Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3659552 A
Publication typeGrant
Publication dateMay 2, 1972
Filing dateDec 15, 1966
Priority dateDec 15, 1966
Also published asDE1621394A1
Publication numberUS 3659552 A, US 3659552A, US-A-3659552, US3659552 A, US3659552A
InventorsThomas F Briody
Original AssigneeWestern Electric Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Vapor deposition apparatus
US 3659552 A
A vapor deposition apparatus includes a susceptor formed as an annulus about a vertical axis and having pockets on the inner, vertical wall adapted to support substrates therein. Means rotate the annulus at speeds to effect a centrifugal retaining force on substrates so supported. Inductive heating means is provided.
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Briody [451 May 2,1972

[54] VAPOR DEPOSITION APPARATUS [72] Inventor: Thomas F. Briody, Bethlehem, Pa.

[73] Assignee: Western Electric Company, Incorporated,

New York, NY.

[22] Filed: Dec. 15, 1966 [21] App1.No.: 601,885

52 us. Cl .Q ..11s 49.5

[51] Int. Cl ..C23c 13/08 [58] Field of Search ..118/48-49.5, 52-56; 269/55, 56, 57

[56] References Cited UNITED STATES PATENTS 2,767,682 10/1956 Smith... ..118/49 2,768,098 10/1956 l-loppe ....1 18/49 X 2,828,225 3/1958 Goetzel et a1... ..117/119 2,885,997 5/1959 Schwindt ..118/49 Primary Examiner-Morris Kaplan Attorney-J. L. Landis, H. J. Winegar and R. P. Miller [57] ABSTRACT -A vapor deposition apparatus includes a susceptor formed as an annulus about a vertical axis and having pockets on the inner, vertical wall adapted to support substrates therein. Means rotate the annulus at speeds to effect a centrifugal retaining force on substrates'so supported. Inductive heating means is provided.

8 Claims, 5 Drawing Figures Patented May 2, 1972 3,659,552

2 Sheets-Sheet l A r TORNEV Patented May 2, 1972 3,659,552

2 Sheets-Sheet 2 VAPOR DEPOSITION APPARATUS This invention relates to apparatus for coating articles and, in particular, to apparatus for epitaxially depositing coatings of semiconductor material onto slices of such material. Accordingly, the general object of this invention is to provide new and improved apparatus of such character.

The production of epitaxially deposited semiconductor slices, such as silicon, requires special techniques to insure uniformity of deposited material. For example, in a commonly assigned copending application of James T. Hartman et al., Ser. No. 287,051, filed June ll, 1963, now abandoned methods and apparatus are described that teach the placing of silicon slices onto a horizontal, circular heating plate and the rotation of the plate about its principal axis. The plate is placed within a bell jar and heated inductively from within the bell jar by a pancake-shaped r.f. coil adjacent to the plate. A carrier gas (e.g., hydrogen) saturated with a halide of the semiconductor involved (e.g., silicon tetrachloride) is introduced from below and passes upwardly along the axis of the rotating heating plate through a central orifice thereof. Hartman et al. provide epitaxially deposited semiconductor slices of high quality and high uniformity. However, the number of slices that can be uniformly treated by the Hartman et al. apparatus is limited (for example, to the neighborhood of twenty l A-inch-diameter slices).

Other commercial machines, capable of treating larger quantities (e.g., the neighborhood of sixty to seventy lV4-inchdiameter slices), generally suffer nonuniform epitaxial deposits among the slices.

In forming an epitaxial layer of silicon on silicon slices, it is imperative for large commercial production that the silicon be deposited uniformly thereon. In the past, epitaxial reactors have been incapable of handling large quantities of silicon slices while providing deposition in a uniform manner.

Therefore, it is an object of this invention to provide new and improved apparatus for coating, in a unifonn manner, large quantities of articles.

