Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3661365 A
Publication typeGrant
Publication dateMay 9, 1972
Filing dateNov 30, 1970
Priority dateNov 30, 1970
Publication numberUS 3661365 A, US 3661365A, US-A-3661365, US3661365 A, US3661365A
InventorsCloud Fayette J Jr
Original AssigneeBonsal Co W R
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for proportioning dry particulate materials
US 3661365 A
Abstract
An apparatus for continuously combining and mixing a plurality of dry particulate materials, such as the various constituents in dry concrete or mortar mixes, in accurate preselected proportions. The apparatus includes a separate bin adapted to store a relatively large quantity of each constituent, a rotatable and vibratable screw conveyor for feeding one of the constituents from its bin at a constant preselected volumetric flow rate, and means for feeding a second constituent from its bin at a constant preselected gravimetric flow rate. The gravimetric feeding means includes a conveyor adapted to be translated at a constant speed, means for monitoring the weight of the constituent carried on the conveyor, and control means to adjust the rate of delivery of the constituent onto the conveyor to maintain a substantially constant weight thereof on the conveyor.
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [15] 3,661,365 Cloud, Jr. [4 1 May 9, 1972 [54] APPARATUS FOR PROPORTIONING DRY PARTICULATE MATERIALS Primary Examiner-Robert W. Jenkins Attorney-Parrott, Bell, Seltzer, Park & Gibson [72] Inventor: Fayette J. Cloud, .Ir., Lilesville, NC. [73] Assignee: W. R. Bonsal Company, Lilesville, NC. ABSTRACT [22] Filed: Nov. 30, 1970 An apparatus for continuously combining and mixing a plurality of dry particulate materials, such as the various con- [211 A 93539 stituents in dry concrete or mortar mixes, in accurate preselected proportions. The apparatus includes a separate [52] U.S. Cl. .....259/154, 259/26 bin adapted to store a relatively large quantity of each con- [51 Int. Cl. ..B28c 7/04 stituent, a rotatable and vibratable screw conveyor for feeding Field Of Search --259/ 154. I61, 162. 16 one of the constituents from its bin at a constant preselected 259/ 6 2 57, 59 volumetric flow rate, and means for feeding a second constituent from its bin at a constant preselected gravimetric flow [561 Rhrmm Cmd rate. The gravimetric feeding means includes a conveyor UNITED STATES PATENTS adapted to be translated at a constant speed, means for monitortng the weight of the constituent carried on the conveyor, 2,105,266 H1938 Rendall ..259/[54 and control means to adjust the rate of delivery of the con- 2,285,765 6/ l 942 Carswell ....259/ l 5 stituent onto the conveyor to maintain a substantially constant 2,568,821 9/1951 Perrot ....259/154 weight thereofon the conveyor. 3,110,42l 1l/l963 Matthias. ..222/57 3,448,967 6/ I 9.69 Seanor ..259/154 10 Claims, 6 Drawing Figures SCRE-E-N 24 2b [0 i O I ELEVm-ozZZ & A Q Em A MoteTAIeESO 28 Foams l6 Convevea l4- Hop ee l2 mes H M was no z'vmz PATENTEDMM 9 I972 CONVEYOR, ll].

HOPPE? IZ FURNACE l6 SHEEI l [11'' 4 ELavA're g zg Mo reTAla3O 1 l DRYE-E. 8 C

SCREEN 24 EM ENT MORTAR.

M \xEIe, HO

ROCK

CEMENT J g v bk V 72 FAYETTE I CLOUD INVENTOR.

PATENTEDMAY 9 I972 SHEET 2 UF 4 INVIZNTOR:

FAYETTE II (1900,32,

WM, fi/ M W AYfiRNEYS APPARATUS FOR PROPORTIONING DRY PARTICULATE MATERIALS.

prepared for use by merely adding water are commonly sold-in relatively small packages for use by homeowners. A produce of this type is sold under the trademark SAKRETE, and has enjoyed a substantial commercial success in recent years. In producing dry mixes of this type, great care must be exercised in proportioning the several constituents since variations in the constituents will cause corresponding variations in the quality of the resulting concrete or mortar. Typically,

mechanical mixers of the batch type are employed, for this purpose wherein a definite quantity of each constituent is first deposited in the mixer, then mixed, and finally discharged in batch form at the completion of the mixing operation. While the batch process is able to assure accurate proportioning of the various constituents, its discontinuous operation is entirely too slow for modern production requirements.

