which the compounds used according to the present invention are valuable antioxidants, include, for instance, substances falling within the following groups: p

a. materials consisting of, or based on, aliphatic or other hydrocarbons, for instance, gasoline, lubricating oils, lubricating greases, mineral oils and waxes.

b. natural and synthetic polymeric materials, for instance, natural rubber; synthetic addition polymers such as homopolymers and co-polymers of vinyl and vinylidene monomers including ethylene, propylene, styrene, butadiene, acrylonitrile, vinyl chloride or vinyl acetate; synthetic polymers derived from condensation reactions and containing either ester, amide or urethane groups, for instance, alkyd and polyamide resins and fibers.

c. non-polymeric oxygen-containing substances, for in stance, aldehydes such as n-heptaldehyde, and unsaturated fatty acids or esters thereof, for instance, methyl oleate and ricinolcic acid.

d. organo-metalloid substances such as silicone polymers. for instance, polydimethylsiloxanes, polymethylphenylsiloxanes and chlorinated derivatives thereof; silanes, for instance, tetra-alkyl and tetra-aryl silanes; and organo-metallic substances such as organo-metallic polymers.

e. vitamins, essential oils, ketones and ethers.

The compounds of Formula I may be employed in multi-ingredient compositions, that is compositions containing at least one organic substance susceptible to oxidative deterioration or a mixture thereof and one or more organic or inorganic compounds, for instance, an alcoholic or aqueous emulsion of an organic material susceptible to oxidative deterioration.

The present invention is further illustrated by the following examples. Parts and percentages expressed therein are by weight unless otherwise stated.

EXAMPLE 1 69 Parts of 2:2'-diethyldiphenylamine and 0.7 part of anhydrous aluminum chloride were charged into a reactor and the mixture heated to 130 C., cooled to 100 C. At this tem perature 85.9 parts of diisobutylene were added to the mixture over a period of 2 hours and the mixture was then heated under reflux conditions until the temperature of the reflux mixture reached 160 C. After cooling, the reaction mixture was taken up in 500 parts of toluene and washed with aqueous 10 percent sodium hydroxide and then with water to neutrality. Removal of the toluene solvent under vacuum furnished 110.7 parts of a crude product as an oil. This oil was distilled to give a product which solidified on cooling. Recrystallization of this solid from ethanol gave 2:2'-diethyl-4:4'-di-t-octyl diphenylamine having melting point of 63 C. and having the following elemental analysis by weight:

Found Calculated(for az n carbon 85.70% 85.46% hydrogen 11.51% 11.43% nitrogen 3.18% 3.11%

EXAMPLE 2 169 Parts of diphenylamine and 4.4 parts of anhydrous aluminum chloride were charged into a reactor and the mixture heated to a temperature of 140 C. under an atmosphere of nitrogen to give a liquid melt. Isobutylene was then passed through the melt at a rate of 200 milliliters per minute until absorption of isobutylene ceased, after a period of 5.5 hours.

After cooling, the reaction mixture was taken up in 500 parts of toluene and washed with aqueous 10 percent sodium hydroxide and then with water to neutrality. Removal of the toluene solvent under vacuum to give a viscous brown oil which slowly solidified. Recrystallization of this solid from ethanol gave 2:2:4:4-tetra-t-butyl diphenylamine h ayillg melting point of 161 to 162 C. and the following elemental analysis:

Found Calculated (for C I-L N) carbon 85.48% 85.43% hydrogen 10.84% 11.01% nitrogen 3.65% 3.56%

EXAMPLES 3-5 A synthetic ester-based lubricant was formulated and subjected to the Pratt and Whitney Type 11 oxidation-corrosion test. The base fluid was a complex ester derived from sebacic acid, caprylic acid and trimethylol propane, the complex ester being described and claimed in British Pat. No. 971,901. Each test was carried out for 48 hours at a temperature of 425 C. using dry air at a rate of 5 liters per hour and in the presence of specimens of magnesium alloy, aluminum alloy, copper, silver and steel.

To each lubricant sample there was added, prior to commencing the test, a proportion of a new compound of the present invention and a proportion of benzotriazole. For the purposes of comparison, further tests were carried out using a control lubricant composition containing no antioxidant and also using a lubricant composition containing diphenylamine or 4:4-di-t-octyldiphenylamine and benzotriazole.