It is a specific object of this invention to provide novel apparatus for uniformly producing epitaxial deposits onto large numbers drum semiconductor slices. (e.g.,

The foregoing and other objects are accomplished in accordance with certain features of the invention by providing a hollow cylindrical drum adapted to house a plurality of articles, such as semiconductor slices, within its inner surface. The drum is constructed of material to facilitate inductive heating thereof, such as graphite. The drum may have a plurality of recessed portions, within its inner surface, with flat surfaces inclined at a small acute angle e.g., 3) with the principal axis for contact with flat slices. The recessed portions can be oriented circumferentially in one or more rows. The drum is rotated within a bell jar. A vapor for providing an epitaxial deposit of semiconductor material onto the slices may include a carrier gas, such as hydrogen, saturated with a halide of the semiconductor involved, as silicon tetrachloride.

Means are provided for rotating the hollow drurn about its principal vertical axis during the deposition. An induction coil encloses the bell jar in order to heat the drum inductively. The apparatus is covered by a Faraday shield to prevent undesired electrostatic interference.

In accordance with other features of the invention, articles (such as semiconductor slices) can be heated and/r coated with a suitable material (such as by epitaxially applying deposits thereto) by centrifugally forcing the articles against the surface of a support that is inductively heated in order that the articles be conductively heated by the support. The articles can be placed against internal corresponding inclined recessed surfaces of a hollow rotatable drum; the drum rotated with its principal axis oriented in the vertical direction so that centrifugal force causes the articles to better contact the drum; the drum covered by a bell jar; and the drum inductively heated from without the bell jar to heat the articles by conduction. The bell jar is enclosed by a Faraday shield and raised and lowered along a guided path to permit an operator to remove the heated and/or coated articles from the drum and to replace those articles with other articles to be heated and/or coated. The vapor, such as hydrogen saturated with silicon tetrachloride, which is used for coating the articles, is directed along the principal axis toward the bell jar causing dispersion thereof in a manner to substantially uniformly affect the exposed surfaces of the slices.

Other objects, advantages and features of the invention will be apparent from the following detailed description when read in conjunction with the appended drawings in which:

FIG. 1 is an elevational view, partly in section, of deposition apparatus including a work holder in accordance with the invention;

FIG. 2 is a perspective view, in section, of a portion of the work holder shown in FIG. 1, in accordance with the specific embodiment of the invention, illustrating how a slice is oriented within a recessed portion therein;

FIG. 3 is a side view, in section, of the work holder taken along the line 3-3 of FIG. 2;

FIG. 4 is an elevational view of a different work holder suitable for use with the embodiment of the invention shown in FIG. 1; and

FIG. 5 is a perspective view, in section, of a recessed portion of the work holder shown in FIG. 4, illustrating how a slice fits therewithin.

GENERAL ARRANGEMENT Referring now in detail to the drawings, and particularly to FIGS. 1, 2, and 3, the illustrative embodiment of the invention concerns methods and apparatus for heating and/or coating articles, including, for example, the epitaxial deposition of semiconductive coatings onto a plurality of silicon slices 10- 10, one of which is shown in FIG. 2. A typical slice may measure l'A-inch diameter with a thickness of 5% to 6% mils. The apparatus includes a high capacity epitaxial reactor 11, as shown in FIG. 1. The reactor 11 includes a base member or housing 12 upon which a bell jar 13 mates therewith. The bell jar 13 is constructed of inert, heat-resistant material, such as quartz. Within the bell jar 13, a rotatable horizontal base plate 14, preferably of quartz, holds a hollow drum-like work holder 16 having inclined recessed portions l7-l7 (FIG. 2), each of which portions holds one of the slices 10. In the embodiment of FIG. 1, the drum 16 includes a plurality of removably mounted annular members, such as graphite rings l515, which are adapted to be heated inductively. As illustrated in FIG. 3, a recessed portion 17 includes a flat face 18, inclined at a small angle 4:, preferably less than l5 and desirably in the neighborhood of 3, from the vertical. Each of the recesses 17-17 has a U-shaped wall 19 surrounding the face 18, forming pockets for holding the silicon slices 10-10. Spacers 21- 21 are inserted within holes 22--22 disposed around the rims of the graphite rings 15 to couple the rings together as a single drum 16, as shown in FIG. 1.