To alleviate the problem of limited production associated with batch mixers, it has been proposed to employ a continuous process wherein independent feeding devices for the various constituents are arranged to dispense each constituent into a common hopper in the desired proportions. To obtain accurate proportioning, controls are provided which monitor the weight of one of the constituents being dispensed, and which stop and start the various feeding devices upon the weight becoming excessive or insufficient. However, such stopping and starting of the feeding devices results in an overall reduction in the efficiency of the apparatus, and the desired high production can not be achieved.

Accordingly, it is an object of the present invention to provide an apparatus for continuouslycombining and mixing a lurality of dry particulate materials and which does not require the stopping and starting of the feeding operations in order to assure the proper proportioning of each of the various constituents.

It is a further object of the present invention to provide an apparatus which is capable of continuously proportioning and mixing relatively large quantities of mixed dry materials in a highly efficient and economical manner.

'These and other objects and advantages .ofthe present invention are achieved in the embodiment illustrated herein by the provision of an apparatus which includes a storage bin for individually storing each of the required materials, means for continuously feeding one of the materials at a constant preselected volumetric fiow rate, and means for continuously.

feeding the other required materials from their associated bins at a constant preselected gravimetric flow rate. Each .of the gravimetric feeding means includes a translatable conveyor defining a receiving end and a discharge end, and means for translating the conveyor at a constant speed. The weight of the material on the conveyor is monitored, and provision is made for delivering the material onto the conveyor at a variable rate to maintain a substantially uniform weight thereon.

Some of the objects and advantages of the invention .having been stated, others will appear. as the description proceeds, when taken in connection with the accompanying drawings, in which-- FIG. 1 is a schematic illustration of an apparatus for continuously combining and mixing a plurality of dry particulate materials according to the present invention;

FIG. 2 is an enlarged fragmentary view of the storage and mixing portion of the above apparatus;

FIG. 3 is an enlarged fragmentary side elevational view, partly in section, of the gravimetric. feeding means of the present invention;

FIG. 4 is an enlarged fragmentary side elevational view, partly in section, illustrating the volumetric feeding means of the present invention;

FIG. 5 is a schematic illustration of a control panel associated with the present invention;

FIG. 6 is a schematic illustration of the control system associated with the gravimetric feeding means of the present invention.

Referring more specifically to the drawings, the overall apparatus of the present invention is schematically illustrated in FIG; 1 and includes a material delivery system generally indicated at 10. The delivery system includes a hopper 12 adapted to receive one of the constituents from a truck, railroad car, or the like, a conveyor 14 for lifting the constituent into the furnace 16, and a dryer '18 designed to rotate and tumble the heatedconstituent and thereby remove any excess moisture. From the dryer 18, the constituent is deposited into the secondary hopper 20, and a bucket elevator 22 lifts the same from the hopper 20 onto a vibrating screen separator 24. The separator removes any large particles from the mixture for discharge through the chute 26, and the remaining material is conveyed to a point overlying the storage and mixing apparatus.

The storage and mixing apparatus comprises a cement storage bin 28, a mortar storage bin 30, and four constituent storage bins positioned in close proximityto each other. In particular, the four storage bins include a rock storage bin 31, a mortar sand storage bin 32, a concrete sand storage bin 33, and a specialty sand storage bin 34.

The constituents are selectivity directed into the appropriate storage bin from the screen separator 24 by an arrangement'which includes a first conduit 36 directed toward the bins 31 and 32,.and a second conduit 38 directed toward the bins' 33 and 34. The first conduit 36 includes a divided lower portion, with the segment 40 leading to bin 31 and the segment 42 leading to the bin 32. The second conduit 38 is similarly divided, with the segment 44 directed to bin 33 and segment 46 directed to bin 34. Three flapper valves are positioned'within this system to selectively direct the constituent into .the proper bin. In particular, a flapper valve 48 is positioned at the top of the system to direct the constituent into either the, conduit 36 or 38. Also, a flapper valve 49 is positioned to selectively direct the constituent between the conduit segments 40 and 42, and a flapper valve 50 is positioned to selectively direct the constituent into the segments 44 or 46. An independent system (not shown) is employed for directingthe cement and mortar into their respective bins 28 and 30.