The results achieved are summarized in the following Table The formulation was prepared on a two-roll mill in the cold using a tight nip initially over a period of 35 minutes according to the following sequential procedure:

l. 1. Bond the copolymer rubber TABLE I Pro- Acid ortlon Percent value Wei ht change in specimens ad itive viscosity increase rug/square cm.)

(Weight increase (m Sludge Example Additive percent) at 100 F. KOH/g (mg.) Mg Al Cu Ag Stool None 113.0 7.3 10,700 51.27 +0.05 0.08 +0.07 -0.1-i Diphenylamine 2.0 200.0 2.4 280 0.02 0.03 1.02 +0.01 0.02 4: -i-dl-t-octyldiphenylamine 4.

plus 57.0 2.2 84 0.li0 0.04 U.62 0.08 -0.02 Benzotriazole 0. 2:2-diethyl-4z4-di-t-octyldlphenylamine 4. 0 3 plus 34.40 1.03 2.0 0.11 0.12 0.20 0.12 U.11

Benzotriazole 0.6 2:2z4 z4'-tetra-t-butyldiphenylamiue 4. 0 4 plus 18.03 1.78 0.5 0.02 Nil 0.10 0,01 +0.02

Benzotriazole 0. 5 2,2-diethy1-4,4-di-t-butyl-diphenylamine 4. 0 5 us 7.35 3.37 34.7 +0.01 +0.04 +0.05 +0.01 +0.01

Benzotriazole 0. 6

The data shown in Table I illustrate well the excellent properties of the lubricant compositions of the present invention 2. Add zinc oxide and antioxidant 3. Add fillers and diethylene glycol/stearic acid alternately especlally wlth respect to low sludge formatlon and magnesl- Finally add sulphur and both dlsulphlde lngredlents um and copper attack, compared with the control composi- 5. Remove from mlll. tion and also compositions comprising previously-known addi- The sample was then vulcanlzed by cutting a 6.0 inch X 6.0 tives. lnch X 0.050 inch sheet from the mllled sheet and curing the former for 40 minutes at 153 C. EXAMPLE 6 V V M Various physical properties of both the aged and unaged rubber were then determined, the details of the evaluations The following symhenc rubber fomlulatlon was made "P being set out in the following Tables 11 and ill. Details of the test methods used are shown at the foot of each of the tables. styrene lbutadiene copolymer rubber 100.0 parts For the purpose of comparison, results relating to control ex- 9"? Pam periments and to experiments using the same amount of a steam: acid 2.0 pans titanium dioxide 10.0 pans prevlously-known antloxldant are also shown In Tables I! and hydrated silica 50.0 parts V, a dibennhiawle disulphide Parts The results in Tables 11 and Ill demonstrate the excellent i f 3:: 40 physical properties of the unaged and aged and/or cured di-ethylene glycol 3.0 parts rubber compositions containing a new antioxidant compound product of Example 2 1.0 pan of the present invention. Thus, for example it can be seen from TABLE II Antioxidant N-phenyl-N- cyelohexyl p- Product 01 Control phenylene diaminc Example 2 Physical property Unaged Aged Unaged Aged Unaged Aged( Stress at 1007 (kg. per square cm.) 24 36 19 32 Stress at 300 (kg. per square em.) 04. 5 48. 5 78 Tensile strength (kg. per square cm.) 106 00 Elongation at break (percent) 600 355 Retention of 100% modulus (percent) 168. 4 Retention of tensile strength (percent) 55. 9 Retention of elongation at break (percent). 54. 6 Hardness 80 85. 5

( British Standard: Part A 19: Method A (7 days at 0.). British Standard: 903: Part A 2: 1956. Dumbell D. (20 inches per minute, 0.50 inch thlok sheet). British Standard: 903: Part A 20: 1959.

( Sample broke.

TABLE III Antioxidant N-phenyl- N-cyc1ohexyi- Product of Property Control Phouyl B-napthylalnine p-phenyleno dlamine Example 2 Colour of uncured stock Whitc White Pale blue White. Colour of moulded sample. Pele cream (streaky Pale cream (streaky). Pale grey Oil-white. Colour of aged sample Yellow/brown (Streaky Dark cream (streaky) do Deep cream. Rubber staining of paint panels:

Unexposcd 1 N0 stain No stain Light grey stain No stain. Exposed 2 d0 Bad stain blue, grey and brown patcllos Bad stain, rod brown Do.

