Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3661205 A
Publication typeGrant
Publication dateMay 9, 1972
Filing dateApr 16, 1971
Priority dateApr 24, 1970
Publication numberUS 3661205 A, US 3661205A, US-A-3661205, US3661205 A, US3661205A
InventorsBelorgey Roger
Original AssigneeSchlumberger Technology Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Well tool anchoring system
US 3661205 A
Abstract
An illustrative embodiment of the invention includes upper and lower anchoring members for temporarily securing a well tool in a well bore. The upper and lower anchoring members are pivotally supported from the central body member of the tool and respectively coupled to upper and lower movable slide blocks or driven pistons. The slide blocks are, in turn, moved by a two phase hydraulic transmission system whose pressure is controlled by a movable driving piston having two different cross sectional piston areas. The driving piston's motion is provided by a reversible electric motor via a gear box and threaded driving screw. This arrangement provides for low pressure fast moving initial deployment of the anchoring means followed by subsequent high pressure, low displacement anchoring force.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

[ 51 May 9, 1972 ABSTRACT low displace- 10 Claims, 1 Drawing Figure Primary Examiner-James A. Leppink Attorney-Ernest R. Archambeau, Jr., John P. Sinnott, Stewart F. Moore, Edward M. Roney, William R. Sherman and William J. Beard An illustrative embodiment of the invention includes upper and lower anchoring members for temporarily securing a well tool in a well bore. The upper and lower anchoring members are pivotally supported from the central body member of the tool and respectively coupled to upper and lower movable slide blocks or driven pistons. The slide blocks are, in turn, moved by a two phase hydraulic transmission system whose pressure is controlled by a movable driving piston having two different cross sectional piston areas. The driving pistons motion is provided by a reversible electric motor via a gear box and threaded driving screw, This arrangement provides for low pressure fast moving initial deployment of the anchoring means followed by subsequent high pressure ment anchoring force.

166/65 R, 166/104, 166/212 ...E21b 43/00, E21b 23/00 166/65, 104, 120,212

a mm m 68.8M WWmr 360C LPRD WELL TOOL ANCHORING SYSTEM Inventor: Roger Belorgey, Taverny, France Assignee: Schlumberger Technology Corporation,

New York, N.Y.

Filed: Apr. 16, 1971 Appl. No.: 134,775

Int.Cl..1,... Field oiSearch References Cited UNlTED STATES PATENTS United States Patent Belorgey PATENTED AY 1912 Roge r Belorgy INVENTOR A TTORNEY WELL TOOL AN CHORING SYSTEM BACKGROUND OF THE INVENTION This invention relates to well tools and more particularly to anchoring systems permitting a wireline measuring probe to be temporarily secured at a desired depth in a well bore.

In modern oil exploration it has become common practice to make measurements in a well bore by means of various measuring instruments or probes which may be suspended by a wireline into the well. Certain types of these measurements require the probe to be firmly anchored in the well at a depth which may be predetermined. In addition, such measurements may require the tool to be re-positioned to other points in the well bore where it again may be anchored in a rigid manner with respect to the well while the measurement is being made. For example, well fluid sampling apparatus, fluid flow meters or fluid analyzers used in production logging may require this type of anchoring and/or movement through the well bore. Moreover, in the case of offshore wells drilled from floating barges or ships the movement of the waves is sometimes transmitted through the cable to the underground probe. Accordingly, this cable movement requires that the underground apparatus be anchored against the wall of the well bore while a measurement is being made rather than simply attempting to stop the movement of the cable at the surface.

There are a large number of prior art well too] anchoring systems, in particular, extendible slip-type anchoring systems used in anchoring well plugs or packers in position in a cased borehole are particularly numerous. The energy required for setting such an anchoring device may be applied by the weight of the drill string in the case of tubing or, in the case of a wireline operated device, this energy may be stored in the apparatus itself in some form. Such stored setting energy may come from a compressed spring or a set of weights carried above the main body of the well tool or from expanding gases produced by an explosive charge. In the latter case, the apparatus may usually only be anchored at one point in the well bore per trip because once the apparatus is anchored and disengaged it must be brought to the surface to recondition the energy storage system.

