US3661622A - Method of improving resistance to corrosion of metal surfaces and resultant article - Google Patents

Method of improving resistance to corrosion of metal surfaces and resultant article Download PDF

Info

Publication number
US3661622A
US3661622A US20038A US3661622DA US3661622A US 3661622 A US3661622 A US 3661622A US 20038 A US20038 A US 20038A US 3661622D A US3661622D A US 3661622DA US 3661622 A US3661622 A US 3661622A
Authority
US
United States
Prior art keywords
polymer
composition
parts
molecular weight
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US20038A
Inventor
Lynn C Rogers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
Continental Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Oil Co filed Critical Continental Oil Co
Application granted granted Critical
Publication of US3661622A publication Critical patent/US3661622A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/16Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/18Tall oil acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • C10M2209/062Vinyl esters of saturated carboxylic or carbonic acids, e.g. vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/31576Ester monomer type [polyvinylacetate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/31587Hydrocarbon polymer [polyethylene, polybutadiene, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31714Next to natural gum, natural oil, rosin, lac or wax
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31801Of wax or waxy material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31844Of natural gum, rosin, natural oil or lac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31859Next to an aldehyde or ketone condensation product

Abstract

A method of improving resistance to corrosion of metal surfaces is disclosed, wherein said method comprises: A. APPLYING TO THE METAL SURFACE A COMPOSITION COMPRISING (1) A MAJOR AMOUNT (E.G. AT LEAST 75 WEIGHT PERCENT) OF A THIXOTROPIC, GREASE-LIKE COMPOSITION CONSISTING ESSENTIALLY OF A NON-VOLATILE DILUENT, AN OIL-SOLUBLE DISPERSING AGENT AND AN ALKALINE EARTH METAL CARBONATE AND (2) A MINOR AMOUNT (E.G. 0.1 TO 25 WEIGHT PERCENT) OF A POLYMER, AND B. APPLYING TO THE COATED METAL SURFACE A CONVENTIONAL PAINT. An important feature is the use of the composition described in step (a) as a primer coating.