The support plate 14 is affixed to one end of a quartz support tube 23. The other end of the support tube 23 is coupled to a flanged end 24 of a hollow shaft 26 that is adapted to rotate within a bearing 27 which provides an air tight seal within the housing 12. A quartz gas tube 28, concentric within the shaft 26, extends from below the center of the drum 16, along its principal axis, down through the tube 23 and hollow shaft 26 to an inlet 29 to permit gas to be introduced therethrough into the bell jar 13, of the reactor 11.

A vacuum pump 31 is coupled to the housing 12 in order to remove air from the bell jar 13.

A spur gear 34 is fitted onto the hollow shaft 26 so as to mesh with a second spur gear 36 affixed to a drive shaft 37. A motor 38, from without the reactor 11, is coupled to drive the shaft 37 by a magnetic coupler 39. Hence, the motor 38 causes the drum-like work holder 16 to rotate.

Several horizontal quartz members 40-40 are oriented between the base member 12 and the rotatable support plate 14 to reflect heat toward the drum 16 so that the temperature gradient throughout the drum 16 stays relatively uniform.

An induction heating coil 41, concentric with the graphite rings 15-15, circumferentially surrounds the outer periphery of the bell jar 13. Radio frequency (r.f.) energy is applied to the induction coil 41 so that the graphite rings 15 are heated by induction. Hence, the slices -10 held within the pockets 17-17 can be heated by conduction from the drum 16. By way of illustration, the graphite rings can be heated by r.f. energy in the neighborhood of 100 kilowatts at a frequency of 10 kilohertz. A Faraday shield 42, cooled by a fluid, such as water, surrounds the induction coil 41 to limit undesired electrostatic interference caused by outgoing radiation due to the energy provided to the induction coil 41. Also, the Faraday shield 42 serves to lessen radiating heat from the reactor so that surrounding work area is not uncomfortable.

The Faraday shield 42, induction coil 41, and bell jar 13 ar joined together by a clamping member 43 so that they can be lowered or raised in unison along with suitable guides 44-44.

STRUCTURE OF GRAPHITE RINGS 15-15 A perspective section of one graphite ring 15 is shown in FIG. 2. The recessed portion 17 includes a flat face 18 inclined at the small acute angle (1: (e.g., 3) with the principal axis, with a U-shaped wall 19 rimming the face 18 to form a pocket of sufficient dimension to house a slice 10. As illustrated in FIG. 3, the face 18 is inclined in order to hold the slice 10 both at rest and when centrifugal force is radially applied.

ARRANGEMENT OF THE SLICE IN THE RINGS 15 In one embodiment, each of the rings 15-15 of of 11-inch diameter has a single row of pockets 17 around its internal periphery for holding a plurality of slices 10-10, for example, 20 in number. A plurality of rings 15 can be stacked, one upon another, to form a single drum 16, in the manner shown in FIG. 1, so that, with five rings, 100 slices can be treated at one time.

METHOD OF OPERATION Initially, the bell jar 13, the induction coil 41, and the Faraday shield 42 are raised in unison along the guides 44- 44. Each of the graphite rings 15-15, forming the drum 16, can be easily removed by an operator to enable easy insertion of semiconductor slices 10 within each of the recessed pockets 17-17 of the rings 15. The bottom graphite ring 15 fits onto spacers 21 coupled to the base plate 14. Each succeeding graphite ring 15 fits onto similar spacers 21-21 that are inserted into corresponding holes 22 of its preceding graphite ring.