A ,dischargechute extends from the bottom of each of the four constituent bins '3l-34in the manner as seen in FIG. 2. More particularly, discharge chutes 51 and 52 extend from the bins 31 and 32 respectively, and communicate with a first common discharge chute 56. Discharge chutes 53 and 54 lead fromthe bins 33 and 34 respectively and communicate with a second common discharge chute 58. The lower end of each bin 31-34 further includes a gate, numbered 61, 62, 63 and 64 respectively, for selectively opening the bin to its associated discharge chute. By this arrangement, it will be seen that either the rock or mortar sand may be fed into common chute 56, while either the concrete sand or specialty sand may be fed to chute 58. Viewing FIG. 2, it will be noted that the bin 34 also includes an additional discharge chute 66 and associated flapper valve 68 for selectively directing the specialty sand either through the chute 54 or 66.

In accordance with the present invention, provision is made for feeding selected constituents from the bins 31-34 or certain combinations of constituents, into a hopper 70 at a constant preselected gravimetric flow rate. For this purpose, a pair of oppositely directed conveyors 72 and 74 are positioned such that the receiving end of the conveyor 72 underlies the chute 56, and the receiving end of a conveyor 74 underlies the chute 58. The discharge end of both conveyors overlies the hopper 70 such that a constituent being conveyed along either conveyor will fall into the hopper. As seen in FIGS. 2 and 3, the chutes 56 and 58 extend downwardly and open onto the conveyor receiving end. In each case, a side wall opening (not numbered) at the lower end of the chute communicates with the conveyor and faces the discharge end thereof, and a translatable gate 76 is positioned at the lower end of the chute for varying the extend of the opening. Since the speed of the conveyor is designed to be constant, it will be apparent that the position of the gate 76 will in each case determine the amount of the constituent delivered to the conveyor.

The system for monitoring the weight of the constituent positioned on conveyor 72 is illustrated schematically in FIG. 6, it being understood that the system for monitoring the weight on conveyor 74 is a duplicate of that shown. Also, a control panel 78 for both of the conveyors is shown in FIG. 5, with the right half serving conveyor 72 and the left half (having primed numerals) serving the conveyor 74. As shown in FIG. 6, the monitoring system includes a pneumatic load cell 80 positioned to support the discharge end of the conveyor 72 and thereby sense the total weight thereof. The load cell 80 is supplied with pneumatic pressure from the supply line 81, and converts the weight of the conveyor into a first pneumatic signal representative of the weight of the constituent carried on the conveyor. This signal is transmitted to the biasing regulator 82 through line 84, which serves to correct the signal from the load cell for any error resulting from material accumulating on the frame or other parts of the conveyor during use. Thus periodically the conveyor is run empty and the biasing regulator 82 is employed to zero the signal from the load cell 80 and thereby adjust for the excess weight.

The signal from the biasing regulator 82 is transmitted to the pneumatic controller 86 which balances this signal against a preset second pneumatic signal emanating from the regulator 88. The signal from the regulator 88 is initially set by closing the button 89 of the three-way switch 90 to direct the output pressure to the recorder 92, which in turn gives a visual reading on the control panel 78, note FIG. 5. Thus, by changing the output of the regulator 88, the weight indicated by the recorder 92 may be adjusted to a preselected valve. Upon release of the button 89, the preset signal from the regulator 88 is transmitted to the controller 86. The controller thus receives two signals, one from the load cell 80 and another from the regulator 88. The controller 86 is designed to sense a pressure differential between these two signals and to send a correcting pressure signal through the three way toggle switch 93, past gauge 94, and to the gate positioner air motor 96. As the positioner 96 moves, it translates the gate 76 and effectively opens or closes the side wall opening in the chute 56 to thus change the amount of the constituent being delivered onto the conveyor. By this arrangement, a constant preselected gravimetric flow rate is obtained, which is independent of changing densities of the constituent, or its delivery rate into the chute 56.

To feed the cement or mortar to the hopper 70 from the associated bins 28 and 30, there is provided a feeding system which is designed to feed the material at a constant preselected volumetric flow rate. This system is illustrated schematically in FIGS. 1 and 2 and more specifically in FIG. 4. It will be appreciated that the system as shown in FIGS. 1 and 2 is rotated 90 from its actual position in relation to the bins 31-34 for purposes of clarity in illustration.

