Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3655965 A
Publication typeGrant
Publication dateApr 11, 1972
Filing dateJan 20, 1970
Priority dateFeb 6, 1969
Also published asDE2005294A1, DE2005294B2
Publication numberUS 3655965 A, US 3655965A, US-A-3655965, US3655965 A, US3655965A
InventorsIcre Pierre, Laizier Jacques
Original AssigneeCommissariat Energie Atomique
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Irradiation cell for irradiating a continuously flowing liquid with an electron beam
US 3655965 A
Abstract
A liquid product which is circulated continuously at a variable flow rate and velocity within an elongated tank is irradiated with a beam of accelerated electrons which is directed at right angles to the axis of the tank. One end of the tank is connected to a pipe through which the liquid product to be irradiated is supplied continuously, the pipe being fitted with means for distributing the flow of liquid within the tank. The other end of the tank is connected to a discharge duct having an overflow orifice and a discharge spout fitted with a valve for regulating the depth of liquid within the tank.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Icre et al.

[is] 3,655,965 [451 Apr. 11,1972

[54] IRRADIATION CELL FOR IRRADIATING A CONTINUOUSLY FLOWING LIQUID WITH AN ELECTRON BEAM [72] inventors: Pierre Icre, Versailles; Jacques Laizier,

Vincennes, both of France Commissariat A LEnergle Atomique, Paris, France [22] Filed: Jan. 20, 1970 211 Appl. No.: 4,341 [30] Foreign Application Priority Data Feb. 6. 1969 France ..6902640 [52] U.S. Cl. ..250/45, 21/102, 250/48, 250/49, 250/49.5 TE

[51] Int. Cl ..G01n 21/28, G01n 23/14 [58] Field ofSearch ..2l/102;250/43,45,47,48, 250/49, 49.5 TE

[73] Assignee:

[56] References Cited UNITED STATES PATENTS 1,193,209 8/1916 Recklinghausen ..250/45 2,429,217 10/1947 Brasch ..250/49.5 TE 2,619,894 12/1952 Knepper .250/43 x 2,925,496 2/1960 Zoubeck ..250/49.5 TE 3,056,024 9/1962 Gale ..250/49.5 TE

FOREIGN PATENTS OR APPLICATIONS 1,394,142 2/ 1965 France ..250/49.5 TE

Primary Examiner-Anthony L. Birch Attorney-Cameron, Kerkam & Sutton [57] ABSTRACT A liquid product which is circulated continuously at a variable flow rate and velocity within an elongated tank is irradiated with a beam of accelerated electrons which is directed at right angles to the axis of the tank. One end of the tank is connected to a pipe through which the liquid product to be irradiated is supplied continuously, the pipe being fitted with means for distributing the flow of liquid within the tank. The other end of the tank is connected to a discharge duct having an overflow orifice and a discharge spout fitted with a valve for regulating the depth of liquid within the tank.

4 Claims, 4 Drawing Figures IRRADIATION CELL FOR IRRADIATING A CONTINUOUSLY FLOWING LIQUID WITH AN ELECTRON BEAM This invention relates to a cell for irradiating a liquid product which circulates continuously at an adjustable discharge rate and fluid velocity, especially with a beam of accelerated electrons.

The aim of the invention is more particularly to define the geometry of a cell of this type in order that this latter should be well adapted to the shape of an electron beam which is employed in such a manner as to obtain within the circulating liquid product an irradiation dose which is both of maximum value and generally homogeneous.

Finally, although this application is not intended to imply any limitation whatsoever, the invention is primarily directed to the radiovulcanization of naturalor synthetic latexes which are subjected to a beam of accelerated electrons having an energy level which is especially but not exclusively within the range of 2 to 10 Mev., the power of which can vary between 1 and 10 kw.

