Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3657589 A
Publication typeGrant
Publication dateApr 18, 1972
Filing dateOct 7, 1970
Priority dateOct 20, 1969
Also published asDE2050838A1, DE2050838B2, DE2050838C3, US3733194
Publication numberUS 3657589 A, US 3657589A, US-A-3657589, US3657589 A, US3657589A
InventorsPorta Paolo Della, Rebaudo Mauro
Original AssigneeGetters Spa
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Mercury generation
US 3657589 A
Abstract
Mercury releasing getter devices employing intermetallic compounds of mercury with zirconium and/or titanium such as Zr3Hg and Ti3Hg.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Della Porta et a1. 5] Apr. 18, 1972 [54] MERCURY GENERATION [72] Inventors: Paolo Della Porta; Mauro Rebaudo, both [56] Rem-mm cmd man, UNITED STATES PATENTS [7'31 Assign: Gem's Mil, Italy 3,318,649 5/1967 Keller et a1. ..316/3- [22] Filed: Oct. 7, 1970 3,385,644 5/1963 Della Porta et a1. ..316/16 l 1 1 P N04 78,839 Primary Examiner-Roy Lake I Assistant Examiner-Darwin R. l-lostetter [30] Foreign Application Priority Data Attorney-Murphy and Dobyns Oct. 20, 1969 Italy ..23582-A/69 ABSTRACT 75/20 R, 252/1315, Mercury releasing getter devices employing intermetallic I 316/3 compounds of mercury with zirconium and/or titanium such [51] lnt. Cl. 3 5 zr l-[g and Ti flg [58] Field oiSearch ..252/181.6;313/174,176,177,

8 Claims, 7 Drawing Figures P'ATENTEBAPR I8 |972 SHEE? 10F 2 FIG 13 FIG. 2 1211 1o III (all I 32 INVENTORS PAOLO dELLA POR'I'A MAURO REBAUDO ly 40% m ATTORNEY-5 MERCURY GENERATION Electron tubes containing mercury are well known in the art. In the past these tubes have usually been charged with mercury in its liquid form. However, such a procedure suffers from a number of disadvantages inherent in the storage and handling of liquid mercury due to its toxicity and other difficulties inherent in the handling of a liquid metal.

There is present in the art a long felt need for an alternative to the use of liquid mercury. It has been proposed to introduce mercury into electron tubes in the form of a thermally decomposable compound of mercury. Examples of such prior attempts are disclosed in Rigot, U.S. Pat. No. 3,401,296 relating to the use of mercury pyrophosphate. Another procedure is by the use of a compound of mercury such as mercuric oxide and a reducing agent for the compound of mercury such as zirconium-aluminum alloy as described in della Porta et al., U.S. Pat. No. 3,385,644. Unfortunately, the use of compounds of mercury suffers from a number of disadvantages such as the inherent danger of releasing noxious gases such as oxygen during mercury release.

The release of mercury after the tube has been evacuated and sealed is considered dangerous, if not impossible as the release of oxygen and other gases cause a loss of vacuum and other harmful effects within the tube.

Even if oxygen or other gases are released while the tube is being evacuated, due to mercury generation during the evacuation, the oxygen or other gases can still have harmful effects within the tube, on the electrodes for example.

To minimize the danger of release of oxygen it has been proposed to mix the mercury releasing compound with a nonevaporable getter metal such as zirconium. The intended func tion of this getter material is to sorb the noxious gases which may be released concurrently with mercury release from the compound of mercury.

Another disadvantage of the use of mercuric oxide and a reducing agent is the relatively low temperature of approximately 250 C at which the mercury releasing reductive reaction takes place. This relatively low temperature places an upper limit upon the temperature to which the electron tube can be raised during the degassing procedure which under conventional manufacturing techniques frequently precedes mercury release.

In an attempt to overcome the disadvantages inherent in the use of compounds of mercury it has been suggested in Keller et al., U.S. Pat. No. 3,318,649 to employ an alloy of mercury with magnesium.

Keller also suggests the use of a ternary alloy of mercury, magnesium and nickel.

However it has been shown that binary alloys of magnesium and mercury have generally proved unsatisfactory because of the low temperature at which mercury is released. When the mercury recombines with the magnesium undesirable gases which may have been sorbed by the magnesium can be released. Furthermore evaporation of magnesium can take place at the low temperature at which the mercury is released.