Each of the two volumetric feeding systems includes a rotatable screw conveyor 100 having a receiving end in communication with the associated bin, and a discharge end overlying a flexible downwardly directed conduit 102. The flexible conduit 102 communicates with a vibrating screw conveyor 104 which is rotated and vibrated by an arrangement which includes the motor 105 and eccentric weight 106 positioned on the central shaft thereof. The discharge end of the conveyor 104 communicates with the chute 108 to direct the material into the hopper 70. The hopper 70 in turn communicates with a rotatable screw conveyor 110 for mixing the various constituents received therein, and for delivering the same to a dispensing apparatus 112 which is designed to dispense preselected quantities of the material into individual bags or the like in the conventional manner.

In describing the operation of the illustrated apparatus, it will be appreciated that the apparatus is designed to selectively combine and mix various combinations of constituents in accurate preselected proportions. For example, commercial dry concrete and mortar mixes are commonly sold in the following forms:

I Mortar Mix; comprising mortar and mortar sand.

2. Cement Mix; comprising cement and concrete sand.

3. Concrete Mix; comprising cement, concrete sand, and

rock.

In addition, it is common to sell the specialty sand in bin 34 separately. Obviously, a number of other constituents could be positioned in bins 31-34, and a number of other combinations of these constituents could be prepared utilizing the illustrated apparatus.

If it is desired to dispense for example mortar mix, the apparatus is programmed to dispense mortar from bin 30 into the hopper 70 at a constant preselected volumetric flow rate, and to dispense mortar sand along the conveyor 72 and into the hopper 70 at a preselected gravimetric flow rate. The two constituents are mixed by the screw conveyor and dispensed by the dispensing apparatus 112 into individual bags.

Similarly, if it is desired to prepare cement mix, the cement is dispensed from bin 28 at a constant volumetric flow rate, and the concrete sand is dispensed from bin 33 at a constant gravimetric flow rate. In dispensing the concrete mix, rock is delivered from bin 31 at a predetermined gravimetric flow rate concurrently with the sand which is dispensed from the bin 33 at a predetermined gravimetric flow rate. If it is desired to dispense the specialty sand alone, the sand may be directed through the separate chute 66 into the hopper 70, or it may be dispensed along the chute 54 and conveyor 74 into the hopper.

The electrical control system for opening and closing the various gates and flapper valves as described above, and for selectively operating the various components of the apparatus, are of conventional design well known to those skilled in the art and will therefore not be specifically described herein.

In the drawings and specification, there has been set forth a preferred embodiment of the invention, and although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation.

What is claimed is:

1. An apparatus for continuously combining at least two different essentially dry particulate materials in predetermined proportions comprising a storage bin for individually storing each of said materials,

means for continuously feeding a first material at a constant flow rate from its associated storage bin, means for feeding a second material at a constant flow rate from its associated storage bin and including a translatable conveyor defining a receiving end and a discharge end, means for translating said conveyor at a constant speed, means for delivering the second material onto said conveyor receiving end at a variable rate, means for monitoring the weight of the second material positioned on said conveyor, and control means operatively associated with said monitoring means for controlling said delivering means to maintain a substantially constant weight of the second material on said conveyor, and

means for receiving said first and second materials from the associated feeding means.

2. The apparatus as defined in claim 1 wherein the storage bin associated with the second material is positioned above said conveyor, and

said delivering means comprises an open chute extending downwardly from said storage bin and onto said conveyor receiving end, means defining an opening at the lower end of said chute in communication with said conveyor and facing said discharge end, and translatable gate means positioned at the lower end of said chute for varying the extend of said opening. v

3. The apparatus as defined in claim 2 wherein said monitoring means comprises means mounted at the discharge end of said conveyor for generating a first pneumatic signal representative of the weight of the second material carried by said conveyor, and

said control means comprises means for generating a second pneumatic signal representative of a preselected weight of the second material carried by said conveyor, means for sensing a pressure differential between said first and second pneumatic signals, and means responsive to said sensing means for translating said gate means to thereby change the extend of said opening and thus the amount of said second material delivered to said conveyor until the preselected weight is present on said conveyor. v

4. An apparatus for continuously combining and mixing at least two essentially dry particulate materials in preselected proportions to obtain a substantially homogeneous mixture comprising a first bin adapted to store a relatively large quantity of a first material, 7

a second bin adapted to store a relatively large quantity of a second material,

means for feeding the first material from said first bin at a constant preselected volumetric flow rate,

means for feeding the second material from said second bin at a constant preselected gravimetric flow rate and including a translatable conveyor defining a receiving end and a discharge end, means for translating said conveyor at a constant speed, means for delivering the second material onto said conveyor at a variable rate, means for monitoring the weight of said second material carried on said conveyor, and control means operatively associated with said monitoring means for controlling said delivering means to maintain a substantially constant weight of the second material on said conveyor, and

means for receiving said first and second materialsfrom the associated feeding means and for mixing the same.