Description

United States Patent 1151 3,661 ,622 Rogers May 9, 1972 [54] METHOD OF IMPROVING 3,384,586 5/1968 McMillen ..252 33 RESISTANCE TO C RR OF 2,758,981 8/1956 Cooke et a1 ..252/39 x 2,834,691 5/1958 Stephenson et al... 117 75 x METAL SURFACES AND RESULTANT 3,372,114 3/1968 Rense ..252/33 ARTICLE Inventor: Lynn C. Rogers, Ponca City, Okla.
[73] Assignee: Continental 01] Company, Ponca City,
Okla.
22 Filed: Mar. 16, 1970 [21] Appl. No.: 20,038
[52] U.S.Cl ..ll7/75, 117/72, 117/92, 117/132 R, 252/33, 252/389, 260/285 R [51] Int. Cl. ..B44d l/14, B32b 15/04 [58] Field ofSearch 117/75, 89, 92, 72,134,132 C.
132 R, 117/219, 224, DIG. 5; 252/388, 389, 33, 39
[56] References Cited UNITED STATES PATENTS 3,084,066 4/1963 Dunmire ..1 17/75 3/1966 McMillen ..252/33 Primary Examiner-William D. Martin Assistant E.\'aminerRalph Husack Attorney-Joseph C. Kotarski, Henry H. Huth, Robert B. Coleman, Jr., Bayless E. Rutherford, Jr, and Carroll Palmer [5 7] ABSTRACT A method of improving resistance to corrosion of metal surfaces is disclosed, wherein said method comprises:
a. applying to the metal surface a composition comprising (1 a major amount (e.g. at least 75 weight percent) of a thixotropic, grease-like composition consisting essentially of a non-volatile diluent, an oil-soluble dispersing agent and an alkaline earth metal carbonate and (2) a minor amount (e. g. 0.1 to 25 weight percent) of a polymer, and
b. applying to the coated metal surface a conventional paint. An important feature is the use of the composition described in step (a) as a primer coating.
23 Claims, No Drawings METHOD OF IMPROVING RESISTANCE TO CORROSION OF METAL SURFACES AND RESULTANT ARTICLE RELATED APPLICATIONS The following applications have the same assignee as the present application:
Ser. No. 727,719, filed May 8, 1968, now abandoned concerns a method of preparing the thixotropic, grease-like composition.
Ser. No. 729,875, filed May 8, 1968, now U.S. Pat. No. 3,565,672 concerns the use of a thixotropic, grease-like composition as a primer for paints.
The teachings of these applications will be discussed more completely hereinafter.
Ser. No. 20,039, filed the same day as the present application, concerns grease compositions comprising a major amount of a thixotropic, grease-like composition and a minor amount of a polymer.
BACKGROUND The use of surface coatings (e.g. paint) to protect metals from corrosion is well-known. Usually, the corrosion protection is due more to the use of particular primers than to the paint itself. While most of the surface coatings (including primers) of the prior art afford a satisfactory degree of protection, they have the disadvantage that the surface requires a relatively high degree of preparation prior to the application of the primer. The high cost of the labor used in preparing the surface makes the total job of coating the metal surface quite expensive.
It is thus apparent that it would be highly desirable to have a primer which affords good corrosion protection and yet requires only a minimum amount of preparation of the metal surface prior to application. Application Ser. No. 729,875, referred to in the foregoing, teaches the use of a thixotropic, grease-like composition as a primer which meets these requirements. My invention provides a composition which gives improved results as a primer. Briefly stated, the composition of my invention comprises (1) a major amount of a thixotropic, grease-like composition and a minor amount (e.g. 0.1 to 25 weight percent) of a polymer having certain characteristics. The use of such a composition as a primer results in a film which is harder, tougher and less tacky than the use of the composition of application Ser. No. 729,875.
PRIOR ART The most pertinent prior art is believed to be the following:
U.S. Pat. No. 3,384,586 teaches the addition of a thixotropic, grease-like composition to a polymer. More specifically, this patent teaches a composition comprising a major amount of a polymer and a minor amount of the thixotropic, greaselike composition.
U.S. Pat. No. 3,372,l l4 teaches that gelled materials useful as a lubricant additive in greases are prepared by contacting (A) a fluid mineral oil solution of a carbonated, basic complex of an alkaline earth metal and an organic carboxylic or sulfonic acid, salt thereof, or carboxylic ester containing at least 12 aliphatic carbon atoms, the complex being characterized by a metal ratio of at least 4:5, with (B) oxygen at a temperature of about 150 C. to about 300 C. The patent further teaches that in some instances the product is a grease and that small compatible hydrocarbon resins can be added to the product.
Neither of these patents contain any teachings that the compositions taught therein can be used as a primer for conventional paints.
Application Ser. No. 729,875 has been discussed in the section in the immediate foregoing.
BRIEF SUMMARY OF THE INVENTION Briefly, the present invention concerns a method of improving resistance to corrosion of metal surfaces wherein the method comprises:
a. applying to the metal surface a composition comprising (1) a major amount (at least 75 weight percent) of a thixotropic, grease-like composition consisting essentially of a nonvolatile diluent, an oil-soluble dispersing agent and an alkaline earth metal carbonate and (2) a minor amount (0.1 to 25 weight percent) of a polymer, which, preferably, has the following properties:
i. a low degree of crystallinity,
ii. a molecular weight in the range of from about 3,000 to about 1 million, and
iii. a high solubility in predominantly aliphatic hydrocarbon solvents,
b. applying to the coated metal surface a conventional paint.
Preferably, the composition applied in step (a) should be substantially free of volatile solvents before applying the paint in step (b).
In another aspect, the present invention concerns a metal article having improved resistance to corrosion, said metal article having the exterior surface coated with the composition, described in the foregoing, as the primer coat and a conventional paint as the external coat.
In still another aspect, the present invention concerns the use of the composition, described in the foregoing, as a primer coating when used in conjunction with conventional paints on any of the surfaces normally coated by conventional paints.
DETAILED DESCRIPTION The composition used in my invention comprises a major amount of a thixotropic, grease-like composition and a minor amount of a polymer having certain properties.
The thixotropic, grease-like composition consists essentially of the following materials in the amounts stated:
The specific nature of these materials will be described hereinafter in connection with the preparation ofthis composition.
The thixotropic, grease-like composition has the following properties:
An acetic base number of at least 50, preferably at least 135,
Dropping point, ASTM, of at least 480 F., Does not flow at 210 F.*(*Another way of stating this property is that the composition has no apparent (i.e. cannot be measured) viscosity at 210 F.)
In order to described more fully the nature of the thixotropic, grease-like composition we will now describe methods of preparing the composition. In so doing we will describe the nature of the materials present in the composition.
Basically, there are two general methods of preparing the composition. The first method is called simply a two-step method. According to this method, a colloidal dispersion of alkaline earth metal carbonate is formed first. The dispersion is then treated, preferably, with a small amount of water in the presence of a small amount of alcohol. The second method is called simply a one-step method. According to this method, an admixture is formed of oil-soluble dispersing agent, nonvolatile diluent, alkaline earth metal compound, alcohol, and water. After treating the admixture with CO the volatile materials are removed by distillation. The two-step method will be described in detail first.
TWO-STEP METHOD OF PREPARATION Starting Materials The charge (or starting) material for this method of preparing the thixotropic, grease-like composition is a colloidal dispersion of an alkaline earth metal carbonate in a suitable l diluent and having an acetic base number of at least 50. The term alkaline earth metal" as used herein refers only to those of this group which are more commonly available, namely, magnesium, calcium, strontium and barium. Of these, calcium and barium are more suitable, with calcium being preferred.
While we have used the term alkaline earth metal carbonate it may be well to mention that, although carbonate is the predominant anion, traces of other anions, e.g. hydroxide, oxide, and alkoxide, can be present. This is due to the fact that many processes of preparing dispersions of alkaline earth metal carbonates prepare the carbonate by carbonation of an alkaline earth metal hydroxide, oxide or alkoxide.
Many processes are known for preparing colloidal dispersions of alkaline earth metal carbonates. Also, several processes are known for preparing colloidal dispersions of alkaline earth metal carbonates, wherein the metal carbonate is formed in situ in the presence of the dispersing agent. It is characteristic of the products prepared by the in situ method that they have a uniform and small (i.e. 0.25 micron or less, and usually 0.10 micron or less) particle size.
The following U.S. patents are concerned with the preparation of colloidal dispersions, wherein the alkaline earth metal compound is formed in situ: U.S. Pat. No. 3,150,089, to Mack W. Hunt, which issued Sept. 22, 1964 and is entitled Highly Basic Magnesium-Containing Additive Agent"; U.S. Pat. No. 3,150,088, to Mack W. Hunt et al., which issued Sept. 22, 1964 and is entitled Highly Basic Calcium-Containing Additive Agent"; U.S. Pat. No. 2,956,018 to Robert L. Carlyle et al., which issued Oct. 1 l, 1960 and is entitled Metal Containing Organic Compositions and Method of Preparing the Same"; U.S. Pat. No. 2,937,991, to Robert L. Carlyle, which issued May 24, 1960 and is entitled Method of Dispersing Calcium Carbonate in a Non-Volatile Carrier"; and U.S. Pat. No. 2,895,913, to Robert L. Carlyle et al., which issued on July 21, 1959 and is entitled Magnesium Containing Organic Compositions and Method of Preparing the Same.
The colloidal dispersions which are used as a starting material consist essentially of a nonvolatile diluent, an oilsoluble dispersing agent, and an alkaline earth metal carbonate. These materials are present in the following range:
Parts by Weight In addition to the nonvolatile diluent, oil-soluble dispersing agent, and basic metal compound, the colloidal dispersions may contain minor amounts of the alcohol which is employed in manufacturing the colloidal dispersion, and of the metalcontaining intermediate which may be employed in manufacturing the colloidal dispersion.
A wide variety of nonvolatile diluents are suitable in the colloidal dispersions used as the starting material. The principal requisite desired in the nonvolatile diluent is that it will act as a solvent for the dispersing agent which is used. Examples of nonvolatile diluents which can be used include mineral lubricating oils obtained by any of the conventional refining procedures; liquid synthetic lubricating oils, vegetable oils,
such as corn oil, cotton seed oil, and castor oil; animal oils, such as lard oil and sperm oil; and waxes, such as the petroleum waxes. Of the waxes, the microcrystalline waxes are preferred. Of the oils in the preceding examples, the mineral lubricating oils are preferred.
It should be noted that when a wax is used as the nonvolatile diluent, the colloidal dispersion is a solid at room temperature.
A variety of oil-soluble dispersing agents are suitable in the colloidal dispersions which are used in preparing the product used in my invention. Generic examples of suitable dispersing agents include oil-soluble sulfonic acids, carboxylic acids, and the metal salts thereof. The preferred dispersing agents for preparing the grease-like product used in my invention, are the oil-soluble sulfonic acids and metal sulfonates.
The term metal" as used in metal sulfonates," refers to those metals which are conventionally used to prepare the metal sulfonates of commerce. This includes metal sulfonates wherein the metal is sodium, potassium, magnesium, calcium, and barium. The more suitable sulfonates are those wherein the metal is calcium or barium. Preferably, the metal of the metal sulfonate is the same as the metal of the basic metal compound.
The term oil-soluble sulfonates," as used herein, refers to those sulfonates wherein the hydrocarbon portion of the molecule has a molecular weight in the range of about 300 to about 1,000. Preferably, this molecular weight is in the range of about 370 to about 700. These oil-soluble sulfonates can be either synthetic sulfonates or the so-called mahogany or natural sulfonates. The term mahogany sulfonates is believed to be well understood, since it is amply described in the literature. The term synthetic sulfonates refers to those sulfonates which are derived from sulfonation feedstocks which are prepared synthetically. The synthetic sulfonates include alkyl sulfonates and alkaryl sulfonates. The alkaryl radical can be derived from benzene, toluene, ethyl benzene, xylene isomers, or naphthalene. Preferably, the alkyl groups are branched chain.
Mixtures of sulfonates derived from alkaryl hydrocarbons having straight-chain alkyl groups and alkaryl hydrocarbons having branched-chain alkyl groups, and wherein the amount of sulfonate derived from branched-chain alkaryl hydrocarbons is at least 40 percent by weight, are particularly suitable. Preferably, the amount of sulfonate derived from branched chain alkaryls is at least 60 percent by weight.
An example of an oil soluble alkaryl sulfonate (a synthetic sulfonate) which has been particularly useful in preparing colloidal dispersions is the material known as post-dodecylbenzene sulfonate. Postdodecylbenzene is a bottoms product of the manufacture of dodecylbenzene. The alkyl groups of postdodecylbenzene are branched chain. Postdodecylbenzene consists of monoalkylbenzenes and dialkylbenzenes in the approximate mole ratio of 2:3 and has typical properties as follows:
Specific gravity at 38 C. 0.8649 Average molecular weight 385 Percent sulfonatable 88 A.S.T.M. D-l58 Engler:
l.B.P., F. 647 5 F. 682 50 F. 715 90 F. 760 F. 775 F.B.P. F. 779 Refractive index at 23 C. 1.4900 Viscosity at:
l0 C., centipoises 2800 20 centipoises 280 40 centipoises 78 80 centipoises l8 Aniline point, C. 69 Pour point, F. 25