To this end, the cell under consideration comprises a tank having an elongated shape whose axis is substantially perpendicular to the direction of the electron beam and is characterized in that one end of said tank is connected to a pipe which serves to provide a continuous supply of liquid product to be irradiated through means fitted in said pipe for distributing the flow of liquid within said tank and the other end of said tank is connected to a discharge duct which comprises an overflow orifice and a discharge spout fitted with a total-opening valve for regulating the depth of liquid within said tank.

Further properties of an irradiation cell as constructed in accordance with the invention will now become apparent from the following description of one exemplified embodiment which is given solely by way of indication, reference being had to the accompanying drawings, wherein:

FIG. 1 is a diagrammatic longitudinal sectional view of the cell under consideration;

FIGS. 2, 3 and 4 are transverse sectional views taken respectively along the lines lI-II, III-III, IV-IV of FIG. 1.

As can be seen from FIG. 1, the irradiation cell considered is mainly composed of a parallelepipedal tank 1 having a generally elongated shape and preferably fabricated from burnished stainless steel in particular for the purpose of overcoming the dangers of coagulation and corrosion under radiation and in order to permit the treatment of any liquid product. The tank 1 is placed horizontally beneath an electron accelerator 2, the electron beam which is delivered by said accelerator being oriented so that the longitudinal axis of the tank 1 should be substantially pei'pendicular to the direction of said beam and disposed according to the scan or length range of this latter.

The tank 1 is provided at both ends with two flanges 3 and 4 for coupling said tank to two pipes 5 and 6, the respective functions of which are to supply the tank with a liquid product to be irradiated and to discharge said product after irradiation, the liquid being circulated within the tank in continuous flow in the direction shown diagrammatically by the arrows 7. The supply pipe 5 (as shown in FIG. 2) is designed in the form of a duct having a generally cylindrical shape and terminating in a coupling end-piece 8 having a transverse cross-section which is identical with that of the tank 3 in order to permit the attachment of said end-piece to the flange 3 by means of a counter-flange 9. Within the end-piece 8, the pipe 5 is provided with a series of small plates 10 which are suitably oriented with respect to the axis of said pipe and disposed fanwise so as to divide the flow of liquid which penetrates into the tank into a series of unitary streams which flow in parallel relation over the whole width of the cell. The length of the pipe 5 and especially of its end-piece 8 is so determined that a stable laminar flow regime is established within the tank and more particularly within the central portion of this latter opposite to the accelerator 2, especially in order to ensure that the velocity diagram within the liquid flow in that region which is subjected to the action of the electron beam should produce a substantially homogeneous overall irradiation as a result of superimposition on the curve of electron distribution along the width and the axis of said beam.

In fact, at the surface of the liquid which is in a laminar state of flow, the stream has maximum velocity along the axis of the tank while receiving a maximum dose rate; at the level of the wall at which the dose rate is of minimum value, the velocity is at a minimum; similarly at the bottom of the stream, the flow velocity is of minimum value at the bottom of the tank at which the dose rate is of minimum value whereas the flow velocity in the vicinity of the surface is close to its maximum value in a zone in which the dose rate is also at a maximum.

This overlap of the curves of distribution of dose rates and of velocities both at the surface and at a depth makes it possible to optimize the dose homogeneity throughout the volume of the irradiated liquid.

Advantageously and in order to obtain the most stable and most suitable laminar flow regime within the central portion of the tank, the length of this latter can readily be adjusted by placing between the flange 3 and the counter-flange 9 any extension section or element which provides the total length of the tank with a value which is suited to the selected flow rate.

Moreover, the transverse dimensions and especially the width of the cell are determined so as to correspond substantially to the width of the electron beam; in this respect, the geometry of the beam can easily be adapted to that of the cell simply by adjusting the height of this latter with respect to the electron accelerator or emitter, the same result being achieved by establishing the level of the liquid product to be irradiated with respect to the cone of divergence of the electron beam. Finally, the depth of liquid which is circulated within the tank is so determined as to be exactly equal to the total penetration of electrons into the liquid considered at the energy level which is adopted. In particular, the absorbed dose and heating of the liquid can readily be controlled in order to prevent coagulation.