5. The apparatus as defined in claim 4 wherein said means for receiving and mixing said firstand second materials comprises a hopper and means for dispensing the materials therefrom.

6. The apparatus as defined in claim 5 wherein said means for feeding the first material from said first bin comprises a rotatable and vibratable screw conveyor and means for rotating and vibrating the same,

7. An apparatus for continuously combining and mixing a plurality of essentially dry particulate materials inpredetermined proportions to obtain a substantially homogeneous mixture comprising a mortar storage bin,

a cement storage bin,

a plurality of constituentrstorage bins positioned in close proximity to each other and including a first constituent storage bin, a second constituent storage bin, and a third constituent storage bin,

means for selectively feeding mortar from said mortar storage bin at a preselected volumetric flow rate,

means for selectively feeding cement from said cement storage bin at a preselected volumetric flow rate,

first feeding means including a discharge chute extending from each of said first and second constituent bins and communicating with a first common discharge chute for selectively feeding either the first or second constituent from the associated storage bin at preselected gravimetric flow rate,

second feeding means including discharge chute extending from said third constituent bin and communicating with a second common discharge chute for selectively feeding the third constituent from said third storage bin at a preselected gravimetric flow rate control means for selectively feeding either mortar or cement from the associated storage bins, and for selectively operating either said first feeding means independently, said second feeding means independently, or said first and second feeding means concurrently, and means for receiving the selected materials from the associated feeding means. 8. The apparatus as defined in claim 7 wherein said plurality of constituent storage bins further includes a fourth constituent storage bin, and said second feeding means includes a discharge chute extending from said fourth constituent bin to said second common discharge chute and further including means for selectively feeding either the third or fourth constituent from the associated storage bin at a preselected gravimetric flow rate.

9. The apparatus as defined in claim 8 further comprising means for selectively delivering the first, second, third, and fourth constituents into their respective constituent bins, and including means for transporting a selected one of said constituents alongapredetermined path of travel to apoint overlying said four constituent bins, first conduit means communicating with said first and second bins for selectively transferring the selected constituent into said first or second bins, second conduit means communicating with said third and fourth bins for selectively transferring the selected constituent into said third or fourth bins, and means for selectivity connecting either said first or said second conduit means to said path of travel to thereby permit the conveying of the selected constituent into any of said four constituent bins.