One type of apparatus used in making measurements in a well bore which requires the frequent and relatively rapid movement from one location to another in the borehole is a so-called freepoint or stuckpoint indicator device. Such devices are used to locate the point in the borehole which a tubing string or casing string is stuck, usually due to a pressure differential between the borehole fluid and the surrounding formations. For this operation, the stuekpoint indicator is placed at different depths in the well bore and anchored to the interior surface of the tubing or casing in question. The casing or tubing is then twisted or stretched by powerful engines at the surface and the elastic deformation of the pipe at the depth at which the stuekpoint indicator is placed is measured. If the indicator is above the stuekpoint or freepoint of the pipe, elastic deformation will be noted. If, on the other hand, the stuekpoint indicator is located below the point at which the pipe or tubing is stuck in the well bore no elastic deformation will be noted. Accordingly, it is necessary to move the stuekpoint indicator tool to various locations in the well bore and to anchor it at each such location. The tubing or casing deformations are then made and the measurements of such thereby obtained.

Such measurements are usually made by the means of a strain gauge sensing element which detects relative motion between the upper end of the measuring instrument and the lower end of the measuring instrument which is caused by the elastic deformation of the tubing string when placed under either longitudinal tension force or rotational torsion forces from the surface. Therefore a convenient and rapidly engageable and disengageable anchoring system is very desirable for use with a stuekpoint indicator tool. Moreover, this anchoring system must be of a small enough diameter to pass through drill pipe or tubing strings and the disengagement and movement of the stuckpoint indicator anchoring apparatus must be convenient and rapid.

Accordingly, it is an object of the present invention to provide an easily engageable and disengageable stuekpoint indicator anchoring system.

Another object of the present invention is to provide a well too] anchoring system which may be used to anchor a measuring tool at longitudinally spaced apart locations in such a manner that the elastic deformation of the pipe between the anchoring locations may be measured.

A still further object of the present invention is to provide an electrically operable well tool anchoring system.

Briefly, in accordance with the objects of the present invention, a system for anchoring a stuekpoint indicator or other well probe operated by a wireline in a well bore is provided. Wall engaging anchoring means are cooperatively arranged on a tool body and adapted for lateral movement from the body member of the probe. A reversible electric motor drive mechanism which may be remotely controlled from the surface is coupled by a hydraulic system to the anchoring means and cooperatively arranged to transform the first phase of the driving motion into a relatively rapid extension of the anchoring means. During a second phase of the driving displacement, the continuing motion of the drive mechanism is employed to impose a greatly increased anchoring force on the anchoring means.

I The invention may be better understood upon consideration of the following description of a particular embodiment of the anchoring system in connection with the appended drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS The single drawing represents a partial schematic view in longitudihal section of an anchoring system associated with a stuekpoint indicator tool.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawing, a stuekpoint indicator equipped with upper and lower anchoring devices is suspended by a cable 35 inside a tubing string 36 extending within a borehole 37. The anchoring system of the stuekpoint indicator comprises a housing 1 or hollow body member which is filled with hydraulic fluid 13. At the interior portion of the upper end of the body member is an electric motor 2 which is supplied with surface originated electrical power from conductors coming down a cable member 35. The motor 2 is capable of reversal depending, for example, upon the polarity of the voltage applied thereto. The electric motor 2 drives a planetary reduction gear 3 whose rotary motion is coupled via an Oldham coupling 4 to a square thread screw member 6. A thrust bearing 5 supports the axial forces acting on this assembly and serves to relieve undue stresses on gear upon planetary gear box 3 or electric motor 2.