The addition of nickel to form a ternary alloy as suggested by Keller has led to only relatively limited improvements.

Another disadvantage of prior mercury vapor releasing compositions is the relatively low weight percent, frequently less than weight percent, of releasable mercury.

Accordingly, it is an object of the present invention to provide an improved mercury releasing getter device, an improved mercury vapor generating composition and an improved method of charging an electron tube with mercury all of which is substantially free of one or more disadvantages of the prior art.

Another object is to provide a means by which mercury can be generated in evacuated and sealed electron tubes which avoids the danger of gas release.

Another object is to provide a means for mercury generation which avoids the danger of concurrent oxygen release.

A further object is to provide means for mercury generation ture degassing can be performed.

A still further object is to provide means for mercury generation employing a noxious gas sorptive non-evaporable getter material which after mercury release has a sufficient sorptive capacity to perform gettering functions throughout the life of the tube.

Yet another object is to provide a mercury vapor generating composition which has a high weight percent of releasable mercury.

Additional objects and advantages of the present invention will be apparent by reference to the following detailed description thereof and drawings wherein:

FIG. 1 is a top view of a mercury releasing getter device of the present invention;

FIG. 2 is a sectional view taken along the line 22 of FIG.

FIG. 3 is a top view of a modified mercury releasing getter device of the present invention; and,

FIG. 4 is a sectional view taken along line 4-4 of FIG. 3.

FIGS. 5 and 6 are further mercury releasing getter devices.

FIG. 7 is a perspective view of a fluorescent lamp electrode employing a getter device of the present invention.

According to the present invention there is provided a mercury releasing getter device comprising a holder and a mercury vapor generating composition carried by the holder, wherein the mercury vapor generating composition is an intermetallic compound of mercury and one or more metals selected from the group consisting of zirconium and titanium.

The preferred intermetallic compounds useful in the present invention are those of the formula:

Zr ,Ti,,Hg, wherein x and have any value from zero to 13 with the proviso that the sum of x and y is any value from three to 13 and z is one or two. Examples of suitable compounds of the aforementioned formula include among others Zr TiHg, Zr Ti Hg, Zr Ti I-lg Zr,,l-lg, Ti I-lg, as well as Zr Hg and I Ti l-lg. As described by Pietrokowsky in Journal of Metals" (February 1954) pages 219-226, Ti Hg has two crystalline forms, namely fiTi l-lg and -yTi Hg.

In the present invention both are suitable because the temperature at which they release mercury is high enough to permit degassing at high temperatures without danger of mercury release and still is low enough to avoid danger of melting or warping the holder.

The preferred intermetallic compounds employed in the present invention are characterized by having properties, such as for example, thermal stability different from those that could be foreseen based upon the properties of the individual components. Further these intermetallic compounds have characteristic X-ray diffraction spectra. They can be produced by a variety of known procedures such as those described by Pietrokowsky, supra.

The intermetallic compound can be employed in any physical form such as a block, a strip or the like but is preferably employed as a finely divided particulate solid and generally that which passes through a U.S. standard screen of 10 mesh per inch and preferably that which passes through a screen of 70 mesh per inch. Even very fine particles such as those which pass through a screen of 600 mesh per inch can also be employed.

Although the above described intermetallic compounds can be employed alone, in another embodiment of the present invention they are mixed with a non-evaporable getter material. These non-evaporable getter materials are characterized by (l) a sorptive capacity for noxious gases such as oxygen, carbon monoxide, and water vapor, and (2) a vapor pressure at 1,000 C of less than 10 torr. Examples of suitable nonevaporable getter materials include among others zirconium, titanium, tantalum, niobium, vanadium and mixtures thereof, alloys thereof with one another and with other metals such as aluminum, which alloys have satisfactory gettering properties. The preferred non-evaporable getter material is an alloy of from 5 to 30 and preferably l3 to l8 weight percent aluminum balance zirconium. The most preferred getter metal is one of 16 percent aluminum balance zirconium available from SAES Getters S.p.A. Milan, Italy, under the trademark St 101.