1 British Standard A 111: 1065 using automotive acrylic and alkyd inolamlnc formaldehyde paint. finishes.

1 Stains exposed for 6 hours in fluorescent sunlight (blncklight unit).

the data in Table 11 that the compositions of the present invention give lower stress and hardness figures than the control and prior art compositions, thus indicating a desirably softer and more flexible product. Similarly, these excellent properties are retained to a much higher degree as indicated by the date in the lower half of Table 11.

The data in Table III on the other hand, illustrates well the excellent stain-resistant characteristics of the compositions of the present invention compared with the control composition and the prior art compositions.

EXAMPLE] 75.12 Parts by weight of 2,2'-di-ethyldiphenyla.mine and 1.5 parts by weight of anhydrous aluminum chloride were charged into a reactor and the mixture heated to a temperature of 140 C. under an atmosphere of nitrogen to give a liquid melt. lsobutylene was then passed through the melt at a rate of 200 milliliters per minute until absorption of isobutylene ceased, after a period of 3 hours. After cooling, the reaction mixture was taken up in 300 parts by weight of toluene and washed with aqueous percent sodium hydroxide and then with water to neutrality. Removal of the toluene solvent under vacuum yielded 112 parts by weight of 2,2'-diethyl-4,4'-di-tbutyl diphenylamine as a yellow viscous oil having boiling point 154 C. at 0.05 millimeters of mercury pressure and the following elemental analysis:

169 Parts by weight of diphenylamine and 4.4 parts by.

weight of anhydrous aluminum chloride were charged into a reactor and the mixture heated to a temperature of 140 C. under an atmosphere of nitrogen to give a liquid melt. lsobutylene was then passed through the melt at a rate of 200 milliliters per minute until absorption of isobutylene ceased, after a period of 5.5 hours. After cooling the reaction mixture was taken up in 500 parts by weight of toluene and washed with aqueous 10 percent sodium hydroxide and then with water to neutrality. Removal of the toluene solvent under vacuum yielded a viscous brown oil which slowly solidified. Recrystallization of this solid from ethanol yielded 112 parts by weight of 2,2',4,4-tetra-t-butyldiphenylamine having a melting point of 161 to 162 C. Evaporation of the filtrate to dryness yielded an oily solid which was dissolved in ether and saturated with hydrogen chloride gas to remove 48.0 parts by weight of 4,4'-di-t-butyldiphenylamine as the hydrochloride, the ether filtrate was evaporated to dryness and the residual solidrecrystallized from methanol to yield 124 parts by weight of 2,4,4'-tri-t-butyldiphenylamine having a melting point of 106 to 107 C. and the following elemental analysis:

Found Calculated (for C H N) carbon 85.30% 85.40%

hydrogen 10.75% 10.45%

nitrogen 4.34% 4.15%

EXAMPLE 9 169 parts by weight of diphenylamine and 4.4 parts by weight of anhydrous aluminum chloride were charged into a reactor and the mixture heated to a temperature of 140 C. under an atmosphere of nitrogen to give a liquid melt. The reaction mixture was then cooled to 100 C. and 336 parts by weight of diisobutylene were added over a period of 15 minutes, the reaction mixture was then refluxed for a further 48 hours. After cooling, the reaction mixture was taken up in 500 parts of toluene and washed with aqueous 10 percent sodium hydroxide and then with water to neutrality. Removal of the toluene solvent under vacuum fumished 400 parts of a crude product as an oily solid. Recrystallization of this solid from ethanol gave 299.7 parts of 4,4'-di-t-octyldiphenylamine having a melting point of 100 to 102 C. Removal of ethanol under vacuum from the mother liquor yielded 100 parts of a black viscous oil. This oil was distilled under vacuum to yield 55.6 parts of an oil which slowly solidified and was shown by comparison with authentic samples to be a mixture of diphenylamine, 4-t-octyldiphenylamine and 4,4-di-t-octyldiphenylamine. The residue from the distillation was triturated with 60 to C. petroleum ether to yield 15.3 parts of 4,4 di-toctyldiphenylamine. The residue was then chromatographed on a basic alumina column using 60 to 80 C. petroleum ether to yield 1.3 parts of a viscous yellow oil which slowly solidified. Recrystallization from ethanol yielded 2-t-butyl-4,4'-di-t-octyldiphenylamine as a pale yellow solid having a melting point of 1 16 to 1 18 C. and the following elemental analysis:

Found Calculated (for C H N) carbon 84.56 85.50 hydrogen 11.29 11.44 nitrogen 3.19 3.18

EXAMPLE 10 7.2 parts of 2-isopropyldiphenylamine and 0.14 parts of anhydrous aluminum chloride were charged into a reactor and the mixture heated to 140 C. under an atmosphere of nitrogen to give a liquid melt, cooled to C. and 15.4 parts of diisobutylene were added over a period of 15 minutes. The reaction mixture was then refluxed for a further 15 hours. After cooling, the reaction mixture was taken up in 100 parts of toluene and washed with aqueous 10 percent sodium hydroxide and then with water to neutrality. Removal of the toluene solvent under vacuum furnished 13.9 parts of a crude product as an oil. Separation on a basic alumina column yielded 2-isopropyl-4,4'-di-t-octyldiphenylamine as a pink oil having the following elemental analysis:

Found Calculated (For C I-L N) carbon 85.13 85.42 hydrogen 11.34 11.34 nitrogen 3.07 3.22

EXAMPLE 1 l 9.9 parts of 2,2-di-isopropyldiphenylamine and 0.16 parts of anhydrous aluminum chloride were charged into a reactor and the mixture heated to a temperature of C. under an atmosphere of nitrogen to give a liquid melt. lsobutylene was then passed through the melt at a rate of 200 milliliters per minute until absorption of isobutylene ceased, after a period of 5 hours. After cooling, the reaction mixture was taken up in 100 parts of toluene and washed with aqueous sodium hydroxide and then with water to neutrality. Removal of toluene solvent under vacuum furnished 12.8 parts of a pink oil which slowly solidified. Recrystallization of this solid from ethanol yielded 2,2'-di-isopropyl-4,4'-di-t-butyldiphenylamine as white needles having a melting point of 65 to 66 C. and the following elemental analysis:

Found Calculated (for C l-I N) carbon 84.63 85.38 hydrogen 10.94 10.75 nitrogen 3.94 3.82

EXAMPLES 12, 13 and 14 acetone were added to each mixture to form slurries which were hand mixed to ensure homogeneity. The solvent was then removed from each slurry by evaporation.

Samples of the respective dry powders were then placed in a I claim: mould (6.0 inches X 6.0 inches X 0.015 inch). The mould was 1. A method of stabilizing synthetic carboxylic acid ester then heated in a press under constant pressure for 5 minutes. lubricating oils which comprises incorporating in said A pressure of 20 tons/square inch was applied for 1 minute, synthetic carboxylic acid ester lubricating oils a compound cooling was commenced and pressure increased so that when 5 having the formula: the temperature reached 150 C., the pressure was 80 tons/square inch. Cooling was continued to 50 C., when the mould was removed from the press.

An oven aging test was carried out using strips from the R (I) pressings (the strips being 6.0 X 1.0 inch) in an air circulating oven maintained at 150 C. The time taken for the test strip to Wherem fail by cracking on flexing the sample through 180 C. was is a tel'tiary alkyl group having from four to 12 carbon noted. P

The results achieved, including a control experiment, are 15 y g or a Stralght branched chain alkyl group set out below: 15 having from two to four carbon atoms, and

R' is a straight or branched chain alkyl group having from Time to two to four carbon atoms.

Additive failure Hours 2. A method of claim 1 wherein R has from four to eight no add g carbon atoms in the alkyl chain. g5if flfg flifliigig iggg ii$gfigfigigfig "7' 3. A method of claim 1 wherein R is a tertiary butyl, tertia- 22 -d s p W i-t-butyldiphe yl m 16 ry pentyl, tertiary hexyl, tertiary octyl or a nonyl group derived from propylene trimer. 4. A method of claim 1 wherein R" and R are ethyl, EXAMPLES 15-17 isopropyl or tertiary butyl. The following synthetic rubber formulation was made up: 25 5. A method of claim 1 wherein said compound is 2:2-

diethyi-4:4'-di-t-butyldiphenylamine.

mm/wading copolymer rubber 100 pans 6. A method of claim 1 wherein said compound is 2:2-

zinc oxide 5 parts diethyl-4:4-di-t-octyldiphenylamine.

stearic acid 2 items 7. A method of claim 1 wherein said compound is 2:2:4-triii i i 2:2: t-butyldiphenylamine.

dib lnznihiazolyl disulphide 1.5 part i Ofclaim wherein Said compourld is 1 4 5 accelerators tetra-t-butyldiphenylamine.

lwameihylthiuwm disulphide P 9. A method of claim 1 wherein said compound is 2-t-butylantioxidant under test 1 part 4:4! di t octyldiphenylaminel 10. A composition comprising a synthetic carboxylic acid The formulations were Pl' p a two'rou accord ester lubricating oil susceptible to oxidative deterioration and, mg to the @"t Sequential procedure: as an antioxidant, a compound of claim 1.