The square thread screw member 6 is capable of driving a pressure-developing piston 7 longitudinally in either direction depending upon the direction of drive of the electric motor 2. The piston 7 is provided on one side of its circumference with a slotted portion 9 which serves in cooperation with a lug 8 af fixed to the wall of body member 1 to prevent rotational motion of the piston 7. Piston 7 is further provided with an upper portion comprising a low pressure piston of large section ll which is fitted with an O-ring Ila. The lower portion of the piston 7 comprises a high pressure piston of small section 12. This high pressure piston portion is fitted with an O-ring 120. These two pistons of different section may travel within a cooperatively sized bore 5 within the body member 1 and act via the hydraulic fluid l3 and port 34 on a longitudinallymovable slide block 14 slidably mounted on the tool. A second longitudinally-movable block 14 located near the lower end of the tool is also acted on by the hydraulic fluid 13 as its pressure increases. The two slide blocks 14 and 14 are also equipped with O-ring seals in the manner shown in the drawing for defining pressure-responsive surfaces on which the hydraulic fluid can act.

Considering only the upper slide block 14 (as the lower slide member 14' is analogous) three sets of upper arms 15 situated, for example, 120 apart, about the circumference of the tool are provided. Arms 15 are cooperatively supported as for example by hinges or pivots from the slide block 14 at one end and are hinged on friction anchoring shoes 16 at their opposite end. Three corresponding lower arms 17 are similarly hinged to the shoes 16 on their one end and on their other end are pivoted or hinged at fixed points of the body member 1. The lower slide block 14' is associated in a similar manner to shoes 16' which are equipped with corresponding hinged arms 15 and 17. The wall engaging pad members or shoes 16 and 16' may additionally be provided with external teeth or wickers (not shown) for engaging and anchoring the tool in a frictional manner to the interior surface of the tubing in which it is suspended. It will be appreciated, therefore, that the arrangement of the several linkages provides a toggling action upon downward movement of the slide blocks 14 and 14.

The body member 1 and the slide blocks 14 and 114' have the same overall diameter so that in the folded position of the shoes 16 and 16', this diameter determines the overall diameter and hence the passage possibilities of the apparatus in the tubular space where it is to be admitted. Between the two sets of anchoring devices there is a connecting tube 38 (shown partially deleted) belonging to the stuckpoint indicator measurement portion of the tool. This tube could, for example, carry embedded strain gauges such as 21 which make it possible to detect elastic deformation of the tubing due to traction or stretching and twisting forces applied to it. The length of stroke of the driving piston 7 may be defined by stroke limitators such as microswitches (not shown) which cut off the electrical power to the motor 2 or simply by mechanical stops as represented by the ends of the groove 9.

At the upper end of the body member or housing 1 a free piston 31 equipped with an O-ring seal is loaded by a compression spring 32. This defines an upper chamber of variable volume 33 which communicates with the surrounding borehole fluid medium via a port 39. This variable volume upper chamber permits the free expansion of the hydraulic fluid in the interior of the body member due to temperature changes. Moreover, this arrangement serves to balance the pressures on the inside and outside of the tool housing 1 permitting pressure balanced operation within the tool.

The larger diameter portion of the cooperatively shaped inner surface of the housing 1 in which the large sectional area 11 of the piston 7 moves is equipped with an internal circumferential annular groove 40 at the one end of the travel of the piston 7. A lower annular groove 41 is similarly provided at the lower end of the travel of the piston. The role of these grooves will be more clearly seen subsequently. The smaller diameter portion 12 of the piston has an internal passage 18 connecting the hydraulic fluid filling the body member proper, with the lateral face of this piston. A hollow internal chamber in the piston 7 located above the seal lla connects the passage 18 with the chamber via a preset pressure-relief valve 19.