In lieu of removing one or more of the graphite rings, inserting the slices into the rings, and reinstalling the graphite rings onto the base plate, an operator, instead, can place the silicon slices 10-10 into the pockets 17-17 of the graphite rings 15 directly without intermediately removing the rings.

The bell jar 13, the r.f. coil 41 and the Faraday shield 42 then are lowered into place, along the guides 44-44, so that the bell jar 13 makes intimate contact with the base member 12. The vacuum pump 31 is actuated so that the air within the bell jar 13 is removed. Inert gas, such as nitrogen or helium, is then introduced to atmospheric pressure. Radio frequency energy is then supplied to the induction coil 41 to inductively heat the graphite rings 15 while hydrogen is introduced into the bell jar 13, creating an environment suitable for epitaxial deposition. Meanwhile, suitable fluid, as water, flows through the Faraday shield 42 to limit the excessive heat which may radiate.

The motor 38 is started to rotate the graphite rings 15-15 as a unit through the magnetic coupler 39 and the gears 36 and 34.

Typically, the motor speed is set to rotate the graphite rings 15 from about ID to about 200 RPM.

A carrier gas, such as hydrogen, saturated with a halide of the semiconductor involved, such as a 1 percent mixture of silicon tetrachloride, is introduced into the inlet 29. The vapor is dispersed through the quartz gas tube 28, which does not rotate.

A complete deposition cycle takes approximately 2 hours to heat, to stabilize, and to deposit. The deposition time to produce epitaxial deposits.(typically from 7 to 14 microns) is relatively short; the rate of deposition preferably is 1 micron per minute.

ALTERNATE ARRANGEMENT FIG. 4 shows an alternate embodiment of a workholdcr adapted to be inductively heated-hereinafier termed susceptor. The susceptor 50 is an integral unit and is a hollow drum having pockets 51 therewithin for holding a plurality of semiconductor slices 10. The pockets 51 are oriented in a plurality of rows 52 to 57. Each of the rows 52 through 57 contains equally circumferentially spaced pockets 51 about the internal periphery of the susceptor 50. For example, in FIG. 4, six rows of 20 pockets each hold a total of I20 slices for treatment at one time. 7

FIG. 5 illustrates a circular pocket for housing a slice 10. The circular pocket 51 is one of several possible configurations. Other suitable choices, such as the U-shaped pocket 17 shown in FIG. 2,can be used. The pocket 51, shown in FIG. 5, in a similar manner, is inclined at a small acute angle with the principal axis, such as 3.

The susceptor 50 can be loaded and unloaded with slices 10 without removing the susceptor from its base plate 14.

A susceptor that was constructed with pockets inclined at a 15 angle produced, upon testing, deposits which were not so uniform as the susceptors having 3 inclined pockets.

In a preferred commercial operation, two epitaxial reactors 11 are operated side by side with common electrical control apparatus so that, when slices are treated in one unit, the other unit can be loaded and unloaded.

While several specific embodiments of the invention have been described in detail hereinabove, it will be obvious that various modifications can be made from the specific details described without depoarting from the spirit and scope of the invention. In particular, while the invention is particularly advantageous for use in the epitaxial deposition of coatings on the semiconductor slices, the invention may be practiced for depositing coatings onto articles in general.

As used in the claims, the term drum" is to be construed broadly to include both the one-piece drum and the multipiece drum as taught herein.

What is claimed is:

1. Apparatus for coating articles with a coating material, which comprises:

a vertically positioned, hollow, rotatable drum having a plurality of article-receiving pockets formed at intervals along its internal surface, within which articles to be coated are placed so that the surfaces to be coated are ex- P means for rotating said drum about its principal axis so that centrifugal force causes said articles to have more intimate contact with the drum;

means for impinging said coating material against the ex posed surfaces of said articles, while said drum is rotating, to coat the exposed surfaces of the articles;

the drum being made of heat-conductive material;

means for heating the drum, while rotating, to heat the articles by conduction through said drum; and

the impinging means comprising means for introducing a vapor coating material into said drum along its principal axis.