Masucanon ofthe rubber for 2 to 3 minutes 11. A composition as claimed in claim 10 wherein the proi i of zmc Oxide Steam acid f antloxldam' portion of the compound of claim 1 is within the range of from i i of P 9 the day after 5 mmutes- 40 0.001 percent to 5 percent by weight based on the weight of Addlllon 0f remamdef 0f the y after 15 mmmesthe synthetic carboxylic acid ester lubricating oil. Addition of accelerators after 20 mmutes- 12. A composition as claimed in claim 10 wherein the pro- Addition of Sulphur, cutting rollillg after 25 mmutesportion of the compound of claim 1 is within the range of from Grinding, Six Passes through a tight P- 0.1 percent to 4.0 percent by weight based on the weight of The optimum cure times for the various samples were then h Synthetic b li id ester l b i i i] determined using the R.A.P.R.A. (Rubber and Plastics 13, A iti as l i d i l i 10 h i h Research Association) Cu o e e The s p were then synthetic carboxylic acid ester lubricating oil is intended for vulcanized at 153 C. for a period of the respective optimum use at temperatures at or above 400 F. cure time plus 2 minutes. 14. A composition as claimed in claim 10 wherein the Various physical properties of both the aged and unaged synthetic carboxylic acid ester lubricating oil is based on a dirubber compositions were determined, the details of the ester of a dibasic acid and a monohydric alcohol; on a triester evaluations being set out in the following Table IV. of l:l:1-trimethylolpropane and a monobasic acid ora mix- References to the test methods used are shown at the foot of ture of such acids; on a tetraester of pentaerythritol and a the table. For the purpose of comparison, Table IV also conmonobasic acid or mixture of such esters; or on complex tains details relating toacontrol experiment. esters derived from l:lzl-trimethylolpropane, caprylic acid 7 V and sebacic acid; or on mixtures thereof.

Table IV 300% modulus 2 Tensile strength 2 Percent elongation I.R.H.D.1 (kg/mm?) (kg/mm?) at break 2 Percent Percent Percent Percent; Example Additive Initial Final change Initial Final change Initial Final change Initial Final change None 62.25 66.25 +0.4 0. 29 0.36 +35.7 0.47 0.44 7.6 510 340 33. 3 2:4:4'-tri-t-but 1 0.27 0.32 +15.3 0. as 0.40 +4.2 400 403 Nil 16......... .2:2:4:4-tetra-t- 0.30 0.33 +10 400 440 +10 butyldiphenylamine. 17 .Z:2'-diethyl-4:4-di-t- 64.5 66.2 +2.6

butyldiphenylaminc.

1 British Standard: 903: Part A20: 1050.

2 British Standard: 003: Part A2: Dumbell D (20 inches per minute, 0.50 inch thick sheet).

Nona-The results in Table IV demonstrate the substantially smaller percentage change in the various physical properties on aging compared with the control sample. g 7