In operation, the apparatus functions as follows. The tool is lowered or moved through the tubing string with the shoes 16 and 16' in the retracted position. When the desired operating level is reached, the electric motor 2 is started in the desired direction to provide motive force for extending the shoes 16 and 16 by a control panel at the surface (not shown). With the anchoring shoes 16 and 16 in the retracted position, the seal 1 1a of the large upper portion 1 l of the driving piston 7 is at the level of the upper recess 40 of the body member. This effectively bypasses the piston 11 and permits equalizing of the internal pressure and the external borehole pressure and further provides for any temperature expansion of the hydraulic fluid. Upon activation of the electric motor, its energy is coupled via planetary gear box 3 and Oldham coupler 4 to the screw shaft 6. At first only the large piston 11 acts on the hydraulic fluid 13 once the seal 11a moves below the recess 40. The low pressure which this initially creates is sufficient to overcome the friction of the slide blocks 14 and 14 and the arms coupling the blocks to the anchoring shoes 16 and 16'. Moreover, during this phase of the downward motion of the driving piston the pressure-relief valve 19 limits the maximum value of the hydraulic pressure which may be developed. This portion of the motion of the piston 7 in which the large diameter portion 11 is acting on the hydraulic fluid may be termed the approach phase. At the end of this phase, the seal 11a of the large diameter portion 11 of the piston 7 is located in the lower recess 41 of the body member thereby again effectively bypassing the piston permitting the equalizing of internal and external pressure. Continued downward motion of the piston due to further rotation of the threaded screw 6 causes engagement of the smaller diameter high pressure portion 12 of the piston 7 with its cooperatively chambered bore in the body member 1. When this phase is reached, a high pressure is created in the hydraulic fluid below the piston and a high thrust force for anchoring firmly the shoes 16 and 16 into frictional engagement with the internal wall of the tubing is provided.

By way of an example, typical dimensions might comprise a driving screw of 8-mm diameter with a pitch of 1.4 mm in a body member having an overall outer diameter of 36 mm and an inner diameter of 30 mm. Such a device is capable of being used in drill pipe or tubing of 44.4 mm inner diameter. By choosing the following hydraulic cross sectional areas:

for the large piston S, 4 cm for the small piston S 0.8 cm for the slide blocks 8;, 5 cm*.

The calibrated valve 19 is set to release, for example, at 10 kgf/cm? Under these conditions, one obtains during the approach phase a force of 50 kgf on the slide blocks and an anchoring force during the second phase of 500 kgf is produced on the same slide blocks. In anchoring the apparatus in a pipe 152.4 mm (6 inches) in diameter in the case where the rotation speed of the driving screw 6 is 40 rpm, at typical time required for the anchoring will be 1.5 minutes.

When it is desired to move the tool, the direction of travel of the electric motor 2 is simply reversed as, for example, by reversing the polarity of the voltage supplied thereto and the drive screw 6 withdraws the hydraulic driving piston 7 in the reverse sequence. This causes lowered internal hydraulic pressure. Thus, external borehole pressures acting on the slide blocks cause the hinged pad members to retract to their original position. Moreover, internal and external pressures are equalized at the same points in the piston travel as previously noted. This anchoring system makes it possible to achieve high anchoring forces with sufficient rapidity and with relatively large applications of anchoring force.

It will be appreciated by those skilled in the art that other embodiments may be suggested which difi'er only in detail from that disclosed in the above description. It is the aim therefore in the appended claims to cover all such changes and modifications coming within the true spirit and scope of the invention as may be made apparent to those skilled in the art.

I claim 1. A well tool anchoring system comprising:

a body member sized for passage through a tubing string;

at least two longitudinally spaced apart anchoring means cooperatively coupled to said body member in a manner to allow expansion thereof radially outward from a closed position into an anchoring position; and

means for expanding said anchoring means radially outwardly from said body member in two phases, an approach phase and an anchoring phase, said means including remotely controllable reversible drive means, means for coupling said drive means to a longitudinally movable hydraulic piston, said piston having a first hydraulic cross section active during said approach phase and a second hydraulic cross section active during said anchoring phase and means for convening longitudinal motion of said piston into radial motion of said anchoring means.

2. The apparatus of claim 1 and further including means for pressure balancing the interior portion of said body member with the borehole fluid when said anchoring means are in said closed position and during at least one portion of the radial outward movement of said anchoring means.