An example of another oil-soluble synthetic alkaryl sulfonate, which is particularly useful for preparing colloidal dispersions, is the sulfonate derived from a sulfonation feedstock known as dimer alkylate." Dimer alkylate" has branched-chain alkyl groups as does postdodecylbenzene. Briefly described, dimer alkylate is prepared by the following steps:
1. Dimerization of a suitable feedstock, such as cat poly gasoline,
2. Alkylation of an aromatic hydrocarbon with the dimer formed in step l Preferably, the dimerization step uses a Friedel-Crafts alkylation sludge as the catalyst. This process and the resulting product are described in U.S. Pat. No. 3,410,925.
An example of still another oil-soluble synthetic alkaryl sulfonate, which is particularly useful for preparing colloidal dispersions, is the sulfonate derived from a sulfonation feedstock which l refer to as NAB Bottoms." NAB Bottoms are predominantly di-n-alkaryl, wherein the alkyl groups contain from eight to 18 carbon atoms. They distinguish primarily from the preceding sulfonation feedstocks in that they are straight-chain and contain a large amount of di-substituted material. The process of preparing these materials and the resulting product are described in application Ser. No. 521,794 filed Jan. 20, 1966, now abandoned, and having the same assignee as the present application. Another process of preparing a di-n-alkaryl product is described in application Ser. No. 529,284, filed Feb. 23, 1966, now abandoned and having the same assignee as the present application.
Mixtures of sulfonates derived from dimer alkylate and NAB Bottoms" are suitable for preparing the grease-like compositions used in my invention.
In order to make my disclosure even more complete, U.S. Pat. No. 3,410,925 and application Ser. Nos. 521,794 and 529,284 are made a part of this disclosure.
Other sulfonates which can be used in the colloidal dispersion employed as a starting material include, for example, monoand poly-wax substituted naphthalene sulfonates, dinonyl naphthalene sulfonates, diphenyl ether sulfonates, naphthalene disulfide sulfonates, diphenyl amine sulfonates, dicetyl thianthrene sulfonates, dilauryl betanaphthol sulfonates, dicapryl nitro-naphthalene sulfonates, unsaturated paraffin wax sulfonates, hydroxy substituted paraffin wax sulfonates, tetramylene sulfonates, monoand poly-chloro-substituted paraffin wax sulfonates, nitrosoparaffin wax sulfonates; cyclo-aliphatic sulfonates, such as lauryl-cyclohexyl sulfonates, monoand polywax substituted cyclohexyl sulfonates, and the like.
In addition, it is to be understood that the metal salts of the preceding sulfonates can be formed in situ during preparation of the colloidal dispersion by neutralization of the corresponding sulfonic acid.
Suitable carboxylicacids which can be used in preparing the colloidal dispersion used as a starting material include naphthenic acids, such as the substituted cyclopentane monocarboxylic acids, the substituted cyclohexane monocarboxylic acids and the substituted aliphatic polycyclic monocarboxylic acids containing at least carbon atoms. Specific examples include cetyl cyclohexane carboxylic acids, dioctyl cyclopentane carboxylic acids, dilauryl decahydronaphthalene and stearyloctahydro indene carboxylic acids and the like and oil-soluble salts thereof. Suitable oilsoluble fatty acids are those containing at least eight carbon atoms. For producing the colloidal dispersion in liquid form, I prefer fatty acids which are liquids at ambient temperatures down to about 15 C. Specific examples include 2-ethyl hexanoic acid, pelargonic acid, oleic acid, palmitoleic acid, linoleic acid and ricinoleic acid. Naturally occurring mixtures of predominantly unsaturated fatty acids, such as tall oil fatty acids, are particularly suitable.
In addition, it is to be understood that the metal salts of the preceding carboxylic acids can be formed in situ during preparation of the colloidal dispersion by neutralization of the corresponding carboxylic acid.
Process Conditions (Two-step Method) The thixotropic grease-like composition used to prepare the composition of my invention can be prepared by treating the colloidal dispersion with a small amount of water in the presence of a small amount of an alcohol. From a practical viewpoint, the amount of water which is used should be at least about 3 percent, preferably about 7 percent, by weight, based on the colloidal dispersion. Preferably, the amount of water should not be above 12 percent, and usually not above 20 percent, by weight, based on the colloidal dispersion. (Larger amounts can be used conceivably, but no advantage results therefrom. Also, if an extremely long reaction time can be tolerated, an amount of water less than 3 percent might be used.) It should be noted that l have found that increasing the amount of water from 4 or 5 percent to about 7 or 8 percent provides a pronounced increase in rate of reaction.
The amount of alcohol which is used is in the range of about 0.5 to about 10 percent, preferably from about 1 to about 5 percent, by weight, based on the colloidal dispersion. These aforementioned amounts of alcohol include the residual alcohol present in the colloidal dispersion which runs from about 0.5 percent to about 3 percent by weight, usually.
it is apparent from the preceding that some colloidal dispersions have sufficient residual alcohol so that additional alcohol is not required. Sometimes, the use of additional alcohol will accelerate the reaction rate. Also, the amount of alcohol required varies with the type of dispersing agent, in that some dispersing agents require more alcohol than others. Furthermore, the alcohol which is added does not have to be the same species of alcohol which is present as the residual alcohol.
A wide variety of alcohols can be used in the conversion of the colloidal dispersion to the thixotropic, grease-like composition used in my invention. Examples of suitable alcohols include the C,-C alkanols, the monoether alcohols of ethylene glycol containing up to eight carbon atoms, and the monoether alcohols of diethylene glycols containing up to eight carbon atoms. Preferably, the alcohols have boiling points of at least about that of water. Examples of suitable alcohols include methanol, ethanol, propanol, isobutanol, pentanol, hexanol, octanol, decanol, Z-methoxy ethanol, and 2- ethoxy ethanol. Of these isobutanol and 2-methoxy ethanol are preferred.
As is apparent from the preceding discussion, an important feature of the process of preparing the grease-like composition is the use of a combination of water and an alcohol to effect a modification reaction. By modification reaction" is meant the change from a fluid, clear colloidal dispersion to a viscous, tacky material.
In the preparation of the composition, heat is applied to the admixture containing colloidal dispersion, water, alcohol (and, possibly, volatile solvent or nonvolatile diluent oil). The heat is applied until the modification reaction occurs which is apparent by a rapid change in viscosity of the reaction admixture. The modification reaction occurs at a temperature slightly above 170 F. Usually a temperature of l-2l0 F is sufficient to cause the reaction to go to completion rapidly.
In practicing the method of my invention it is often con venient to use a solution of the composition in a volatile solvent. When the composition is to be used thusly it is often convenient to prepare the thixotropic, grease-like composition in the presence of the volatile solvent. The polymer is then added to the solution. When the modification reaction is conducted in the presence of the volatile solvent, the occurrence of the reaction is still visible in that the viscosity changes and the solution changes from a bright, clear solution to a hazy or cloudy solution. The temperature employed and the total amount of heat used are not critical in the two-step method.
ONE-STEP METHOD OF PREPARATION Starting Materials The nature and amounts of the starting materials, which are used to prepare the thixotropic, grease-like composition which is used in the compositions of our invention. are shown in the following table:
Parts by Weight Previously. in discussing the process conditions for the two-step method I stated that a volatile solvent, which often is used in applying the grease-like composition. can be present during the preparation. Preferably. however. in the two-step method the grease-like composition is prepared first and dissolved in the volatile solvent. In the one-step method there is no advantage in first preparing the grease-like composition and then dissolving it. in view of this having the volatile solvent present during the preparation ofthe composition is a matter ofchoice dependent on other factors. The nature of the volatile solvent is described hereinafter.)
It should be emphasized that the above-stated ranges apply solely to the one-step process of preparing the grease-like composition. The ranges differ from those given hereinafter for the grease-like composition per se, primarily. due to the inclusion of volatile materials. For this reason the ranges are stated solely to illustrate the process. Insofar as the abovestated ranges differ from those given for the grease-like composition per se my invention is limited only to the ranges stated for the composition.
Suitable and preferred nonvolatile diluent, dispersing agent and alkaline earth metal are the same as described previously in connection with the two-step method.
An alkaline earth metal carbonate, which is formed in situ, is used in the process. In forming the alkaline earth metal carbonate. an admixture is prepared of alkaline earth metal basic compound, selected from the group consisting of oxides, hydroxides. and alcoholates. dispersing agent, nonvolatile diluent. and alcohol. The admixture is then treated with CO to form the carbonate. Alternatively and preferably, the alkaline earth metal carbonate is formed by adding an alcoholic slurry ofthe alkaline earth metal basic compound to an admixture of the other materials. The total admixture is then treated with CO to form the carbonate.
Suitable alcohols for use in the one-step process include C,-C alkanols, the monoether alcohols of ethylene glycol containing up to eight carbon atoms, and the monoether alcohols of diethylene glycol containing up to eight carbon atoms. Examples of suitable alcohols include methanol, ethanol, propanol, isobutanol, pentanol, hexanol, octanol, decanol, 2-methoxy ethanol, and 2-ethoxy ethanol. The preferred alcohols are the C,-C alkanols, with the C,-C alkanols being more preferred.
Process Conditions in carrying out the one-step method, the oil soluble dispersing agent (whether pre-formed, or formed in situ), nonvolatile diluent and alcohol-alkaline earth metal basic compound slurry are intimately admixed preparatory to carbonation. The water component of the mixture may be added at any time prior to the final controlled heating step, and may be added at different times in two or more increments, if desired. The same is true of any alcohol which is added in addition to that introduced with the slurry. In the case of the water, however, it is preferred to add the entire amount of water at the outset and prior to carbonation since thicker products appear to be yielded when this procedure is followed.
in carrying out the carbonation of the mixture to form the carbonate. about 1.5 moles of carbon dioxide must be introduced to the mixture for each mole of alkaline earth metal present. In addition, the gas necessary to complete carbonation (as described) must be introduced to the mixture within about minutes in order to obtain the high viscosity greaselike product sought, and it is preferred that this amount be introduced at a sufficient rate to achieve completion of carbonation and formation of the complex within from 20 to 40 minutes.
The carbon dioxide required may be introduced into the mixture by blowing or bubbling the gas through the mixture. or by immersing dry ice in the mixture. The reaction is exothermic and its progress can be followed by observation of the change in temperature of the reaction mixture. it is preferred that the temperature be retained below about 50 C during carbonation.
Upon completion of carbonation, the mixture, which then contains the oil-soluble dispersing agent, the nonvolatile carrier material, and the alkaline earth metal carbonate resulting from carbonation is subjected to a controlled heating step. Between the carbonation procedure and the heating step, water and/or alcohol may be added to the mixture in order to bring the total content of these two components in the mixture up to that which has been hereinbefore described as the operative requirements in this respect. The heating step with which the one-step method is concluded is quite important, and the manner in which it is conducted determines whether the desired high consistency-low penetration grease-like compositions are yielded, or whether a fluid dispersion of the general type described in U.S. Pat. Nos. 2,956,0l 8 and 2,861,95l to Carlyle and also in U.S. Pat. Nos. 3,l50,088 and 3,027,325 to McMillen are formed.
in the final heating step of the process, two objectives are sought by the heating. First, the light solvents must be stripped from the mixture, except, perhaps, for small amounts of water and alcohol and such light hydrocarbon carrier material as it is desired to have remain in the final product for purposes of enhancing the ease of processing. Thus, the heating will remove substantially all of the alcohol and water which are not consumed in the grease producing reaction, and any very light hydrocarbon solvents, such as hexane, which are incorporated in the mixture in order to facilitate the carbonation of the alkaline earth metal base compound.
The second function of the heating is to supply the heat of reaction which is necessary to effect the conversion of the mixture to a high consistency grease-like composition.
To then describe the specific parameters which are critical in the heating of the heterogeneous mixture which exists after carbonation in order to form the described grease-like compositions, it is necessary that the mixture be heated to a temperature above about 50 C.