10. The apparatus as defined in claim 9 wherein said means for transporting a selected constituent includes drying means positioned along said path of travel for removing excess moisture from the selected constituent.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2105266 *Oct 31, 1936Jan 11, 1938Crown Cork & Seal CoMethod of and apparatus for proportioning and blending glass batch materials and the like
US2285765 *Apr 17, 1941Jun 9, 1942Frank L CarswellAggregate mixing machine
US2568821 *Mar 16, 1949Sep 25, 1951 Machine for handling sludge
US3110421 *May 24, 1961Nov 12, 1963Matthias Karl HeinrichSupervising apparatus for maintaining predetermined mixture proportions in the dry constituents of a mixture more particularly for road construction
US3448967 *Aug 16, 1967Jun 10, 1969Adamson United CoApparatus for automatically measuring proper additive quantities in a mixing apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3822056 *Mar 31, 1972Jul 2, 1974Brewster SMethod and means for adding small measured quantities of selected materials to a large capacity material-mixing plant
US3880410 *Jun 8, 1973Apr 29, 1975Heise Carl HermannApparatus for manufacturing a coating mass for road constructions
US3938785 *Feb 18, 1975Feb 17, 1976Heise Carl HermannMethod and apparatus for manufacturing a coating mass for road constructions
US4204773 *Feb 21, 1978May 27, 1980Winget LimitedMixing means
US4898472 *Dec 5, 1988Feb 6, 1990Taisei Road Construction Company, Ltd.Plant of batch system for producing a composite paving material by using a bituminous waste pavement material
US4932785 *Jun 21, 1988Jun 12, 1990Bracegirdle P EAggregate drying system with improved aggregate dryer and mass flow apparatus
US4993839 *Mar 20, 1989Feb 19, 1991Astec Industries, Inc.Method and apparatus for producing asphaltic mix
US5076702 *Nov 14, 1988Dec 31, 1991B.V. Grint - En Zandexploitatie Maatschappij V/H Gebrs. SmalsInstallation for extracting granular material in a predetermined composition, method using that installation, a mixing unit, and means of measuring the water content of granular material
US5215372 *Feb 19, 1991Jun 1, 1993Astec Industries, Inc.Aggregate storage apparatus for use in producing asphaltic mix
US5251976 *Apr 6, 1992Oct 12, 1993Astec Industries, Inc.Asphalt plant adapted for the batch production of asphalt mix containing recycle asphalt paving
US5423606 *Dec 7, 1993Jun 13, 1995Astec Industries, Inc.Batch asphalt plant having RAP weigh hopper and pugmill scavenging system
US5667298 *Jan 16, 1996Sep 16, 1997Cedarapids, Inc.Portable concrete mixer with weigh/surge systems
US5873653 *Jan 29, 1996Feb 23, 1999Excel Machinery Company, Inc.Mobile pugmill having a weight metering control system
US6036353 *Feb 16, 1999Mar 14, 2000Excel Machinery Company, Inc.Method of controlling a mobile pugmill having a weight metering control system
US7320539 *Apr 5, 2004Jan 22, 2008Mcneilus Truck And Manufacturing, Inc.Concrete batching facility and method
US9180605 *Jan 16, 2009Nov 10, 2015Cemen Tech, Inc.Volumetric concrete mixing method and apparatus
US9186814Feb 4, 2013Nov 17, 2015Robert W. OberAtmospheric storage mechanical weight batch blending plant
US9285117 *May 25, 2012Mar 15, 2016General Trade CorporationAutomated system for sorting and blending different fuel stocks such as coal
US20050219941 *Apr 5, 2004Oct 6, 2005Mcneilus Truck And Manufacturing, Inc.Concrete batching facility and method
US20090180348 *Jan 16, 2009Jul 16, 2009Cemen Tech, Inc.Volumetric concrete mixing method and apparatus
US20130312321 *May 25, 2012Nov 28, 2013General Trade CorporationAutomated system for sorting and blending coal
CN100532047CApr 18, 2005Aug 26, 2009傅炳煌Production and automatic production equipment for building dry powder and mortar
CN102873755A *Sep 6, 2012Jan 16, 2013安徽嘉新特种工程材料有限责任公司Mixing and feeding device for premixed dry mortar
DE3314716A1 *Apr 22, 1983Oct 25, 1984Mathis Systemtechnik GmbhProcess and equipment for charging a mixer
DE3408820A1 *Mar 10, 1984Sep 12, 1985Bernhard LadweinInstallation for mixing flowable materials and for filling them into containers
EP0391494A1 *Apr 6, 1990Oct 10, 1990Mulder-Boskoop N.V.Process and apparatus for preparing a mixture, especially for mortar and other similar mixtures
EP0587155A1 *Sep 9, 1993Mar 16, 1994Firma Hermann UhlPlant for making fresh concrete
EP2502722A1 *Mar 21, 2012Sep 26, 2012Bruant ProjetsFacility for drying, mixing and bagging mineral products
WO1988002093A1 *Sep 3, 1987Mar 24, 1988Cmi CorporationHeating and/or drying apparatus
WO1989012536A1 *Jun 14, 1989Dec 28, 1989Bracegirdle P EAggregate drying system with improved aggregate dryer and mass flow apparatus
WO2011047558A1 *Jun 29, 2010Apr 28, 2011Hunan Sany Intelligent Control Equipment Co., Ltd.Aggregate supply system for dry-mixed mortar producing system and dry-mixed mortar producing system therewith
WO2014120318A1 *Nov 14, 2013Aug 7, 2014Ober Robert WAtmospheric storage mechanical weight batch blending plant
Classifications
U.S. Classification366/18, 366/22, 366/43
International ClassificationB28C9/00
Cooperative ClassificationB28C9/00, B28C7/0023
European ClassificationB28C7/00A2, B28C9/00