3. The apparatus of claim 1 wherein said means for converting longitudinal motion of said piston into radial motion of said anchoring means includes at least two cooperatively sized bores in said body member for interaction with said first and second hydraulic cross section of said piston to form a first hydraulic pressure chamber during said approach phase having a relatively larger diameter and operating at a relatively lower pressure and a second hydraulic pressure chamber during said anchoring phase having a relatively smaller diameter and operating at a relatively higher pressure and at least one longitudinally movable driven hydraulic piston responsive to the pressure in said first and second hydraulic pressure chambers and coupled to said anchoring means in such a manner that longitudinal motion of said driven piston causes radial motion of said anchoring means.

4. The apparatus of claim 1 wherein said means for coupling said drive means to said hydraulic piston includes gear box means for reducing the relative speed of said drive means and for amplifying the relative power of said drive means and twoway screw means engageable with a cooperatively threaded nut means integral with said hydraulic piston so that the motion of said piston is reversible in accordance with the reversal of said reversible drive means.

5. The apparatus of claim 4 wherein said reversible drive means comprises a reversible electric motor.

6. The apparatus of claim 1 and further including pressure relief valve means calibrated to allow a maximum hydraulic pressure to be reached during said approach phase before opening.

7. A well tool adapted for suspension in a well bore from a suspension cable and comprising:

a body;

wall-anchoring means on said body and including first piston means slidably mounted on said body, at least a pair of arms respectively having one end pivotally coupled to said first piston means and another end adapted for movement laterally in relation to a well bore wall upon longitudinal movement of said first piston means in relation to said body; and

anchor-actuating means including selectively operable motor means mounted on said body and having a rotatable shaft adapted for rotation upon operation of said motor means, hydraulic means including second piston means including a piston member movably disposed on said body and having a first enlarged portion and a second reduced portion respectively adapted for successive movement into first and second piston chambers upon movement of said second piston means on said body, conduit means fluidly coupling said piston chambers to said first piston means, and means coupling said piston member and said motor shaft and cooperatively arranged for moving said piston member upon rotation of said motor shaft.

8. A well tool adapted for suspension in a well bore from an electric cable and comprising:

a body;

wall-anchoring means on said body and including a first piston member slidably mounted on said body and defining therebetween a first piston chamber adapted to receive a pressured fluid for selectively moving said first piston member along said body, a plurality of first and second rigid links pivotally coupled to one another between said body and said first piston member; and

actuating means including a selectively operable electric motor having a rotatable shaft, a second piston chamber on said body and having an enlarged portion and a reduced portion, a second piston member slidably mounted on said body having an enlarged portion and a reduced portion respectively adapted for movement into said enlarged and reduced chamber portions upon movement of said second piston member, conduit means intercoupling said piston chambers, and motion-translating means intercoupling said motor shaft and said second piston member and adapted for selectively moving said second piston member upon rotation of said motor shaft.

9. The well tool of claim 8 further including: wall-engaging means operatively mounted on said rigid links and adapted for anchoring engagement with a well bore wall upon outward movement of said rigid links.