After reaching the threshold temperature of about 50 C for effecting the conversion reaction, it is then desirable to gradually increase the temperature of the reaction mixture to above C, and preferably ultimately to about C. This is because water in the mixture commences to be stripped or driven off at 100 C, and the total processing time becomes unacceptably long when temperatures exceeding this level are never attained during the final heating step. On the other hand, it is critical to the formation of the desired grease products that the temperature zone of 50 C to 100 C not be traversed too rapidly. The effect ofincreasing the temperature of the mixture at an excessive rate is to drive an excessive amount of the water from the mixture before it has had an opportunity to enter into the reaction necessary to convert the mixture to grease. From this it follows that the greater the amount of water in the mixture within the operative range of water content hereinbefore described, the higher may be the rate at which the temperature is raised from 50 C to 100 C.
A definite relationship exists between the amount of water in the heated mixture and the time required to traverse the temperature zone of from 50 C to lOO C. For example, where the minimum operative quantity of water is present in the mixture at the inception of the final heating step (that is, 0.25 mole of water per mole of overbasing alkaline earth metal present), the time within which the mixture must be maintained between 50 C and 100 C is at least 4.5 hours. This time period decreases in a fairly regular uniform fashion as the amount of water present in the mixture with respect to the amount of alkaline earth metal present increases. Thus, when a water level of about 2.5 moles of water per mole of alkaline earth metal is reached, a time period of only about 45 minutes in the temperature range of 50 C to 100 C is required in order to effect the desired conversion to the grease-like product. At this and higher water levels, the time requirement to effect the desired conversion drops off very sharply so that the reaction mixture may be heated from 50 C to 100 C at as rapid rate as may be desired. This relationship between the transition time for elevating the temperature of the reaction mass from 50 C to 100 C in instances where the water content of the reaction mixture is in the range of from about 0.25 mole of water per mole of alkaline earth metal (present in an overbasing capacity) to about 2.5 moles of water per mole of the metal can be approximated by the expression:
t=0.75 +1.7 X (2.5 -m) where t equals the time in hours within which the mixture must be retained in the temperature range of between 50 C and 100 C, and m is the number of moles of water present in the mixture per mole of alkaline earth metal present in the mixture in an overbasing capacity.
Where the reaction mixture is heated too rapidly to above 100 C, the water appears to be stripped from the mixture too fast to permit the completion of reaction. The result then is that there is formed a homogeneous dispersion of alkaline earth metal carbonate which is quite fluid and is similar to the lubricating oil additives which are yielded by the processes described in US. Pat. Nos. 2,956,018 and 2,861,951 to Carlyle and also in US. Pat. No. 3,150,088 to Hunt.
The formation of the desired grease-like product is clearly evidenced by the marked and rapid change in the observable physical properties of the mixture. The most striking change, perhaps, is in the viscosity of the mixture, which increases rapidly as the conversion to grease-like product occurs. The grease-like product is tacky and opaque and is macroscopically homogeneous. It is highly basic in terms of its acetic base number. (This term is well-known in the art, being described in US. Pat. No. 3,150,088.)
As the starting mixture undergoes conversion or modification to yield the grease-like product, it will often be desirable to add a volatile solvent to the mixture in order to maintain its viscosity within a manageable range.
In the heating step, it is not necessary to remove all of the water and alcohol from the mixture, particularly where the product is to be used as a rust inhibitor.
It is to be understood that the one-step method of preparing the grease-like composition is not part of my invention. This method is disclosed and claimed in application Ser. No. 727,719 filed May 8,1968.
The Polymer The term polymer as used herein includes certain copolymers which meet the specified requirements. Suitable polymers for use in our invention have the following properties:
a. a low degree of crystallinity; i.e., less than 50 percent,
preferably less than 25 percent, crystallinity,
b. a molecular weight in the range of from about 3,000 to about 1 million,
c. a high solubility in predominantly aliphatic hydrocarbon solvents, such as hexane, n-decane, Stoddard solvent, kerosene and petroleum lubricating oils.
Polymers meeting the above-listed description are often termed atactic or amorphous.
Examples of suitable types of polymers include low molecular weight or low density polyethylene, amorphous polypropylene, polyisobutylene, polyterpenes; copolymers of the foregoing with vinyl monomers, such as vinyl chloride, and vinyl esters, such as vinyl acetate; polyacrylic acids, and polymethacrylic acids.
Specific examples of suitable polymers include the followmg:
amorphous polypropylenes, polyolefins, ethylene-isobutyl acrylate copolymers and ethylene-vinyl acetate copolymers. Preferred polymers are the polyterpenes, amorphous polypropylenes, low molecular weight polyethylenes, and ethylene-vinyl acetate copolymers.
Relative Amounts of Polymer and Thixotropic, Grease-Like Composition in Our Composition Parts by Weight Polymer Thixotropic Composition Suitable 0.1-25 7599.9 Preferred 0.2-10 -998 Preparation of Blend of Polymer and Thixotropic, Grease-like Composition No particular technique is required to prepare the blend of polymer and thixotropic, grease-like composition. This is particularly true since usually the amount of polymer used is relative small. After adding the required amount of polymer to the thixotropic, grease-like composition, preferably slowly in incremental amounts, the admixture is stirred sufficiently to provide a homogeneous composition.
Application of the Composition to Metal Surfaces The composition used in my invention can be applied as is to the metal surface, usually, by means of a brush. Preferably, the composition is diluted in a volatile solvent for application to the surface. The use of a volatile solvent provides a more uniform film on the metal surface and enables the use of a spray. The latter can reduce substantially the cost of applying the composition.
The nature of the volatile solvent used is not a salient fea ture of my invention, and it is believed those skilled in the art, without undue experimentation, can readily ascertain suitable solvents. Examples of suitable solvents include volatile hydrocarbon solvents, such as Stoddard solvent, kerosene, petroleum naphtha and the like. Also, certain nonflammable chlorohydrocarbons are suitable. For reasons of safety, it is preferable to use solvents having a flash point of at least F and even higher. The amount of solvent is dependent on the particular method of application. Usually, a suitable amount of solvent is in the range of from about 40 to about 90 percent by weight. Preferably, it is from about 50 to about 80 percent by weight.
The composition of my invention can be used as a primer on any type of metal surface which is to be coated with a conventional paint. Preferably it is used on metals which are subject to severe corrosion, such as ferrous metals.
A particular advantage of the composition used in my invention is that the metal surface requires little or no preparation prior to application. Many primers require that the surface be meticulously clean (e.g. by chemical cleaning or sandblasting to white metal) prior to application. By contrast, the composition, used in my invention, when applied to rusted surfaces result in a satisfactory film. Usually, the surface is treated moderately, e.g. by scraping or brushing sufficiently to remove loose scale prior to application of the grease-like composition.
The amount of composition which is applied can be readily determined by those skilled in the art. A thicker film usually provides better protection but, obviously, is more expensive. A film having a thickness of about 2.5 mils has been found to be optimum with respect to both performance and economics.
The composition should be substantially solvent-free before applying the conventional paint. Usually, the composition is solvent-free in 18-72 hours.
Suitable Paints A variety of conventional paints have been found to be satisfactorily applied over the composition used in my invention. Examples of suitable generic-type paints include the following:
Amine cured epoxy (2 component) Polyamide cured epoxy Urethane (2 component) Alkyd enamel Phenolic enamel Acrylic water emulsion Vinyls (solvent or emulsion based) Knowing that the composition described herein is satisfactory as a primer for conventional paints anyone skilled in this art can readily select a suitable paint for the outer surface. Similarly, the selection of a paint to provide optimum results can be made readily.
Advantages of My Invention As indicated previously, a primary advantage of the use of the composition as a primer is that the metal surface requires little, or no, preparation prior to being coated with the composition.
Secondly, use of the composition as a primer provides an improved resistance to corrosion of metal surfaces.
Thirdly, use of the composition as a primer permits an increase in the thickness of a single-coat film, particularly with alkyd paints.
Fourthly, use of the composition as a primer results in a film which is harder, tougher and less tacky than the use of the composition of application Ser. No. 729,875 as a primer.
In order to disclose the nature of the present invention still more clearly, the following illustrative examples will be given. It is to be understood that the invention is not to be limited to the specific conditions or details set forth in these examples except insofar as such limitations are specified in the appended claims. Unless stated otherwise, all parts stated are by weight.
EXAMPLE 1 This example illustrates the reduction in tackiness of the polymer-thixotropic, grease-like composition as compared to the thixotropic, grease-like composition alone.
The thixotropic grease-like composition was prepared using the one-step" method described hereinbefore.
The sulfonic acid solution employed contained 27 percent (by wt.) mixed sulfonic acids, 60 percent (by wt.) n-hexane and 13 percent (by wt.) nonvolatile mineral oil (pale oil). The mixed sulfonic acids contained 70 percent (by wt.) oil-soluble sulfonic acids derived from dimer alkylate and 30 percent (by wt.) oil-soluble sulfonic acids derived from NAB" Bottoms. Both dimer alkylate" and NAB" Bottoms have been described in the foregoing.
The following materials were added to a 12-liter flask:
2,000 parts Stoddard solvent 15 parts water 1,582 parts sulfonic acid solution To the above-listed admixture was added a slurry of the following:
345 parts Ca(Ol-l) 1,587 parts methanol While stirring the resulting admixture it was blown with CO Using a large flow meter, with a reading of 10, (approximately 9,250 ccs/minute) it was blown with C0 until the temperature peaked. Then the rate of blowing was reduced to a meter reading of 5 and continued for 15 minutes. The timetemperature data for the CO blowing were as follows:
Begin CO, 28 C.
After 5 min. 36 C.
After 10 min. 48 C.
After 11 min. 49 C.
After 12 min. 51 C. (peak) Following peaking 5 min. 44 C.
10 min. 40 C.
15 min. 36 C.
The carbonated admixture was then heated to reflux temperature (67 C) and maintained at this temperature for 15 minutes.
The carbonated admixture was cooled to about 55 C, whereupon parts water were added over a 15-minute period.
The resulting admixture was heated to reflux temperature and maintained at this temperature for 15 minutes.
The admixture was then heated slowly to a temperature of 160 C. to remove the lower boiling solvents.
The yield of product was 2,720 parts.
To the product was added 700 parts Stoddard solvent to product a final product of 3,420 parts.
The final product had the following composition:
12.2 percent Calcium sulfonate 12.2 percent Calcium number== 137) 9.1 percent 100 Pale oil 66.5 percent Stoddard solvent Various polymers were added to the product at a concentration of l to 5 weight percent based on the nonvolatile content. Blending of the polymer and thixotropic, grease-like product was obtained by adding the polymer to the heated (80 to C) product, described above, and stirring until all of the polymer dissolved. The nature of the various polymers used is shown in Table I.
In order to evaluate the tackiness of the various compositions (thixotropic, grease-like composition plus polymer), a solution of the compositions were applied to steel Q panels. Upon evaporation of the volatile solvent, a film of the composition (thixotropic, grease-like composition plus polymer) formed on the panels. The films of the various compositions were evaluated for tackiness with an Instron machine using the following procedure. A brass plunger, 0.500 inch in diameter and weighing 243.5 grams was lowered onto the surface of a coated panel and its weight allowed to rest on the panel for about 30 seconds. Then the plunger was lifted from the panel. A surface with no tackiness or adhesiveness would require a force of 243.5 grams to lift the brass plate off the surface. The amount of force required, in excess of 243.5 grams, to lift the brass weight was a measure of the tackiness of the coated surface.
The nature of the polymers tested and the excess force data are shown in Table I.
carbonate*( *Acetic base TABLE I lnstron Test Measurement of Tackiness of Coatings Film Excess Thickness Force Composition Mils Grants" Thixotropic. Grease-like Composition alone (TGC) 7.3 72.4:13 'l'GC+5% Nevillac" l l) 7.3 38.7112 TGC "Eastobond" M-3 (2) 2.5 27.3: TGC 5% Acryloid" 9l7 (3) 2.5 54.819 TGC 5% Kenflex A (4) 2.0 5.811 TGC 5% "Epolene D-ll (5) 4.6 14.3:3 TGC 5% Zetafax" 1278 (6) 3.4 6.511 TGC 5% 'Zetatax" 1275 (6) 5 3 10.913 TGC 2% Epolene C-l6 (7) 2.4 16.716
Lower values indicate improved performance.
(I) A phenol modified eoumarone-indene resin from Neville Chemical Company. (2) A polyolelin based hot melt adhesive resin from Eastman Chemical Products. Inc.
EXAMPLE 2 This example illustrates the improved mechanical performance of a conventional paint over the composition of my invention as compared to the composition of application Ser. No. 729,875.
The following compositions were tested:
A the composition of Ser. No. 729,875
B the thixotropic, grease-like composition of Example 1 similar to A but containing less nonvolatile diluent oil C Composition B plus 3 percent Eponlene C-l6 D Composition B plus 5 percent Eastobond M-5W (amorphous polypropylene) Films of the compositions were cast on 4 in. X 8 in. mild steel Q panels. The coated panels were painted over with a conventional white alkyd enamel. it was noted that the coatings from compositions C and D accepted the paint top coat more readily and covered more smoothly than did the coatings from compositions A and B. The alkyd enamel top coat was dry in 24 hours over all the compositions.
The coatings were subjected to adhesion and abrasion resistance tests. Adhesion was evaluated by a scotch tape test. in this test a grid 34 in. X V4 in. was cut through the coating down to bare metal. The grid consisted of 7 lines /2. in. apart intersected at right angles by another 7 lines at Ya in. spacing. A 34. in. wide strip of "Scotch magic transparent tape was placed over the grid and pressed firmly in place with a finger. Then the tape was lifted, quickly and smoothly. The number of squares, out of the total of 36, in which the coating separated from the metal and adhered to the tape was counted. A lower value in this test indicates improved results.
The abrasion resistance was measured by determining the amount of force that must be applied to 1 square inch of No. l00 grit sandpaper being pulled over the surface of the coating before bare metal is revealed. In this test a higher value indicutes improved results.
The results ofthe test in this example are shown in Table ll.
TABLE ll Adhesion and Abrasion Tests of Coatings Thickness Mils ness Topcoat Primer Mils White alkyd enamel White alkyd 3.2:03 None 0 14 enamel -3 Comp.A 2.58:0.08 21 -6 White alkyd enamel 3 Comp.B 3.19:0.13 8 -7A White alkyd enamel -3 Comp.C 3.9li0.l7 1 =10 White alkyd enamel =3 Comp.B 4.37:0.16 0 -9 EXAMPLE 3 This example shows the improvement obtained when using the primer of my invention (which contains a minor amount of polymer) as compared to the composition of U.S. Pat. No. 3,384,586 (which contains a major amount of polymer) when the latter is used as a primer.
The thixotropic, grease-like composition was prepared using the two-step" method.
The colloidal dispersion of calcium carbonate used as a starting material had the following composition:
30 percent calcium sulfonate 43 percent nonvolatile diluent 170 pale oil) 27 percent calcium carbonate*( *The material had an acetic base number of about 300.
To a lO-quart Hobart mixer bowl were added 6,000 parts of the colloidal dispersion of calcium carbonate. The material was heated to 150 F whereupon the following were added:
600 parts water 30 parts methoxy ethanol The admixture was heated slowly to 200 to 210 F and then heated. The total time of heating from 150 to 210 F was about 1 hour. The solvents were removed by heating to 315 F using a reduced pressure (partial house vacuum).
The resulting product was a thixotropic, grease-like composition having an ASTM penetration of 133 at 77 F.
Using a planetary type grease mixer the following compositions were prepared:
Composition A parts 78.4 Stoddard solvent 53.4*( *This composition is typical of U.S. Pat. No.
polyvinyl chloride 34 dioctyl phthalate l0 TGC**(**Thixotropic,
prepared in this example.)
Composition B parts 61.4 Stoddard solvent 38.6*(*This composition is comparative to US. Pat. No.
3,384,586 and illustrates the properties of a composition containing a minor amount of polymer.)
l0 polyvinyl chloride 3.8 dioctyl phthalate 90 TGC Using a Waring blender the following compositions were prepared:
Composition C parts 105.5 Stoddard solvent grease-like composition 90 polyterpene resin (Wing Tack" l0 TGC Composition D parts 60.9 Stoddard solvent i0 polyterpene resin (Wing Tack 95) 90 TGC Composition E parts 61.7 Stoddard solvent 38.3 TGC The viscosity characteristics of the above-described compositions are shown in Table III.
TABLE III Brookfield Viscosity at 77 2 s method of preparing the colloidal dispersion of calcium car- Q P- WK 12 30 bonate, which is used to prepare the thixotropic, grease-like osition volatile RPM RPM Ratio composition The methoxy ethanolic solution of Ca methoxy ethoxide A 4 .5 311 14 2-1 5 was prepared in accordance with the procedure described in g 1 1 us. Pat. No. 3,150,088. D 6 317 I7 The sulfonic acid solution employed in this example con- E 38.3 1016 522 1.95 tained 27 percent (by wt.) mixed sulfonic acids, 60 percent (by wt.) n-hexane and 13 percent (by wt.) nonvolatile mineral 10 oil (pale oil). The mixed sulfonic acids contained 60 percent The data listed above shows that blends containing a large ?,Y xg g l q g g f .3? a amount of thixotropic, grease-like compositions (e.g. B and e ip f i? n 2:11:5 2: 3 gx's D) have a much higher viscosity than do blends containing a S have z s z in the 5 e an small amount of thixotropic, grease-like composition (A and o om e g C) 15 To a one-liter flask were added:
' 150 g. sulfonic acid solution EXAMPLE 4 49 P P 0i1 The admixture was heated to 35 C and the sulfonic acid I l Shows the l Pf p of vanous was neutralized by adding 31 grams of a methoxy ethanolic 1on5 51111112" to those dFscflbed F P The composl' solution of Ca methoxy ethoxide-carbonate, containing 6.95 tions were the same with the exception that the amount of percent Ca. The temperature was adjusted to 0 C and the Stoddard was different l A and In following solutions were added concurrently at constant rates: these compositions the amount of Stoddard solvent was as fol- 252 methoxy ethanolic Solution f Ca methoxy ethox 0W5: ide-carbonate (containing 6.95 percent Ca) P l l" A Parts 2 59.4 g. solution containing: composmofl B 297 Parts 29.3 percent methoxy ethanol A panel was dipped in the composition. After allowing the 501- 142 percent methanol vent to evaporate the film was measured and the coated panel 565 percent water was evaluated- The results are shown below: After the addition, the admixture was heated at reflux tem- TABLEW perature for 5 hours. Then 170 grams of Stoddard solvent were added and the maor ortion of the solvents were I .l P removed by heating to 150 C. Compositions Removal of the Stoddard solvent from a portion of the product resulted in a thixotropic, grease-like composition hav- A B C D E ing an ASTM penetration of 187. Dip Film The invention having thus been described, what is claimed Thickness, and desired to be secured by Letters Patent is: j 1. A method of improving resistance to corrosion of metal gal-Li surfaces wherein the method comprises: Appearance A. applying to the metal surface a primer composition an F el paq T n. T n. T n. which comprises, in parts by weight:
32m 212:" "52: ":33 ":3 1. from about 75 to about 99.9 parts of a thixotropic,
tacky" 23rd 5 fi g grease-like composition consisting essentially of:
brittle slightly tacky i. from about 2 to about 80 parts nonvolatile diluent P t tacky selected from the group consisting of mineral all! Adhesion Poor Good very very Good lubricating oils, synthetic lubricating oils, and Poor Good petroleum waxes,
ii. from about 5 to about 55 parts oil-soluble dispersing agent, EXAMPLE 5 iii. from about 1 to about 45 parts alkaline earth metal This example shows the performance as primer of the comn e, i grease-like composition being positions described in Example 4. First, the steel panels were Characteflled further In that It has all a-Cetlc base coated with the compositions as a primer; then they were number of at least 5 (1068 not e at and coated with a white alkyd enamel. The panels were evaluated has a pp g 130mt of at least 480 F in the ASTM 8-1 17 Salt Fog Test after 100 hours exposure. flom about to about 25 Parts P y r, 581d po ym r The resuhs are shown in Table v. being characterized as having ahcrystallinity of lesfs than 50 percent a molecular weig t in the range 0 from EXAMPLE6 about 3.000 to about 1 million and a high solubility in This example illustrates another variation of the one-step predominantly aliphatic hydrocarbon solvents,
TABLE v Film thickness,
mils Creepage Approx. Rust ratings 3 from Rust or inner area, Paint Edge Corrosion in score, ,3 x 7 test percent Mil-C ASTM Comp. topcoat corrosion X score inm. surface rusted 83933 D-1654-61 Composition A 1.58 1.5 Severe Very severe -1 Light 5 Fail 8 13.. 1,23 1.5 Light Very light None None 1 Pass l) C 1.8 1.5 Severe -2 Light. 5 Fail 8 l). 1.22 1.5 Light None None 1 Pass J E 1.38 1.5 .do. None o 0 do J-l- Unpriined control panels 1. 5 Moderate -13 Light -10 l In this test an is cut through the coatings to the metal. Then the scored panel is subjected to the salt fog test.
-' Rating of unseored panel. ignoring a inch wide border around the edges.
3 Rating of unscored panels. 4 Top edge.
B. allowing the coated metal surface to become substantially free of any volatile solvent which may be present, and
C. applying to the coated metal surface a conventional paint wherein said paint adheres to said primer.
2. The method of claim 1 wherein the oil-soluble dispersing agent is a sulfonic acid, or a metal salt thereof.
3. The method of claim 2 wherein the alkaline earth metal carbonate is calcium carbonate.
4. The method of claim 3 wherein the polymer is selected from the group consisting of polyterpenes, amorphous polypropylenes, low molecular weight polyethylenes, and ethylene-vinyl acetate copolymers.
5. The method of claim 4 wherein the conventional paint is selected from the group consisting of two-component amine cured epoxy, two-component urethane, alkyd enamel, phenolic enamel, acrylic water emulsion, and vinyl.
6. The method of claim 5 wherein the polymer is a polyterpene.
7. The method of claim 5 wherein the polymer is an amorphous polypropylene.
8. The method of claim 5 wherein the polymer is a low molecular weight polyethylene.
9. The method of claim 5 wherein the polymer is an ethylene-vinyl acetate copolymer.
10. A method of improving resistance to corrosion of metal surfaces, wherein the method comprises:
A. applying to the metal surface a primer composition which comprises, in parts by weight:
1. from about 90 to about 99.8 parts of a thixotropic,
grease-like composition consisting essentially of:
i. from about 20 to about 70 parts nonvolatile diluent selected from the group consisting of mineral lubricating oils, synthetic lubricating oils and petroleum waxes,
ii. from about 6 to about 35 parts calcium salt of an oil soluble sulfonic acid,
iii. from about 5 to about 30 parts calcium carbonate, said grease-like composition being characterized further in that it has an acetic base number of at least 50, does not flow at 210 F, and has a dropping point of at least 480 F,
2. from about 0.2 to about 10 parts polymer, said polymer being characterized as having a crystallinity of less than 50 percent, a molecular weight in the range of from about 3,000 to about 1 million and a high solubility in predominantly aliphatic hydrocarbon solvents,
B. allowing the coated metal surface to become substantially free of any volatile solvent which may be present, and
C. applying to the coated metal surface a conventional paint wherein said paint adheres to said primer.
1]. The method of claim 10 wherein the nonvolatile diluent is a mineral lubricating oil.
12. The method of claim 1 1 wherein the polymer is selected from the group consisting of polyterpenes, amorphous polypropylenes, low molecular weight polyethylenes, and ethylene-vinyl acetate copolymers.
13. The method of claim 12 wherein the polymer is a polyterpene.
14. The method of claim 12 wherein the polymer is an amorphous polypropylene.
15. The method of claim 12 wherein the polymer is a low molecular weight polyethylene.
16. The method of claim 12 wherein the polymer is an ethylene-vinyl acetate copolymer.
17. The method of claim 12 wherein the conventional paint is selected from the group consisting of two-component amine cured epoxy, two-component urethane, alkyd enamel, phenolic enamel, acrylic water emulsion, and vinyl.
18. The method of claim 17 wherein the polymer is a polyterpene.
19. The method of claim 17 wherein the polymer is an amo hous pol rop lene.
20 The meth d of claim 17 wherein the polymer is a low molecular weight polyethylene.
21. The method of claim 17 wherein the polymer is an ethylene-vinyl acetate copolymer.
22. A method of coating a substrate which comprises:
A. applying to the substrate a primer composition which comprises in parts by weight:
1. from about 75 to about 99.9 parts of a thixotropic,
grease-like composition consisting essentially of:
i. from about 2 to about parts nonvolatile diluent selected from the group consisting of mineral lubricating oils, synthetic lubricating oils, and petroleum waxes,
ii. from about 5 to about 55 parts oil-soluble dispersing agent,
iii. from about 1 to about 45 parts alkaline earth metal carbonate, said grease-like composition being characterized further in that it has an acetic base number of at least 50, does not flow at 210 F, and has a dropping point of at least 480 F,
2. from about 0.1 to about 25 parts polymer, said polymer being characterized as having a crystallinity of less than 50 percent, a molecular weight in the range of from about 3,000 to about 1 million and a high solubility in predominantly aliphatic hydrocarbon solvents,
B. allowing the coated substrate to become substantially free of any volatile solvent which may be present, and
C. applying to the coated substrate a conventional paint wherein said paint adheres to said primer.
23. A metal article, one surface of which has been coated with a primer composition and a conventional paint adhered to said primer, said primer composition comprising in parts by weight:
1. from about 75 to about 99.9 parts of a thixotropic,
grease-like composition consisting essentially of:
i. from about 2 to about 80 parts nonvolatile diluent selected from the group consisting of mineral lubricating oils, synthetic lubricating oils, and petroleum waxes,
ii. from about 5 to about 55 parts oil-soluble dispersing agent,
iii. from about I to about 45 parts alkaline earth metal carbonate, said composition being characterized further in that it has an acetic base number of at least 50, does not flow at 210 F, and has a dropping point of at least 480 F,
2. from about 0.1 to about 25 parts polymer, said polymer being characterized as having a crystallinity of less than 50 percent, a molecular weight in the range of from about 3,000 to about 1 million and a high solubility in predominantly aliphatic hydrocarbon solvents.