In the central portion thereof, the tank 1 is provided opposite to the irradiation apparatus 2 with a metallic window 11 formed by means of a very thin sheet of a suitable metal and especially of aluminum or titanium. Said sheet is maintained against the body of the tank by means of a flange 12 of rectangular shape which is fitted with a seal (not shown in the drawings). The thickness of this window is chosen as small as possible in order to cause only negligible deceleration of electrons at the time of penetration of these latter into the tank. The characteristics of this window are determined in any case as a function of the energy of the incident beam in order to minimize radiation losses. In that portion which is remote from the window 11, the tank 1 is additionally provided with a bottom wall 13 having a small angle of slope in the direction of the discharge pipe 6 in order to assist the flow of the liquid product. Moreover, the central zone of the tank 1 in which the irradiation is carried out is preferably cooled by a continuous flow of a suitable cooling fluid.

To this end, the tank 1 is enclosed within an outer jacket 14 forming between this latter and the wall of the tank a space 15 into which opens a supply pipe 16 and a discharge pipe 17 for a flow of coolant water; that zone of the tank which is enclosed within the outer jacket 14 is advantageously longer than the distance scanned by the electron beam.

FIG. 4 illustrates the cross-section of the pipe 6 for the discharge of irradiated liquid which flows out of the tank in the direction of the arrows 7. This pipe 6 is provided with a counter-flange 18 and attached by means of this latter to the flange 4 of the tank, said pipe being provided with an overflow orifice 19 and with a discharge spout 20 associated with a valve (not shown) which serves to regulate the flow through the overflow orifice 19 and consequently to modify the depth of the liquid product in the tank 1. The pipe is provided with a viewing window 21 which also forms an inspection door for use when the irradiation cell is not in service.

Finally, the equipment of the cell is completed by means of different types of ancillary apparatus for carrying out the remote measurement, control and adjustment of the operating parameters. Thus, the discharge pipe 6 is fitted with a level detector so that the depth of the irradiated liquid product may be continuously checked whilst the tank 1 is provided downstream of the irradiation zone with an electron beam detector for checking the stability of the mean power delivered and consequently of the mean absorbed dose in respect of a given stable flow rate. Temperature control devices are also provided both upstream and downstream of the irradiation zone.

The cell described in the foregoing makes it possible in particular to carry out the continuous irradiation of natural and synthetic latexes with a fiow rate comprised between 1,000 and 3,000 l./h. In this case, the nominal diameter of the supply pipe is 50 mm., the length of the tank in which the flow is converted to the laminar state prior to penetration into the central irradiation zone being equal to 50 cm. The energy of the electron beam is chosen equal to 4.5 Mev. and the useful length of the tank is 18 cm. The thickness of the circulating liquid latex is 2.5 cm., which corresponds to the total penetration of electrons of 4.5 Mev. energy.

It will readily be understood that the invention is not limited in any respect to the exemplified embodiment as hereinabove described or to the field of application which has been more especially contemplated but extends on the contrary to all alternative forms. In particular, the cell under consideration could readily permit the irradiation of any volatile or nonvolatile liquid having variable viscosity, homogeneous products, emulsions or suspensions, as subjected to the effects of an electron beam having essentially variable characteristics or any other radiation source.

What we claim is:

1. A cell for irradiating with a beam of accelerated electrons a liquid product comprising a tank, means for circulating the liquid product continuously at an adjustable flow rate and velocity within said tank, said tank having an elongated shape whose axis is substantially perpendicular to the direction of the electron beam, a pipe providing a continuous supply of the liquid product to be irradiated connected to one end of said tank, means fitted in said pipe for distributing the flow of liquid within said tank, a discharge duct connected to the other end of said tank, an overflow orifice in said duct, a discharge spout for said duct and a total-opening valve in said spout for regulating the depth of liquid within said tank, the length of the tank establishing a stable laminar flow regime within the central portion of said tank receiving the electron beam whereby the electron distribution over the flow velocity of the liquid product provides a homogeneous total dose of irradiation.