10. The well too] of claim 8 wherein said motor shaft is threaded and said motion-translating means include a nut coupled to said second piston member and cooperatively arranged on said threaded shaft for moving said second piston member into said second piston chamber upon operation of said electric motor.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2705167 *Jul 12, 1950Mar 29, 1955Lawrence L HeldWell fishing and handling tool
US3138207 *Jun 20, 1960Jun 23, 1964Halliburton CoPressure balanced actuating device
US3177938 *Oct 23, 1958Apr 13, 1965Schlumberger Well Surv CorpMethods and apparatus for operating borehole equipment
US3273645 *Jul 23, 1962Sep 20, 1966Schlumberger Well Surv CorpWell completion apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4120353 *Apr 19, 1977Oct 17, 1978Dresser Industries, Inc.Device to move density logging tool against well wall
US4129184 *Jun 27, 1977Dec 12, 1978Del Norte Technology, Inc.Downhole valve which may be installed or removed by a wireline running tool
US4367794 *Dec 24, 1980Jan 11, 1983Exxon Production Research Co.Acoustically actuated downhole blowout preventer
US4373582 *Dec 22, 1980Feb 15, 1983Exxon Production Research Co.Acoustically controlled electro-mechanical circulation sub
US4557326 *Jan 10, 1985Dec 10, 1985Geosource Inc.Well tool locking apparatus
US4651837 *May 31, 1984Mar 24, 1987Mayfield Walter GDownhole retrievable drill bit
US4715469 *Aug 29, 1985Dec 29, 1987Petrophysical Services, Inc.Borehole seismic receiver
US5191936 *Apr 10, 1991Mar 9, 1993Schlumberger Technology CorporationMethod and apparatus for controlling a well tool suspended by a cable in a wellbore by selective axial movements of the cable
US5279363 *May 27, 1993Jan 18, 1994Halliburton CompanyActuator apparatus for a downhole tool
US5287920 *Jun 16, 1992Feb 22, 1994Terrell Donna KLarge head downhole chemical cutting tool
US5353877 *Mar 4, 1993Oct 11, 1994Schlumberger Technology CorporationElectrically controlled latch for well applications
US5492173 *Mar 10, 1993Feb 20, 1996Halliburton CompanyPlug or lock for use in oil field tubular members and an operating system therefor
US5979550 *Feb 24, 1998Nov 9, 1999Alberta Ltd.PC pump stabilizer
US6047784 *Jan 16, 1997Apr 11, 2000Schlumberger Technology CorporationApparatus and method for directional drilling using coiled tubing
US6464003 *Feb 6, 2001Oct 15, 2002Western Well Tool, Inc.Gripper assembly for downhole tractors
US6640894 *Oct 9, 2002Nov 4, 2003Western Well Tool, Inc.Gripper assembly for downhole tools
US6715559 *Dec 3, 2001Apr 6, 2004Western Well Tool, Inc.Gripper assembly for downhole tractors
US6758279Jul 22, 2003Jul 6, 2004Western Well Tool, Inc.Puller-thruster downhole tool
US6796380Aug 19, 2002Sep 28, 2004Baker Hughes IncorporatedHigh expansion anchor system
US6851476Aug 2, 2002Feb 8, 2005Weather/Lamb, Inc.Dual sensor freepoint tool
US7000705Nov 5, 2001Feb 21, 2006Omega Completion Technology LimitedHydraulic setting tool with pressure multiplier
US7007758 *Feb 7, 2005Mar 7, 2006Cdx Gas, LlcCavity positioning tool and method
US7048047Oct 21, 2003May 23, 2006Western Well Tool, Inc.Gripper assembly for downhole tools
US7059417Jan 30, 2004Jun 13, 2006Western Well Tool, Inc.Puller-thruster downhole tool
US7156181 *Jan 10, 2006Jan 2, 2007Western Well Tool, Inc.Puller-thruster downhole tool
US7174974May 1, 2006Feb 13, 2007Western Well Tool, Inc.Electrically sequenced tractor
US7185716May 1, 2006Mar 6, 2007Western Well Tool, Inc.Electrically sequenced tractor
US7191829 *May 3, 2006Mar 20, 2007Western Well Tool, Inc.Gripper assembly for downhole tools