The non-evaporable getter material can be employed in any suitable physical form but is preferably employed as a finely divided particulate solid such as one passing through a US. standard screen of mesh per inch and preferably that passing through a screen of 70 mesh per inch and being retained on a screen of 60 mesh per inch. In one embodiment the mixtures of particulate mercury releasing intennetallic compound and particulate getter material is pressed into the cavity of an annular ring whereas in another embodiment this mixture is pressed onto a thin metallic substrate. The weight ratio of intermetallic compound to getter material can vary widely but generally is 100:1 to 1:100 and preferably 50:1 to 1:50. At greater ratios of mercury releasing compound the gas sorptive capacity of the residue is not substantially increased by the getter material. At lower ratios of mercury releasing compound the percentage of releasable mercury in the mixture decreases to an impractical level.

The holder can be in any physical shape which will carry the mercury vapor generating composition. In one embodiment the holder is an annular ring similar to the commonly employed to hold vaporable getter metals such as barium. In another embodiment the holder is a substrate which is preferably metallic and which has the particulate mercury vapor releasing composition embedded in at least one of its surfaces.

The same substrate may be used as a support for other materials which might be useful within the tube such as getter materials.

In a further embodiment the holder is in the form of a wire or rod around which is formed a pill or pellet of the mercury vapor releasing composition.

The present invention is applicable to a wide variety of mercury containing electron tubes examples of which include among others thyratrons, fluorescent light tubes, lasers, mercury rectifiers, various type of alpha numerical display tubes.

Referring now to the drawings and in particular to FIGS. 1 and 2 there is shown a mercury releasing getter device 10 of the present invention. In the getter device 10 the holder is in the form of an annular ring 11 having a cavity 12, and a mercury vapor releasing composition 13 within the cavity 12.

Referring now to FIGS. 3 and 4 there is shown a getter device 30 which is connected to a similar getter device 30 which in turn is connected to yet another similar getter device 30". The getter devices 30,30, 30", etc. form a continuous running length of devices. In the device 30 the holder is in the form of a substrate 31 having the mercury releasing composition 32 in particulate form partially embedded in the upper and lower planar surfaces of the substrate 31. In operation the getter device 30, for example, is separated from the devices 30 and 30" by severing the substrate 31 in the vicinity of the small bridging attachments 33, 34, 35 and 36.

FIG. 5 shows a mercury evaporating getter device 50 in the form of a pellet in which the holder is in the form of a rod 51 having the mercury releasing composition 52 compressed around and supported by said rod.

FIG. 6 shows a mercury evaporating getter device 60 in the form of a pellet in which the holder 61 is a wire of high ohmic resistance in the form of a heating coil 62 around which is formed the mercury releasing composition 63.

According to another aspect of the present invention there is provided an improved method for charging an electron tube with mercury comprising the steps of inserting into the tube the above described mercury releasing compositions preferably by means of one of the above described getter devices and then heating the composition to liberate the mercury. The heating can be accomplished by any suitable means such as by radiation, by high frequency induction heating, or by passing a current through the getter device when it is constructed of a material of high ohmic resistance. The heating is conducted at a temperature which will liberate the mercury from the mercury releasing composition. To a certain extent this temperature will be dependent upon the composition of the intennetallic compound. For Ti l-lg and Zr I-Ig a temperature above 500 C and preferably from 550 C to 950 C is suitable. At temperatures much below 500 C mercury is not released whereas at temperatures above 950 C the release is so rapid that a danger of creating loose particles by thermal fracturing of the alloy exists. Another disadvantage of employing temperatures above 950 C is the danger of undesirable noxious gas release from adjacent portions of the electron tube which tend to also be heated.

An important feature of the present invention is that the thermal decomposition of the intennetallic compound of zirconium and/or titanium with mercury leaves the zirconium and/or titanium gas sorptive such that it functions as a getter metal throughout the life of the tube. The heating of the composition to release mercury is sufficient to activate the getter metal.

Another important feature of the present invention is the ability to add other chemical compositions in mixture with the mercury releasing compound.

The invention is further illustrated by the following examples in which all parts and percentages are by weight unless otherwise indicated. These non-limiting examples are illustrative of certain embodiment designed to teach those skilled in the art how to practice the invention and to represent the best mode contemplated for carrying out the invention.