Claims (26)

  1. 2. from about 0.1 to about 25 parts polymer, said polymer being characterized as having a crystallinity of less than 50 percent, a molecular weight in the range of from about 3,000 to about 1 million and a high solubility in predominantly aliphatic hydrocarbon solvents, B. allowing the coated metal surface to become substantially free of any volatile solvent which may be present, and C. applying to the coated metal surface a conventional paint wherein said paint adheres to said primer.
  2. 2. The method of claim 1 wherein the oil-soluble dispersing agent is a sulfonic acid, or a metal salt thereof.
  3. 2. from about 0.2 to about 10 parts polymer, said polymer being characterized as having a crystallinity of less than 50 percent, a molecular weight in the range of from about 3,000 to about 1 million and a high solubility in predominantly aliphatic hydrocarbon solvents, B. allowing the coated metal surface to become substantially free of any volatile solvent which may be present, and C. applying to the coated metal surface a conventional paint wherein said paint adheres to said primer.
  4. 2. from about 0.1 to about 25 parts polymer, said polymer being characterized as having a crystallinity of less than 50 percent, a molecular weight in the range of from about 3,000 to about 1 million and a high solubility in predominantly aliphatic hydrocarbon solvents, B. allowing the coated substrate to become substantially free of any volatile solvent which may be present, and C. applying to the coated substrate a conventional paint wherein said paint adheres to said primer.
  5. 2. from about 0.1 to about 25 parts polymer, said polymer being characterized as having a crystallinity of less than 50 percent, a molecular weight in the range of from about 3,000 to about 1 million and a high solubility in predominantly aliphatic hydrocarbon solvents.
  6. 3. The method of claim 2 wherein the alkaline earth metal carbonate is calcium carbonate.
  7. 4. The method of claim 3 wherein the polymer is selected from the group consisting of polyterpenes, amorphous polypropylenes, low molecular weight polyethylenes, and ethylene-vinyl acetate copolymers.
  8. 5. The method of claim 4 wherein the conventional paint is selected from the group consisting of two-component amine cured epoxy, two-component urethane, alkyd enamel, phenolic enamel, acrylic water emulsion, and vinyl.
  9. 6. The method of claim 5 wherein the polymer is a polyterpene.
  10. 7. The method of claim 5 wherein the polymer is an amorphous polypropylene.
  11. 8. The method of claim 5 wherein the polymer is a low molecular weight polyethylene.
  12. 9. The method of claim 5 wherein the polymer is an ethylene-vinyl acetate copolymer.
  13. 10. A method of improving resistance to corrosion of metal surfaces, wherein the method comprises: A. applying to the metal surface a primer composition which comprises, in parts by weight:
  14. 11. The method of claim 10 wherein the nonvolatile diluent is a mineral lubricating oil.
  15. 12. The method of claim 11 wherein the polymer is selected from the group consisting of polyterpenes, amorphous polypropylenes, low molecular weight polyethylenes, and ethylene-vinyl acetate copolymers.
  16. 13. The method of claim 12 wherein the polymer is a polyterpene.
  17. 14. The method of claim 12 wherein the polymer is an amorphous polypropylene.
  18. 15. The method of claim 12 wherein the polymer is a low molecular weight polyethylene.
  19. 16. The method of claim 12 wherein the polymer is an ethylene-vinyl acetate copolymer.
  20. 17. The method of claim 12 wherein the conventional paint is selected from the group consisting of two-component amine cured epoxy, two-component urethane, alkyd enamel, phenolic enamel, acrylic water emulsion, and vinyl.
  21. 18. The method of claim 17 wherein the polymer is a polyterpene.
  22. 19. The method of claim 17 wherein the polymer is an amorphous polypropylene.
  23. 20. The method of claim 17 wherein the polymer is a low molecular weight polyethylene.
  24. 21. The method of claim 17 wherein the polymer is an ethylene-vinyl acetate copolymer.
  25. 22. A method of coating a substrate which comprises: A. applying to the substrate a primer composition which comprises in parts by weight:
  26. 23. A metal article, one surface of which has been coated with a primer composition and a conventional paint adhered to said primer, said primer composition comprising in parts by weight:
US20038A 1970-03-16 1970-03-16 Method of improving resistance to corrosion of metal surfaces and resultant article Expired - Lifetime US3661622A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2003870A 1970-03-16 1970-03-16