2. An irradiation cell in accordance with claim 1, said means for distributing the flow of liquid including a series of small plates rigidly fixed to the internal wall of said supply pipe dividing the total flow into unitary streams at the entrance of said tank.

3. An irradiation cell in accordance with claim 1 including means for adjusting the level of the liquid within said tank for total absorption of electrons within the depth of the liquid.

4. An irradiation cell in accordance with claim 1 said tank having along its longitudinal dimension at least one flange and extension elements connected to said flange to adapt the length of said tank to the rate of flow of the liquid product.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1193209 *Mar 14, 1914Aug 1, 1916The BHausen
US2429217 *May 7, 1942Oct 21, 1947Electronized Chemicals CorpDevice for treatment of matters with high-speed electrons
US2619894 *Jun 6, 1949Dec 2, 1952Bonnie KnepperAir conditioning system
US2925496 *Oct 20, 1954Feb 16, 1960Swift & CoApparatus for obtaining substantially uniform irradiation from a nonuni form source
US3056024 *Dec 2, 1959Sep 25, 1962High Voltage Engineering CorpApparatus for irradiating matter with high energy electrons
FR1394142A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3988588 *May 16, 1975Oct 26, 1976Licentia Patent-Verwaltungs-G.M.B.H.High energy electron irradiation of flowable materials
US4048504 *Feb 25, 1975Sep 13, 1977Sulzer Brothers LimitedMethod and apparatus for treating flowable material
US4294782 *Apr 10, 1979Oct 13, 1981Jerome BauerMethod for substantially instantaneous liquid molding of an article
US4396580 *Mar 18, 1981Aug 2, 1983Avco Everett Research Laboratory, Inc.Fluid-dynamic means for efficaceous use of ionizing beams in treating process flows
US4507265 *May 3, 1982Mar 26, 1985Ebara CorporationApparatus for treating effluent gas by irradiation with electron beams
US4596642 *Jan 10, 1985Jun 24, 1986Ebara CorporationProcess and apparatus for treating effluent gas by irradiation with electron beams
US4748005 *May 3, 1982May 31, 1988Shamrock Chemicals CorporationApparatus and method for radiation processing of materials
US4752450 *Jul 7, 1986Jun 21, 1988Leybold-Heraeus GmbhApparatus for cleaning sulphur and nitrogen containing flue gas
US4777192 *Jul 22, 1983Oct 11, 1988Shamrock Chemicals CorporationApparatus and method for radiation processing of materials
US5416440 *Sep 23, 1992May 16, 1995Raychem CorporationTransmission window for particle accelerator
US5530255 *Feb 17, 1994Jun 25, 1996Raychem CorporationApparatus and methods for electron beam irradiation
US5891573 *Aug 8, 1997Apr 6, 1999Shamrock Chemicals CorporationMethod of providing friable polytetrafluoroethylene products
US6756597Dec 4, 2001Jun 29, 2004Advanced Electron Beams, Inc.Fluid sterilization apparatus
EP0543920A1 *Aug 16, 1991Jun 2, 1993Raychem CorporationParticle accelerator transmission window configurations, cooling and materials processing
WO1994007248A1 *Sep 21, 1993Mar 31, 1994Raychem CorporationParticle accelerator
WO2002058743A2 *Dec 4, 2001Aug 1, 2002Advanced Electron Beams, Inc.Fluid sterilization apparatus
WO2002058743A3 *Dec 4, 2001Jan 3, 2003Advanced Electron Beams IncFluid sterilization apparatus
Classifications
U.S. Classification250/428, 250/435, 976/DIG.442, 422/22, 250/492.1, 250/492.3
International ClassificationG21K5/04
Cooperative ClassificationG21K5/04
European ClassificationG21K5/04