EXAMPLE I This example illustrates the synthesis of an intennetallic compound useful in the present invention.

Particulate titanium (143.7 g) which passes through a standard screen with 400 mesh per inch is placed in a stainless steel crucible with mercury (200.6 g). The crucible is then closed and heated to about 800 C for about 3 hours. The resultant alloy is determined by X-ray diffraction to consist essentially of the compound 'yTi l-lg.

EXAMPLE 2 The procedure of Example 1 is repeated employing the same times, conditions and ingredients except that the titanium is replaced by zirconium (273.7 g).

The resultant alloy is determined to consist essentially of the compound Zr Hg.

EXAMPLE 3 This example illustrates the use of an intermetallic compound and a non-evaporable getter material.

The yTi Hg (200 mg) of Example 1 is mixed with St 101 alloy (200 mg). Both the Ti l-lg and the St 101 alloy are of particle size such that they pass through a screen of 400 mesh per inch. The resultant mixture is pressed into an annular ring to produce a mercury releasing getter device similar to the device 10 shown in FIGS. 1 and 2, containing a coherent particulate composition 13.

This device is mounted in an electron tube and heated by surrounding the device 10 with a high frequency induction coil to heat the getter device 10 to 950 C for 30 seconds to rellease at least 60 mg of the mercury and activate the St 101 a 0y.

EXAMPLE 4 This example illustrates the manufacture and use of mercury releasing getter devices similar to those shown in FIGS. 3 and 4.

A mixture of Ti Hg g) and St 101 (100 g) is placed on a substrate of steel and pressed into the substrate as described in Italian Pat. No. 746,551 and US. application Ser. No. 33,794 filed May 1, 1970 to produce a strip of getter devices in which the mixture is distributed with a density of 30 mglcm similar to that shown in FIGS. 3 and 4 of the annexed drawings.

The getter device 30 is then placed in a vacuum tube which is then evacuated and the device 30 is heated to 850-900 C for to seconds to release mercury and activate the St 101 getter metal. The tube functions properly with respect to its mercury environment while continuing to sorb gases within the tube.

EXAMPLE 5 The procedure of Example 4 is repeated except that the slits forming the bridging attachments 33, 34, 35 and 36 are omitted and the resultant strip formed into a circle around a fluorescent lamp electrode as shown in F IG. 7.

EXAMPLES 6-8 Compound Example Quantity of Titanium produced (No) (g) 6 191.6 Ti,Hg

7 239.5 Ti Hg 8 287.4 Ti,H g

EXAMPLE 9 This example illustrates the synthesis of a ternary intermetallic compound of the formula Ti Zr l-lg Particulate titanium-zirconium alloy (208.7 g) having 34.1 percent titanium balance zirconium which passes though a standard screen with 400 mesh per inch is placed in a stainless steel crucible with mercury (200.6 g). The crucible is then closed and heated to about 800 C for about 3 hours. The resultant intermetallic compound when heated releases mercury at a temperature approximately 100 C higher than for either Ti Hg or Zr llg.

Although the invention has been described in considerable detail with reference to certain preferred embodiments thereof, it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described above and as defined in the appended claims.

What is claimed is:

1. A mercury releasing getter device comprising a holder and a mercury vapor generating composition carried by the holder, wherein the mercury vapor generating composition is an intermetallic compound of mercury and one or more metals selected from the group consisting of zirconium and titanium.

2. The mercury releasing device of claim 1 wherein the intermetallic compound is one of the formula:

Zr,Ti,,l-lg, wherein x and y have any value from 0 to 13 with the proviso that the sum of x and y is any value from 3 to 13, and z is l or 2 3. A mercury releasing getter device of claim 2 holder and Ti Hg carried by the holder.

4. A mercury releasing getter device of claim 2 holder and Zr l-lg carried by the holder.

5. A mercury releasing getter device comprising a holder and a mercury vapor generating composition and a getter material carried by the holder wherein the mercury vapor generating composition comprises:

A. An intermetallic compound of mercury and one or more metals selected from the group consisting of zirconium and titanium, wherein the getter materials is:

B. a non-evaporable getter material.

6. A mercury releasing getter device of claim 2 comprising an annular ring having therein a coherent particulate mixture of:

A. particulate Ti Hg B. a particulate alloy of 13 to 18 weight percent aluminum balance zirconium, wherein the weight ratio of A;B is 50:1 to 1:50.

7. A mercury releasing getter device comprising a metallic strip having embedded therein:

A. particulate Ti l-lg B. a particulate alloy of 13 to 18 weight percent aluminum balance zirconium, wherein the weight ratio of A;B is 50:1 to 1:50.

8. A mercury releasing getter device for introducing mercury into a fluorescent lamp, said device comprising:

A. a substantially planar metallic strip;

B. particulate Ti Hg embedded in at least one surface of the strip, wherein the Ti Hg has a particle size such that it passes through a [1.8. standard screen of 70 mesh per inch; said strip being formable into-a circle around an electrode of the fluorescent lamp whereby thermal decomposition of the Ti l-lg releases mercury into the lamp leaving gas sorptive titanium on the strip.

comprising a comprising a

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3318649 *Oct 11, 1963May 9, 1967King Lab IncCharging electronic tubes with mercury
US3385644 *Jan 5, 1966May 28, 1968Getters SpaProcess for filling with mercury discharge tubes and for absorbing residual noxious gases
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4107565 *Mar 31, 1976Aug 15, 1978Tokyo Shibaura Electric Co., Ltd.Mercury emitting structure
US4464133 *Apr 5, 1982Aug 7, 1984Gte Laboratories IncorporatedMethod of charging a vessel with mercury
US4539508 *Nov 12, 1982Sep 3, 1985U.S. Philips CorporationMethod of producing a low-pressure mercury vapor discharge lamp
US4553067 *Oct 9, 1984Nov 12, 1985Gte Products CorporationMethod of dispensing mercury into a fluorescent lamp and lamp to operate with method
US4691141 *Oct 11, 1985Sep 1, 1987Gte Laboratories IncorporatedDosing composition for high pressure sodium lamps
US4754193 *Nov 8, 1985Jun 28, 1988Gte Products CorporationMercury dispenser for arc discharge lamps
US5022882 *Nov 19, 1990Jun 11, 1991Gte Products CorporationArc tube dosing process for unsaturated high pressure sodium lamp
US5026311 *Nov 13, 1990Jun 25, 1991Gte Products CorporationArc tube fabrication process
US5825127 *May 28, 1996Oct 20, 1998Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen MbhMethod for producing a cap band for discharge lamps
US5830026 *Aug 26, 1997Nov 3, 1998Saes Getters S.P.A.Mercury dispensing device
US5831385 *Jun 7, 1995Nov 3, 1998Saes Getters S.P.A.Mercury dispensing composition containing Cu-Si alloy promoter
US5846109 *Sep 30, 1996Dec 8, 1998General Electric CompanyOxygen control agents for fluorescent lamps
US5916479 *Aug 26, 1997Jun 29, 1999Saes Getters S.P.A.Mercury dispensing device
US6107737 *Nov 21, 1996Aug 22, 2000Saes Getters, S.P.A.Device for dispensing mercury, sorbing reactive gases, shielding electrodes in fluorescent lamps and a process for making such device
US6679745Oct 25, 2001Jan 20, 2004Saes Getters S.P.A.Method for the manufacture of mercury dispenser devices to be used in fluorescent lamps
US6680571 *Nov 17, 1999Jan 20, 2004Saes Getters S.P.A.Device for introducing small amounts of mercury into fluorescent lamps
US6781303Dec 6, 2001Aug 24, 2004Light Sources, Inc.Mercury vapor lamp amalgam target
US6787980 *Sep 19, 2001Sep 7, 2004Matsushita Electric Industrial Co., Ltd.Mercury-containing material, method for producing the same and fluorescent lamp using the same
US6910932Apr 12, 2001Jun 28, 2005Advanced Lighting Technologies, Inc.Solid mercury releasing material and method of dosing mercury into discharge lamps
US7288882Feb 23, 2007Oct 30, 2007E.G.L. Company Inc.Lamp electrode and method for delivering mercury
US7662305 *Jan 5, 2006Feb 16, 2010Saes Getters S.P.A.Mercury dispensing compositions and device using the same
US7674428Jul 7, 2005Mar 9, 2010Saes Getters S.P.A.Mercury dispensing compositions and manufacturing process thereof
US7976776Jan 7, 2010Jul 12, 2011Saes Getters S.P.A.Mercury dispensing compositions and manufacturing process thereof
US7982383Dec 12, 2008Jul 19, 2011Saes Getters S.P.A.Mercury dispensing devices with a reduced particle loss
US8062585Jun 21, 2007Nov 22, 2011Saes Getters S.P.A.Mercury releasing method
US8076848Dec 1, 2009Dec 13, 2011Saes Getters S.P.A.Mercury dispensing system for fluorescent lamps
US8253331Apr 28, 2010Aug 28, 2012General Electric CompanyMercury dosing method for fluorescent lamps
US8427051Jul 7, 2010Apr 23, 2013Saes Getters S.P.A.Support for filiform elements containing an active material
US8453892Feb 15, 2011Jun 4, 2013Saes Getters S.P.A.Method and system for the controlled dispensing of mercury and devices manufactured through this method
US8816583May 13, 2013Aug 26, 2014Saes Getters S.P.A.Mercury dosing composition
CN1086504C *Apr 8, 1996Jun 19, 2002工程吸气公司Mercury dispensing composite material, nercury dispensing device containing same and use thereof
CN100573804CJul 7, 2005Dec 23, 2009工程吸气公司Mercury dispensing composition and manufacturing process thereof
CN101436510BDec 28, 2007Dec 15, 2010喜星素材株式会社Getter composition and device for introducing of mercury into fluorescence lamp for BLU
DE10047440B4 *Sep 21, 2000Apr 29, 2004Sli Lichtsysteme GmbhTrägermaterial
DE19528390A1 *Aug 2, 1995Feb 6, 1997Sli Lichtsysteme GmbhMetallband, insbesondere Stahlband, zur Herstellung von Schilden für den Einbau in insbesondere Niederdruck-Entladungslampen
EP0228005A2 *Dec 12, 1986Jul 8, 1987Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbHStorage element for dosing and introducing liquid mercury into a discharge lamp
EP0691670A2Jul 3, 1995Jan 10, 1996Saes Getters S.P.A.A combination of materials for mercury-dispensing devices, method of preparation and devices thus obtained
EP0737995A2 *Apr 9, 1996Oct 16, 1996Saes Getters S.P.A.A combination of materials for integrated getter and mercury-dispensing devices and devices thus obtained
EP1953800A1Jul 7, 2005Aug 6, 2008Saes Getters S.P.A.Mercury dispensing compositions
WO1997000532A1 *May 28, 1996Jan 3, 1997Patent Treuhand Ges Fuer Elektrische Gluehlampen MbhProcess for manufacturing a cap strip for discharge lamps and a cap strip for discharge lamps
WO1997019461A1 *Nov 21, 1996May 29, 1997Porta Massimo DellaProcess for producing a device for mercury dispensing, reactive gases sorption and electrode shielding within fluorescent lamps and device thus produced
WO1997021239A1 *Dec 5, 1996Jun 12, 1997Getters SpaProcess for manufacturing shields of different size for fluorescent lamps and shields produced through such a process
WO2010066611A1 *Dec 1, 2009Jun 17, 2010Saes Getters S.P.A.Mercury dispensing system for fluorescent lamps
WO2011006811A1Jul 7, 2010Jan 20, 2011Saes Getters S.P.A.Support for filiform elements containing an active material
WO2011104145A1Feb 15, 2011Sep 1, 2011Saes Getters S.P.A.A method and system for the controlled dispensing of mercury and devices manufactured through this method
WO2013179167A1May 13, 2013Dec 5, 2013Saes Getters S.P.A.Improved mercury dosing composition
WO2015052604A1 *Sep 15, 2014Apr 16, 2015Saes Getters S.P.A.A combination of materials for mercury-dispensing devices and devices containing said combination of materials
Classifications
U.S. Classification313/556, 252/181.6, 313/490, 445/31, 313/561, 445/55
International ClassificationH01J7/00, H01J9/38, H01J9/395, H01J17/02, H01J17/22, H01J7/18
Cooperative ClassificationH01J9/395
European ClassificationH01J9/395