Publications (1)

Publication Number Publication Date
US3661622A true US3661622A (en) 1972-05-09

Family

ID=21796396

Family Applications (1)

Application Number Title Priority Date Filing Date
US20038A Expired - Lifetime US3661622A (en) 1970-03-16 1970-03-16 Method of improving resistance to corrosion of metal surfaces and resultant article

Country Status (7)

Country Link
US (1) US3661622A (en)
BE (1) BE777671Q (en)
CA (1) CA938176A (en)
DE (1) DE2061177C3 (en)
ES (1) ES387042A2 (en)
FR (1) FR2084619A5 (en)
GB (1) GB1271629A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922437A (en) * 1972-10-19 1975-11-25 Japan National Railway Steel material for use in the prestressed concrete
US4495225A (en) * 1984-03-21 1985-01-22 Economics Laboratory, Inc. Method and composition for the prevention or inhibition of corrosion
US4675215A (en) * 1985-09-27 1987-06-23 Economics Laboratory, Inc. Method and composition for the inhibition of corrosion
US4718942A (en) * 1985-08-08 1988-01-12 Witco Corporation Thixotropic overbased alkaline earth metal inorganic-organic compositions containing alkoxylated oxidized petrolatums
US4728578A (en) * 1986-08-13 1988-03-01 The Lubrizol Corporation Compositions containing basic metal salts and/or non-Newtonian colloidal disperse systems and vinyl aromatic containing polymers
US4729791A (en) * 1985-02-25 1988-03-08 Witco Corporation Corrosion-inhibiting coating compositions for metals
US4749412A (en) * 1985-09-27 1988-06-07 Drew Chemical Corporation Method and composition for the inhibition of corrosion
US4954545A (en) * 1987-07-27 1990-09-04 Phillips Petroleum Company Process for cleaning polymer processing equipment
EP0413859A1 (en) * 1988-08-18 1991-02-27 Exxon Chemical Patents Inc. Metal protecting compositions
EP0414967A1 (en) * 1989-08-21 1991-03-06 Exxon Chemical Patents Inc. Coating compositions
US5244957A (en) * 1989-08-17 1993-09-14 Exxon Chemical Patents Inc. Metal protecting compositions
US6126999A (en) * 1998-04-13 2000-10-03 Tomasino; Randolf R. Urethane-acrylic rubber coating and method of forming a vehicle bed liner
US20030224198A1 (en) * 2002-01-11 2003-12-04 Nissan Technical Center North America, Inc. Reusable masking device for sprayable bed liner
US6677281B2 (en) * 2001-04-20 2004-01-13 Exxonmobil Research And Engineering Company Synergistic combination of metallic and ashless rust inhibitors to yield improved rust protection and demulsibility in dispersant-containing lubricants
US20060025317A1 (en) * 2004-07-29 2006-02-02 Olson William D Overbased calcium salicylate greases
US20070157916A1 (en) * 2006-01-11 2007-07-12 Mancini Ralph J Archery bow having improved design to absorb shock and reduce vibration
US20100132241A1 (en) * 2008-05-19 2010-06-03 Mancini Ralph J Method for accurizing a firearm
WO2013066952A1 (en) 2011-10-31 2013-05-10 Nch Corporation Calcium carbonate based calcium sulfonate grease composition and method of manufacture
US9458406B2 (en) 2011-10-31 2016-10-04 Nch Corporation Calcium hydroxyapatite based sulfonate grease compositions and method of manufacture
WO2017120000A1 (en) 2016-01-07 2017-07-13 Nch Corporation Manufacturing calcium sulfonate greases using alkali metal hydroxide and delayed addition of non-aqueous converting agents
WO2017200927A1 (en) 2016-05-18 2017-11-23 Nch Corporation Composition and method of manufacturing calcium sulfonate and calcium magnesium sulfonate greases using a delay after addition of facilitating acid
WO2017200924A1 (en) 2016-05-18 2017-11-23 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US9976102B2 (en) 2011-10-31 2018-05-22 Nch Corporation Composition and method of manufacturing calcium sulfonate greases using alkali metal hydroxide and delayed addition of non-aqueous converting agents
US9976101B2 (en) 2011-10-31 2018-05-22 Nch Corporation Method of manufacturing calcium sulfonate greases using delayed addition of non-aqueous converting agents
US10087391B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases without a conventional non-aqueous converting agent
US10392577B2 (en) 2016-05-18 2019-08-27 Nch Corporation Composition and method of manufacturing overbased sulfonate modified lithium carboxylate grease
US10519393B2 (en) 2016-05-18 2019-12-31 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US11661563B2 (en) 2020-02-11 2023-05-30 Nch Corporation Composition and method of manufacturing and using extremely rheopectic sulfonate-based greases
WO2024047447A1 (en) 2022-09-01 2024-03-07 The Lubrizol Corporation Gelling agent for calcium sulfonate greases