2. The apparatus of claim 1, wherein:

the drum is constructed of a material susceptible of being inductively heated; and

an r.f. induction coil is coupled external to, but in cooperating relationship with said drum to inductively heat said drtu'n by r.f. energy provided by said coil.

3. The apparatus of claim 1, for coating articles having flat surfaces, wherein each pocket is formed with a flat interior wall inclined at an angle to the vertical, against which a flat surface of the article is placed to hold the article at an angle to the vertical.


4. Apparatus for depositing an epitaxial layer of semiconductive material on a plurality of semiconductor slices, comprising:

a. a bell jar;

b. a hollow, rotatable drum adapted to be inductively heated, within said bell jar, having its principal axis oriented vertically, said drum being adapted to hold semiconductor slices on its internal surface with the surfaces of the slices to be coated exposed;

c. means for introducing a carrier gas containing a heatdecomposable compound of the semiconductor involved along said principal axis and toward said bell jar so as to cause the gas to impinge upon the exposed surfaces of said slices;

d. means for rotating said drum about its principal axis so that centrifugal force causes said slices to have more intimate contact with said drum; and

e. means, external to said bell jar, for inductively heating said drum to heat the slices by conduction through the drum.

5. The apparatus as claimed in claim 4, wherein said drum contains pockets formed at intervals along its internal surface for holding semiconductor slices, each pocket containing a slice-engaging flat surface at an acute angle with the vertical.

6. The apparatus as claimed in claim 5, wherein said acute angle is approximately 3.

7. in an epitaxial growing apparatus including a bell jar,

means within said bell jar susceptible of being inductively heated for holding semiconductor slices, means for introducing a carrier gas including a halide of the semiconductor involved into said bell jar, means for evacuating said bell jar, means external to said bell jar for inductively heating said susceptible means, and a Faraday shield enclosing said inductive heating means, the improvement wherein:

said susceptible means is a hollow drum having its principal axis oriented in the vertical direction;

said susceptible means is adapted to hold semiconductor slices on its internal surface;

said carrier gas is introduced along said principal axis; and

means are provided for rotating said drum about its principal axis.

8. Apparatus for vapor plating articles comprising the combination of a hermetically sealed chamber, an electrically conductive article support, means for rotatably mounting said article support within said enclosure, said support having a generally radially inwardly facing article engaging portion, means for rotating said article support whereby articles positioned against said portion are at least partially held in place by centrifugal force, an electric coil positioned for inducting heating current in said support, and vapor outlet means positioned within said enclosure for directing vapor over the heated articles.

UNITED PATENT CERTIFICATE OF CORRECTION 3,659,552 Dated May 2, 1972 Patent No.

Thomas F. Briody Inventor( s) p It is certified that error appears in the above ideritified patent and that said Letters Patent are hereby corrected as shown below:

7 Column 1, line 42 (Spec. page 2, line 13) "drum" should be --of--; I

line 50 (Spec. page 2,. line 22) omitted after single. M Q I v Column 3, line 31 (Spec. page 7, line 1) second "of" should be deleted. I

I Column 4, line 37 (Spec; page 9, litre 23) I "depoarting" should be --departing--.

Signed and sealed this 3rd day of July 1973.

(SEAL) Attest:

EDWARD M.FLETCHER,JR.; Rene Tegtmever Attesting Officer Acting Commissioner of Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2767682 *Jun 26, 1953Oct 23, 1956Syntron CoVaporizing apparatus for producing selenium rectifiers
US2768098 *Sep 7, 1951Oct 23, 1956Siemens AgMethod and apparatus for precipitating metal from the vaporous state onto plates, particularly for the production of selenium coated rectifier plates
US2828225 *Mar 1, 1954Mar 25, 1958Sintercast Corp AmericaMethods of infiltrating high melting skeleton bodies
US2885997 *Feb 6, 1956May 12, 1959Heraeus Gmbh W CVacuum coating
US2906236 *May 11, 1954Sep 29, 1959Syntron CoRevolving cylindrical frame for selenium depositors
US3019129 *Aug 10, 1959Jan 30, 1962Nat Res CorpApparatus and process for coating
US3131098 *Jan 31, 1961Apr 28, 1964Merck & Co IncEpitaxial deposition on a substrate placed in a socket of the carrier member
US3148085 *Apr 13, 1961Sep 8, 1964Bell Telephone Labor IncMethod and apparatus for fabricating semiconductor devices
US3301213 *Oct 23, 1962Jan 31, 1967IbmEpitaxial reactor apparatus
US3329524 *Jun 12, 1963Jul 4, 1967Temescal Metallurgical CorpCentrifugal-type vapor source
US3408982 *Aug 25, 1966Nov 5, 1968Emil R. CapitaVapor plating apparatus including rotatable substrate support
US3424629 *Dec 13, 1965Jan 28, 1969IbmHigh capacity epitaxial apparatus and method
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4018184 *Jul 28, 1975Apr 19, 1977Mitsubishi Denki Kabushiki KaishaApparatus for treatment of semiconductor wafer
US4047496 *Aug 25, 1975Sep 13, 1977Applied Materials, Inc.Epitaxial radiation heated reactor
US4419332 *Oct 21, 1980Dec 6, 1983Licentia Patent-Verwaltungs-G.M.B.H.Semiconductors, heating pipe
US4653428 *May 10, 1985Mar 31, 1987General Electric CompanySelective chemical vapor deposition apparatus
US4672210 *Sep 3, 1985Jun 9, 1987Eaton CorporationFor treating a semiconductor wafer
US4772356 *Jul 3, 1986Sep 20, 1988Emcore, Inc.Gas treatment apparatus and method
US4838983 *Mar 18, 1988Jun 13, 1989Emcore, Inc.Advancing semiconductor substrate along circular path
US5438181 *Dec 14, 1993Aug 1, 1995Essex Specialty Products, Inc.Apparatus for heating substrate having electrically-conductive and non-electrically-conductive portions
US6157003 *Oct 27, 1998Dec 5, 2000Persys Technology, Ltd.Furnace for processing semiconductor wafers
US6476366 *Apr 18, 2001Nov 5, 2002Moeller GmbhDevice for degassing and brazing preassembled vacuum interrupters using inductive heating
US8540818 *Apr 26, 2010Sep 24, 2013Mitsubishi Materials CorporationPolycrystalline silicon reactor
US20100269754 *Apr 26, 2010Oct 28, 2010Mitsubishi Materials CorporationPolycrystalline silicon reactor
US20130149077 *Dec 13, 2011Jun 13, 2013Intermolecular, Inc.Method and apparatus for controlling force between reactor and substrate
DE3540628A1 *Nov 15, 1985Jul 3, 1986Sony CorpDampfniederschlagsverfahren und vorrichtung zu seiner durchfuehrung
WO1985002417A1 *Nov 20, 1984Jun 6, 1985Gemini Research IncMethod and apparatus for chemical vapor deposition
WO2000008401A1 *Aug 2, 1999Feb 17, 2000Gideon DrimerFurnace for processing semiconductor wafers
WO2013083196A1 *Dec 8, 2011Jun 13, 2013Applied Materials, Inc.Substrate holder for full area processing, carrier and method of processing substrates
U.S. Classification118/725, 118/730, 250/440.11
International ClassificationC23C16/458, C30B25/12, H01L21/00, C23C16/46
Cooperative ClassificationC23C16/46, C30B25/12, H01L21/68771, C23C16/4588
European ClassificationH01L21/687S16, C23C16/458D4B, C30B25/12, C23C16/46
Legal Events
Mar 19, 1984ASAssignment
Owner name: AT & T TECHNOLOGIES, INC.,
Effective date: 19831229