US7252143 *May 25, 2004Aug 7, 2007Computalog Usa Inc.Method and apparatus for anchoring tool in borehole conduit
US7273109May 3, 2006Sep 25, 2007Western Well ToolPuller-thruster downhole tool
US7275593May 3, 2006Oct 2, 2007Western Well Tool, Inc.Gripper assembly for downhole tools
US7383876Feb 8, 2005Jun 10, 2008Weatherford/Lamb, Inc.Cutting tool for use in a wellbore tubular
US7392859Mar 17, 2005Jul 1, 2008Western Well Tool, Inc.Roller link toggle gripper and downhole tractor
US7467661Jun 1, 2006Dec 23, 2008Halliburton Energy Services, Inc.Downhole perforator assembly and method for use of same
US7559361Jul 14, 2005Jul 14, 2009Star Oil Tools, Inc.Downhole force generator
US7604060Oct 1, 2007Oct 20, 2009Western Well Tool, Inc.Gripper assembly for downhole tools
US7607497Jun 30, 2008Oct 27, 2009Western Well Tool, Inc.Roller link toggle gripper and downhole tractor
US7624808Mar 8, 2007Dec 1, 2009Western Well Tool, Inc.Expandable ramp gripper
US7748476Nov 13, 2007Jul 6, 2010Wwt International, Inc.Variable linkage assisted gripper
US7770667Jun 13, 2008Aug 10, 2010Wwt International, Inc.Electrically powered tractor
US7828052Jul 7, 2006Nov 9, 2010Star Oil Tools, Inc.Downhole force generator
US7954562Sep 29, 2009Jun 7, 2011Wwt International, Inc.Expandable ramp gripper
US7954563Oct 23, 2009Jun 7, 2011Wwt International, Inc.Roller link toggle gripper and downhole tractor
US8028766Jul 20, 2010Oct 4, 2011Wwt International, Inc.Electrically powered tractor
US8061447Jun 18, 2010Nov 22, 2011Wwt International, Inc.Variable linkage assisted gripper
US8069917Oct 2, 2009Dec 6, 2011Wwt International, Inc.Gripper assembly for downhole tools
US8220541 *Sep 18, 2009Jul 17, 2012Schlumberger Technology CorporationIntervention tool with operational parameter sensors
US8245796May 7, 2010Aug 21, 2012Wwt International, Inc.Tractor with improved valve system
US8302679Jun 6, 2011Nov 6, 2012Wwt International, Inc.Expandable ramp gripper
US8485278Sep 21, 2010Jul 16, 2013Wwt International, Inc.Methods and apparatuses for inhibiting rotational misalignment of assemblies in expandable well tools
US8555963Nov 18, 2011Oct 15, 2013Wwt International, Inc.Gripper assembly for downhole tools
US20120318509 *Jun 16, 2011Dec 20, 2012Baker Hughes IncorporatedModular anchoring sub for use with a cutting tool
CN100436752CJul 31, 2003Nov 26, 2008贝克休斯公司High expansion anchor system
DE3208469A1 *Mar 9, 1982Sep 16, 1982Inst Francais Du PetroleVorrichtung zur verankerung eines instruments in einem hohlraum, die mit versenkbaren armen versehen ist
EP0218358A1 *Aug 28, 1986Apr 15, 1987Petrophysical Services Inc.Borehole seismic receiver
EP0559565A1 *Mar 4, 1993Sep 8, 1993Schlumberger LimitedElectrically controlled latch for well applications
EP0951611A1 Jul 3, 1997Oct 27, 1999Ctes, L.C.Wellbore tractor
WO1999063197A1 *May 29, 1998Dec 9, 1999Nakajima HiroshiBorehole logging tool with anchoring mechanism
WO2002036930A1 *Nov 5, 2001May 10, 2002Omega Completion TechnologyHydraulic setting tool with pressure multiplier
WO2003014526A1 *Aug 5, 2002Feb 20, 2003James D EstesDual sensor freepoint tool
WO2004016902A1 *Jul 31, 2003Feb 26, 2004Baker Hughes IncHigh expansion anchor system
WO2007006137A1 *Jul 7, 2006Jan 18, 2007Marcel ObrejanuDownhole force generator
Classifications
U.S. Classification166/66.4, 166/212, 166/104
International ClassificationE21B47/09, E21B23/00, G01V11/00, E21B23/04
Cooperative ClassificationE21B47/09, E21B23/00, E21B23/04, G01V11/005
European ClassificationE21B23/04, G01V11/00B2, E21B23/00, E21B47/09