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443577A (en) * 1982-05-12 1984-04-17 The Lubrizol Corporation One-component moisture curable urethane coating system
EP0094196B1 (en) * 1982-05-12 1986-08-27 The Lubrizol Corporation Two-component urethane coating system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758981A (en) * 1952-10-29 1956-08-14 Exxon Research Engineering Co Corrosion preventive composition
US2834691A (en) * 1956-10-09 1958-05-13 Gen Electric Process for preparing a metal surface for coating and product thereof
US3084066A (en) * 1959-11-03 1963-04-02 Russell P Dunmire Coated metal article and method of producing
US3242079A (en) * 1962-04-06 1966-03-22 Lubrizol Corp Basic metal-containing thickened oil compositions
US3372114A (en) * 1965-02-25 1968-03-05 Lubrizol Corp Process for preparing thickened mineral oil compositions
US3384586A (en) * 1966-03-17 1968-05-21 Lubrizol Corp Resinous compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758981A (en) * 1952-10-29 1956-08-14 Exxon Research Engineering Co Corrosion preventive composition
US2834691A (en) * 1956-10-09 1958-05-13 Gen Electric Process for preparing a metal surface for coating and product thereof
US3084066A (en) * 1959-11-03 1963-04-02 Russell P Dunmire Coated metal article and method of producing
US3242079A (en) * 1962-04-06 1966-03-22 Lubrizol Corp Basic metal-containing thickened oil compositions
US3372114A (en) * 1965-02-25 1968-03-05 Lubrizol Corp Process for preparing thickened mineral oil compositions
US3384586A (en) * 1966-03-17 1968-05-21 Lubrizol Corp Resinous compositions

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922437A (en) * 1972-10-19 1975-11-25 Japan National Railway Steel material for use in the prestressed concrete
US4495225A (en) * 1984-03-21 1985-01-22 Economics Laboratory, Inc. Method and composition for the prevention or inhibition of corrosion
US4729791A (en) * 1985-02-25 1988-03-08 Witco Corporation Corrosion-inhibiting coating compositions for metals
US4718942A (en) * 1985-08-08 1988-01-12 Witco Corporation Thixotropic overbased alkaline earth metal inorganic-organic compositions containing alkoxylated oxidized petrolatums
US4675215A (en) * 1985-09-27 1987-06-23 Economics Laboratory, Inc. Method and composition for the inhibition of corrosion
US4749412A (en) * 1985-09-27 1988-06-07 Drew Chemical Corporation Method and composition for the inhibition of corrosion
US4728578A (en) * 1986-08-13 1988-03-01 The Lubrizol Corporation Compositions containing basic metal salts and/or non-Newtonian colloidal disperse systems and vinyl aromatic containing polymers
US4954545A (en) * 1987-07-27 1990-09-04 Phillips Petroleum Company Process for cleaning polymer processing equipment
EP0413859A1 (en) * 1988-08-18 1991-02-27 Exxon Chemical Patents Inc. Metal protecting compositions
US5244957A (en) * 1989-08-17 1993-09-14 Exxon Chemical Patents Inc. Metal protecting compositions
EP0414967A1 (en) * 1989-08-21 1991-03-06 Exxon Chemical Patents Inc. Coating compositions
US6126999A (en) * 1998-04-13 2000-10-03 Tomasino; Randolf R. Urethane-acrylic rubber coating and method of forming a vehicle bed liner
US6677281B2 (en) * 2001-04-20 2004-01-13 Exxonmobil Research And Engineering Company Synergistic combination of metallic and ashless rust inhibitors to yield improved rust protection and demulsibility in dispersant-containing lubricants
US20030224198A1 (en) * 2002-01-11 2003-12-04 Nissan Technical Center North America, Inc. Reusable masking device for sprayable bed liner
US7504133B2 (en) 2002-01-11 2009-03-17 Nissan Technical Center North America, Inc. Method of manufacturing a truck bed liner with a reusable masking device
US20070200383A1 (en) * 2002-01-11 2007-08-30 Nissan Technical Center North America, Inc. Reusable masking device for sprayable bed liner
US20060025317A1 (en) * 2004-07-29 2006-02-02 Olson William D Overbased calcium salicylate greases
US7407920B2 (en) 2004-07-29 2008-08-05 Crompton Corporation Overbased calcium salicylate greases
US7708000B2 (en) 2006-01-11 2010-05-04 Mancini Ralph J Archery bow having improved design to absorb shock reduce vibration
US7438070B2 (en) 2006-01-11 2008-10-21 Mancini Ralph J Archery bow having improved design to absorb shock and reduce vibration
US20090014239A1 (en) * 2006-01-11 2009-01-15 Mancini Ralph J Archery bow having improved design to absorb shock and reduce vibration
US20080216804A1 (en) * 2006-01-11 2008-09-11 Mancini Ralph J Archery bow having improved design to absorb shock reduce vibration
US20070157916A1 (en) * 2006-01-11 2007-07-12 Mancini Ralph J Archery bow having improved design to absorb shock and reduce vibration
US20100108048A1 (en) * 2006-01-11 2010-05-06 Mancini Ralph J Archery bow having improved design to absorb shock and reduce vibration
US20100132241A1 (en) * 2008-05-19 2010-06-03 Mancini Ralph J Method for accurizing a firearm
US10316266B2 (en) 2011-10-31 2019-06-11 Nch Corporation Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture
WO2013066955A1 (en) 2011-10-31 2013-05-10 Nch Corporation Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture
US9273265B2 (en) 2011-10-31 2016-03-01 Nch Corporation Calcium carbonate based sulfonate grease compositions and method of manufacture
US9458406B2 (en) 2011-10-31 2016-10-04 Nch Corporation Calcium hydroxyapatite based sulfonate grease compositions and method of manufacture
US11072756B2 (en) 2011-10-31 2021-07-27 Nch Corporation Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture
WO2013066952A1 (en) 2011-10-31 2013-05-10 Nch Corporation Calcium carbonate based calcium sulfonate grease composition and method of manufacture
US9976102B2 (en) 2011-10-31 2018-05-22 Nch Corporation Composition and method of manufacturing calcium sulfonate greases using alkali metal hydroxide and delayed addition of non-aqueous converting agents
US9976101B2 (en) 2011-10-31 2018-05-22 Nch Corporation Method of manufacturing calcium sulfonate greases using delayed addition of non-aqueous converting agents
WO2017120000A1 (en) 2016-01-07 2017-07-13 Nch Corporation Manufacturing calcium sulfonate greases using alkali metal hydroxide and delayed addition of non-aqueous converting agents
US10087387B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US10087388B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium sulfonate and calcium magnesium sulfonate greases using a delay after addition of facilitating acid
US10087391B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases without a conventional non-aqueous converting agent
WO2017200924A1 (en) 2016-05-18 2017-11-23 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US10392577B2 (en) 2016-05-18 2019-08-27 Nch Corporation Composition and method of manufacturing overbased sulfonate modified lithium carboxylate grease
US10519393B2 (en) 2016-05-18 2019-12-31 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
WO2017200927A1 (en) 2016-05-18 2017-11-23 Nch Corporation Composition and method of manufacturing calcium sulfonate and calcium magnesium sulfonate greases using a delay after addition of facilitating acid
US11168277B2 (en) 2016-05-18 2021-11-09 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US11661563B2 (en) 2020-02-11 2023-05-30 Nch Corporation Composition and method of manufacturing and using extremely rheopectic sulfonate-based greases
WO2024047447A1 (en) 2022-09-01 2024-03-07 The Lubrizol Corporation Gelling agent for calcium sulfonate greases

Also Published As

Publication number Publication date
FR2084619A5 (en) 1971-12-17
GB1271629A (en) 1972-04-19
CA938176A (en) 1973-12-11
DE2061177C3 (en) 1981-03-12
ES387042A2 (en) 1973-11-16
BE777671Q (en) 1972-05-02
DE2061177A1 (en) 1971-10-07
DE2061177B2 (en) 1980-07-17

Similar Documents

Publication Publication Date Title
US3661622A (en) Method of improving resistance to corrosion of metal surfaces and resultant article
US3746643A (en) Grease and rust inhibitor compositions
US3816310A (en) Method for preparing highly basic grease and rust inhibiting compositions
US3671012A (en) Grease compositions containing polymers
US4729791A (en) Corrosion-inhibiting coating compositions for metals
CA1039704A (en) Resin-containing lubricant coatings
US5442005A (en) Multi-function protective coating for zinc coated steel surfaces and its alloys
US3565672A (en) Method of improving resistance to corrosion of metal surface and resultant article
US4631083A (en) Pipe varnish compositions and use thereof
WO1991000328A1 (en) Improved basic calcium sulphonate
US3925087A (en) Corrosion inhibition or prevention with inorganic-organic complexes
US5681378A (en) Coating composition for the protection of metal against corrosion
US5244957A (en) Metal protecting compositions
JPH08503987A (en) Thermosetting film-forming coating composition and use thereof
US3392131A (en) Salts of ethylene crotonic acid copolymer as an emulsifying agent
US3455716A (en) Coating composition
KR102387026B1 (en) Hydrogenated natural oils in rust preventive coatings
US3304258A (en) Drawing compound and method
US3551368A (en) Metal primers comprising partial fatty acid esters of styrene-allyl alcohol copolymers and adipic acid
US2392102A (en) Rust preventive composition
US5332776A (en) Coating compositions
US3546007A (en) Masonry sealing compound
US10144835B2 (en) Oxidized alpha-olefins in rust preventive coatings
EP0414967A1 (en) Coating compositions
JP2000280400A (en) Coating composition and lubricating treatment metal panel