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2009480 *Jun 10, 1932Jul 30, 1935Goodrich Co B FAntioxidant
US3052632 *Feb 11, 1959Sep 4, 1962Shell Oil CoHigh temperature grease compositions
US3282840 *Jun 13, 1963Nov 1, 1966Eastman Kodak CoStable lubricating composition and inhibitor mixture therefor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3979180 *Sep 12, 1975Sep 7, 1976National Distillers And Chemical CorporationPhenol, diphenylamine, thiophosphates, transition metal
US4186105 *Jul 21, 1977Jan 29, 1980Imperial Chemical Industries LimitedAntioxidants
US4298481 *Feb 23, 1979Nov 3, 1981Tenneco Chemicals, Inc.High temperature grease compositions
US4440671 *Feb 23, 1983Apr 3, 1984Union Carbide CorporationCompositions of hydrocarbon-substituted diphenyl amines and high molecular weight polyethylene glycols; and the use thereof as water-tree retardants for polymers
US4704219 *Sep 19, 1986Nov 3, 1987The B. F. Goodrich CompanyNovel composition of para-butylated and octylated, ortho-ethylated diphenylamines
US4739121 *Sep 4, 1986Apr 19, 1988The B. F. Goodrich CompanyOne stage
US4797511 *Sep 25, 1987Jan 10, 1989Uniroyal Chemical Company, Inc.Polyethylene stabilized by mixture of hindered phenol and amine antioxidants
US4837259 *Sep 16, 1988Jun 6, 1989Uniroyal Chemical Company, Inc.Melt, color stability
US4925889 *Oct 26, 1988May 15, 1990Uniroyal Chemical Company, Inc.Stabilized carbon black loaded polyolefins
US5180514 *Dec 6, 1990Jan 19, 1993The Clorox CompanyChelating agent and free radical scavenger
US5321159 *Dec 8, 1993Jun 14, 1994The B. F. Goodrich CompanyDecolorization of alkylated diarylamines
US5373028 *Oct 15, 1993Dec 13, 1994The Dow Chemical CompanyPolyurethane foams having reduced visible emissions during curing
US5489711 *Dec 20, 1994Feb 6, 1996The B. F. Goodrich CompanySynthetic lubricant antioxidant from monosubstituted diphenylamines
US5503760 *Apr 24, 1993Apr 2, 1996Henkel Kommanditgesellschaft Auf AktienEngine base oils with improved seal compatibility
US5520848 *Feb 7, 1995May 28, 1996Ciba-Geigy CorporationReaction of diphenylamine with diisobutylene and sulfur in the presence of catalyst
US5571453 *Oct 25, 1994Nov 5, 1996Uniroyal Chemical Company, Inc.Stabilized polyether polyol and polyurethane foam obtained therefrom
US5607907 *Oct 12, 1994Mar 4, 1997Oronite Japan LimitedMultipurpose functional fluid for agricultural machinery or construction machinery
US5672752 *Sep 13, 1995Sep 30, 1997The Bfgoodrich CompanyLiquid alkylated diphenylamine antioxidant
US5750787 *May 30, 1996May 12, 1998B. F. Goodrich CompanyClay catalyst
US5834544 *Oct 20, 1997Nov 10, 1998Uniroyal Chemical Company, Inc.Organic materials stabilized by compounds containing both amine and hindered phenol functional functionalities
US6204412Apr 16, 1999Mar 20, 2001The B. F. Goodrich CompanyReacting diphenylamine with olefin
US6426324Oct 25, 2000Jul 30, 2002Noveon Ip Holdings Corp.Lubricant composition
US6573224 *Aug 10, 2001Jun 3, 2003Bardahl Manufacturing CorporationTwo-cycle engine lubricant composition comprising an ester copolymer and a diester
US7285518Dec 21, 2005Oct 23, 2007Chevron Oronite Company LlcDibenzo[b]perhydroheterocyclic amines and lubricating oil compositions
US7501386Dec 21, 2005Mar 10, 2009Chevron Oronite Company, LlcLubricants for automotive and truck crankcase lubricants; as well as transmission lubricants, gear lubricants, hydraulic fluids, compressor oils, diesel and marine lubricants; superior oxidation inhibition; Phenyl-(1,2,3,4-tetrahydro-quinolin-6-yl)-amine, diphenylamine
US7683017Jun 20, 2007Mar 23, 2010Chevron Oronite Company LlcSynergistic lubricating oil composition containing a mixture of a nitro-substituted diarylamine and a diarylamine
US8003583Dec 21, 2005Aug 23, 2011Chevron Oronite Company LlcBenzo[b]perhydroheterocyclic arylamines and lubricating oil compositions
US8623798Dec 16, 2008Jan 7, 2014Chevron Oronite Company LlcLubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant
US8939184Dec 17, 2007Jan 27, 2015Bridgestone Americas Tire Operations, LlcRubber composition and pneumatic tire using same
US20110124538 *Jul 21, 2009May 26, 2011Albemarle CorporationOctylated Phenyl-Alpha-Naphthylamine Product Mixtures And Production Of Such Mixtures Having A High Content Of Octylated Phenyl-Alpha-Naphthylamine
EP2009082A2Mar 25, 2008Dec 31, 2008Chevron Oronite Company LLCSynergistic lubricating oil composition containing a mixture of a nitro-substituted diarylamine and a diarylamine
EP2077315A1Dec 17, 2008Jul 8, 2009Chevron Oronite Company LLCLubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant