Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3662522 A
Publication typeGrant
Publication dateMay 16, 1972
Filing dateJul 15, 1970
Priority dateJul 24, 1969
Also published asDE2034633A1, DE2034633B2, DE2034633C3
Publication numberUS 3662522 A, US 3662522A, US-A-3662522, US3662522 A, US3662522A
InventorsFerrario Bruno, Porta Paolo Della
Original AssigneeGetters Spa
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Getter pump cartridge
US 3662522 A
Abstract
A cartridge for a getter pump having a pleated strip comprising a substrate having a non-evaporable getter metal thereon. Adjacent surfaces of the pleated strip are held at a predetermined angle by a spacer between the adjacent surfaces. Getter pumps employing such cartridges exhibit maximum pumping rates. Strips suitable to be pleated are also described.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Della Porta et al. 1 May 16, 1972 [54] GETTEIR PUMP CARTRIDGE 2,831,549 4/1958 Aldert ..55/467 x 2,968,361 l/1961 Buckman.. [72] Inventors: Paolo Della Porta; Bruno Ferrarlo, both of 2,984,314 5/1961 Demon Mlle", Italy 3,144,200 8/1964 Taylor et al 73 Assignee: S.A.E.S. Getter-s S.p.A., Milan, Italy 3,309,844 3/1967 ilemlreet a1 3,490,211 1/1970 Cartler ..55/52l X [22] Filed: July 15, 1970 Primary Examiner-John Adee [21 1 Appl' 55029 Attorney-David R. Murphy and Murphy and Dobyns [30] Foreign Application Priority Data [57] ABSTRACT July 24, 1969 Italy ..869075 A cartridge for a getter pump having a pleated strip comprising a substrate having a non-evaporable getter metal thereon. [52] US. Cl.. ...55/387, 55/521, 417/51 Adjacent surfaces of the pleated strip are held at a predeter- [5 l Int. Cl .BOld 53/04, F04b 37/02 mined angle by a spacer between the adjacent surfaces. Getter [58] Field of Search ..55/208, 387, 389,521 p mp mploying such cartridges exhibit maximum pumping rates. Strips suitable to be pleated are also described. [56] References Cited 5 Claims 11 ng Figures UNITED STATES PATENTS 2,154,131 4/1939 Lederer ..55/387 X PATENTEDMAY 16 :972

SHEET 1 BF 2 Jill:

INVENTORS Paulo rlnllu Pur'lu B rum; Furl-:1 r'in PUMPING RATE PATENTEU m1 6 I972 SHIET 2 [IF 2 58 Hm 52 54 sow- 2 IN DEGREES "Illilll.

INVENTORS Paolo della Porta Bruno Ferramo ATTORNEYS GETTER PUMP CARTRIDGE CROSS-REFERENCE TO RELATED APPLICATIONS a. U.S. application, Ser. No. 761,161, filed Sept. 20, 1968, entitled "Getter Pumps".

b. U.S. application, Ser. No. 866,336, filed Oct. 14, 1969, entitled Getter Pump. (SAES 102) c. U.S. application, Ser. No. 866,335, filed Oct. 14, 1969, entitled Radiant Heat Reflection in Devices Such as Getter Pumps." (SAES 103) d. U.S. application, Ser. No. 878,812 now Pat. No. 3609064, filed Nov. 21, 1969, entitled Getter Pump". (SAES 104) The disclosures of references (a) through (d) are incorporated herein by reference.

Getter pumps are well known in vacuum technology and are useful for removing residual gases from closed vessels such as electron tubes in order to produce and maintain within these vessels a high degree of vacuum. Such getter pumps are described in references (a) through (d). These getter pumps employ a finely divided non-evaporable getter metal on a substrate. In operation the surfaces of the getter metal particles sorb residual gases in the vessel thus reducing the quantity of gases present and producing a high degree of vacuum. The surface of the getter metal will continue to sorb gases until the surface becomes saturated with sorbed gases and reaction products of sorbed gases with the getter metal. At this point it is conventional to heat the getter metal particles in order to drive these sorbed gases and reaction products to the center of each getter metal particle thus exposing a fresh surface of getter metal for continued gas sorption. This process can be repeated until the getter metal particles are completely saturated with sorbed gas and reaction products at which time the getter metal particles must be replaced. To facilitate such replacement it has become conventional to employ a replaceable cartridge having a pleated strip comprising a substrate having the non-evaporable getter metal thereon. This strip is pleated as described in reference (a) in order to minimize the space required for a given quantity of getter metal. By virtue of this pleating adjacent surfaces of the strip are caused to form an angle, alpha.

According to recently conducted experiments it has been determined that alpha should generally be between 1 and 15 and should preferably be between 2 and 10. While prior getter pumps such as those described in reference (a) can be manufactured having the desired initial value of alpha this value can be changed for individual adjacent surfaces by mechanical deformation with the undesirable result of a reduction in the pumping speed of the pump.

It is therefore an object of the present invention to provide an improved getter pump cartridge and an improved strip useful in producing such cartridges which is substantially free of one or more of the above disadvantages.

Another object is to provide an improved getter pump cartridge which is not easily deformed.

A further object is to provide an improved getter pump cartridge wherein alpha is constant.

A still further object is to provide an improved getter pump cartridge which exhibits a maximum pumping rate for a given quantity of getter metal.

Additional objects and advantages of the present invention will be apparent to those skilled in the art by reference to the following detailed description and drawings wherein:

FIG. 1 comprising FIGS. la and 1b constitute an exploded view of a getter pump of the present invention employing in FIG. la an improved getter pump cartridge;

FIG. 2 is a top view of the getter pump cartridge of FIG. 1a;

FIG. 3 is a graph of pumping rate versus alpha for three commonly pumped gases;

FIG. 4 is a top view of a strip useful in the present invention;

FIG. 5 is a sectional view taken along line 5-5 of FIG. 4;

FIG. 6 is an enlarged sectional view taken along line 6-6 of FIG. 4;

F IG. 7 is an enlarged sectional view taken along line 77 of FIG. 4;

FIG. 8 is an enlarged sectional view similar to that of FIG. 7 but showing a modified form of a portion of a strip useful in the present invention;

FIG. 9 is an enlarged sectional view similar to that of FIG. 7 but showing another modified form of a portion of a strip useful in the present invention; and

FIG. 10 is a view illustrating the manner in which the strip of FIG. 4 is pleated in order to produce a cartridge element useful in the getter pumps of the present invention.

According to the present invention, there is provided an improved cartridge for a getter pump wherein adjacent surfaces of the strip are held at a predetermined angle by spacer means between the adjacent surfaces. In the broadest aspects of the present invention, the spacer means can be attached to any part of the getter pump. However, it is preferably carried by a segment of the strip and is preferably arranged such that the angle alpha between adjacent outwardly opening segments is maintained at a constant value.

Referring now to the drawings and in particular to FIG. 1a, there is shown a getter pump cartridge 10 of the present invention. The cartridge 10 comprises an upper ring 11 and a lower ring 12 with a circular screen 13 therebetween. Within the screen 13 are a number of cartridge elements of which only elements 14 and 15 can be seen through the cutaway section. The substrate of the elements has a non-evaporable getter metal 16 thereon. The remaining structure of the elements is described more completely below.

The getter pump cartridge 10 shown in FIG. la and the remainder of the getter pump shown in FIG. lb together comprise a complete getter pump. In FIG. 1b there is shown a flange 20 having a supporting ring 21 adapted to receive the lower ring 12 of the cartridge 10. Also carried by the flange 20 is a heater 22 comprising an insulator 23 carried by the flange 20 and having thereon a wire 24 of high ohmic resistance. In order to place the getter pump in operation, the cartridge 10 is moved downwardly until the ring 12 fits within the ring 21. These parts are then held together by means not shown. The entire getter pump is then inserted into a vessel to be evacuated and connected thereto in a gas-tight manner by means of the flange 20. A current is passed through the wire 24 causing it to radiate heat to the getter metal 16, heating and activating it and thereby causing it to become gas sorptive.

FIG. 2 illustrates the means by which the angle alpha is measured. FIG. 3 illustrates the variation in pumping rate for three gases as a function of alpha. Curve 31 is for nitrogen and illustrates that pumping rate is a maximum when alpha is equal to approvimately 3. Curve 32 is for hydrogen and illustrates that pumping rate is a maximum when alpha is equal to approximately 4". Curve 33 is for carbon monoxide and illustrates that pumping rate is a maximum when alpha is approximately 6. As can be seen by reference to curves 31, 32, and 33 generally optimum pumping rates occur at values for alpha of 1 to 15 and preferably 2 to 10. At values above or below these, the pumping rate is considerably reduced.

Referring now to FIG. 4, there is shown a flat strip 40 of indefinite running length suitable to be pleated and circularly bent into a cartridge element 14 of the present invention. The strip 40 comprises rectangular segments 41, 42, 43, and 44. Each segment 41, 42, 43, and 44 has a substrate 45 which is common to all segments. The central portion of each segment 41, 42, 43, and 44 is coated with particles 46, 47, 48, and 49 of a non-evaporable getter metal. Each segment 41, 42, 43, and 44 has a first getter free margin 50 common to all and a second getter free margin 51 common to all. The getter free margins 50, 51 are parallel to the running length of the strip 40. These segments 41, 42, 43, and 44 are each connected to the respective i next adjacent two segments by foldable bridging attachments. Thus segment 42 is attached to segment 41 by attachments 52 and 53, and is attached to segment 43 by attachments 54 and 55. The bridging attachments 52, 53, 54, and 55 are defined by slots 56 and 57 which extend across the strip 40 transverse to the running length thereof and extend into the getter metal free margins 50 and 51. By virtue of this structure, each of the bridging attachments 52, 53, 54, and 55 has a line of weakness about which the adjacent segments 41 and 43 can be most easily folded. Each of the odd numbered segments are provided with two elevations. Thus segment 41 is provided with elevations 58 and 59, and segment 43 is provided with elevations 60 and 61. All elevations 58, 59, 60, and 61 project the same direction, in this case upwardly, from the substrate 45. As shown in FIG. 5, they all have the same height, h; i.e. h h, 12,. Furthermore, the elevations 58, 59, 60, and 61 are all the same distance from the next adjacent line of weakness, i.e. I =1, 1,. Although the even numbered segments can also be provided with elevations in the preferred embodiment depicted, the even numbered segments 42 and 44 are free of elevations in order to obviate the necessity for carefully controlled alignment of the elevations.

FIGS. 6 and 7 illustrate the preferred structure by which the elevations are attached to the substrate. As shown, the elevation 59 constitutes an integral deformation of the metallic substrate 45 inthe getter metal free margin 51 of the segment 41. The structure shown in FIG. 6 is most easily produced by simply pressing the substrate 45 into a mold, not shown, having a depth equal to h,. The elevation 59 is preferably located in the getter metal free margin in order to preclude the possibility of releasing particles of getter metal concurrently with the pressing operation. As shown in FIG. 7, the elevation 59 comprises an upwardly extending segment 62, a horizontally extending segment 63, having a planar upper surface 64, and a downwardly extending segment 65. The planar upper surface 64 is parallel to the plane of the substrate 45 and provides a larger area of contact between the surface 64 and the back of the surface of the next adjacent segment 42 when the substrate 45 is pleated.

Referring now to FIGS. 8 and 9, there are shown modified forms of elevations also useful in the present invention. These figures represent enlarged sectional views taken through the elevations in a manner analogous to that of FIG. 7. The elevation 67 shown in FIG. 8 has a rounded upper surface 68. The elevation 69 shown in FIG. 9 is designed to contact the back of the surface of the next adjacent segment with its edge 70. The most preferred form of elevation is the elevation 59, the next preferred is the elevation 67, the least preferred being the elevation 69.

Referring now to FIG. 10, there is illustrated the manner in which the strip 40 is pleated and circularly formed into a cartridge element 14 of the present invention. As can be seen, each of the bridging attachments illustratively shown by attachments 53 and 55 are bent in alternate directions in order to pleat the strip 40 and cause the elevations 59 and 61 to contact that portion of the getter free margin 51 present on the next adjacent even numbered segments 42 and 44. Since the height h of the elevation and its distance I from the fold line determines alpha, it can be seen that It must be substantially equal the tangent of alpha. In that preferred embodiment of the present invention wherein the attachment 53 is sharply bent h/l is exactly equal to the tangent of alpha. In other cases wherein the attachment 53 has a finite radius of curvature 11/! will depart somewhat from the tangent of alpha. Those skilled in the art can readily adjust values of h and l to compensate for the radius of curvature such that alpha is within the abovedescribed limits. After the strip 40 is pleated, it is circularly formed along circles 73 and 74 until a complete circle is obtained resulting in a cartridge element 14 useful in the getter cartridges of the present invention as shown in FIG. 2. The inwardly opening angle, beta, shown in FIG. 9, is not critical and can have any value from zero upwards.

Any non-evaporable getter metal can be employed in the present invention. By non-evaporable getter metal is meant metals which are sorptive to gases and which have a vapor pressure less than torr at 1,000" C. Examples of suitable getter metals include among others niobium, tantalum, vanadium, zirconium, titanium, mixtures thereof and alloys thereof with one another and with other metals such as aluminum which do not materially reduce the gas sorptive capacity of these metals. The preferred getter metal is an alloy of l to 40 and preferably 13 to 18 weight percent aluminum balance zirconium. The preferred specific alloy is that of 16 percent aluminum and 84 percent zirconium available from SAES Getters S.p.A. under the tradename St 101. The finely divided getter metal can have widely varying particle sizes such that it passes through a U.S. standard screen of IO mesh/inch and preferably passes through a screen of mesh/inch and is retained on a screen of 600 mesh/inch.

The substrate 45 can be of any metal but is preferably of a metal which is softer than the getter metal. Suitable substrate metals include among others iron and stainless steel.

The getter cartridges of the present invention can be employed in getter pumps with or without heat shields as described in reference (c). In an alternate embodiment of the present invention, the heater 22 can be eliminated by employing a substrate 45 of high ohmic resistance in the manner described in reference (d).

Although the invention has been described in considerable detail with reference to certain preferred embodiments thereof, it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described above and as defined in the appended claims.

What is claimed is:

l. A cartridge for a getter pump having at least one cartridge element comprising a circularly formed pleated strip of segments comprising a substrate carrying a non-evaporable getter metal, each segment being joined to the next adjacent segments wherein the angle between adjacent outwardly opening segments is maintained at 1 to 15 by at least one elevation attached to one of the segments such that the elevation lies between the adjacent outwardly opening segments.

2. The cartridge of claim 1 wherein the elevations are placed in a getter metal free margin along the edges of the strip.

3. The cartridge of claim 1 wherein the elevations are integrally formed from the metal of the substrate.

4. A cartridge for a getter pump having at least one cartridge element comprising a circularly formed pleated strip of segments comprising a metallic substrate the central portion of which is coated with a non-evaporable getter metal leaving a getter metal free margin, each segment being joined to the next adjacent segments by folded bridging attachments wherein the angle between adjacent outwardly opening segments is maintained at 2 to 10 by two elevations, one each in the getter metal free margins of alternate segments.

5. A planar strip of indefinite running length suitable to be pleated and circularly bent into a cartridge element for a getter pump, said strip comprising:

A. rectangular segments each comprising:

1. a metallic substrate the central portion of which is coated with particles of a non-evaporable getter metal,

2. a getter metal free margin adjacent to the side of the segment which is parallel to the running length thereof;

B. foldable bridging attachments attached to the getter metal free margin of each segment and foldably connecting it to the two next adjacent segments, each attachment having a line of weakness about which folding most easily occurs;

C. two elevations on each of the odd numbered segments,

each of the elevations:

l. constituting a deformation of the metallic substrate in the getter metal free margin of the segment,

2. projecting the same direction from the substrate,

3. having equal heights above the substrate,

4. being the same distance from the next adjacent line of weakness, with the proviso that the height of an elevation above the substrate divided by the distance from the elevation to the next .adjacent line of weakness is equal to the tangent of an angle between 2 to 10;

D. the even numbered segments being free of elevations.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2154131 *Oct 30, 1937Apr 11, 1939Rca CorpGetter
US2831549 *Aug 31, 1954Apr 22, 1958Westinghouse Electric CorpIsolation trap
US2968361 *May 11, 1959Jan 17, 1961Gen Motors CorpFilters for gases
US2984314 *Nov 22, 1957May 16, 1961New York Air Brake CoTrapping device
US3144200 *Oct 17, 1962Aug 11, 1964Hunt Angus LProcess and device for cryogenic adsorption pumping
US3309844 *Nov 29, 1963Mar 21, 1967Union Carbide CorpProcess for adsorbing gases
US3490211 *Jul 31, 1967Jan 20, 1970Keystone Filter Media CoHigh efficiency particulate air filter
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3961897 *Aug 30, 1974Jun 8, 1976S.A.E.S. Getters S.P.A.For hydrocarbons
US4050914 *Jul 26, 1976Sep 27, 1977S.A.E.S. Getters S.P.A.Accelerator for charged particles
US4137012 *Oct 7, 1977Jan 30, 1979S.A.E.S. Getters S.P.A.Modular getter pumps
US4571158 *Aug 27, 1984Feb 18, 1986Siemens AktiengesellschaftGetter sorption pump with heat accumulator for high-vacuum and gas discharge systems
US4938667 *Jun 28, 1989Jul 3, 1990Saes Getters SpaMethod for the manufacture of a vacuum insulating structure and an insulating structure so produced
US5154582 *Aug 21, 1991Oct 13, 1992Danielson Associates, Inc.Rough vacuum pump using bulk getter material
US5161955 *Aug 20, 1991Nov 10, 1992Danielson Associates, Inc.High vacuum pump using bulk getter material
US5320496 *May 11, 1993Jun 14, 1994Saes Getters SpaHigh-capacity getter pump
US5324172 *May 11, 1993Jun 28, 1994Saes Getters S.P.A.High-capacity getter pump
US5685963 *Oct 31, 1994Nov 11, 1997Saes Pure Gas, Inc.In situ getter pump system and method
US5772404 *Jul 2, 1996Jun 30, 1998Saes Getters S.P.A.Compact getter pump with nested thermally insulating shields
US5879134 *Feb 28, 1997Mar 9, 1999Saes Pure Gas, Inc.In situ getter pump system and method
US5911560 *Dec 2, 1994Jun 15, 1999Saes Pure Gas, Inc.Getter pump module and system
US5972183 *Sep 1, 1995Oct 26, 1999Saes Getter S.P.AGetter pump module and system
US5980213 *Jan 23, 1997Nov 9, 1999Saes Getters S.P.A.Getter pump module and system
US5993165 *Feb 28, 1997Nov 30, 1999Saes Pure Gas, Inc.In Situ getter pump system and method
US5997255 *Jan 23, 1997Dec 7, 1999Saes Getters S.P.A.Method for pumping a chamber using an in situ getter pump
US6043137 *Jan 23, 1997Mar 28, 2000Saes Getters S.P.A.Getter pump module and system
US6074171 *Jan 21, 1999Jun 13, 2000Saes Getters S.P.A.Getter pump especially suitable for the use upstream, in proximity coaxially with respect to a turbomolecular pump
US6109880 *Dec 24, 1997Aug 29, 2000Saes Pure Gas, Inc.Getter pump module and system including focus shields
US6142742 *Apr 11, 1997Nov 7, 2000Saes Pure Gas, Inc.Getter pump module and system
US6165328 *Feb 28, 1997Dec 26, 2000Saes Getters S.P.A.Low pressure pump such as cryopump coupled to the processing chamber with a throttle plate; valve mechanism couples noble gas to chamber so noble gas flows in continuously and is pumped out with cryopump, getter pump removes impurity gases
US8197222Jul 4, 2007Jun 12, 2012Von Ardenne Anlagentechnik GmbhGetter pump and vacuum coating installation comprising a getter pump
US8211988Apr 30, 2008Jul 3, 2012Chevron Phillips Chemical Company LpMethods of preparing a polymerization catalyst
DE2747186A1 *Oct 20, 1977May 18, 1978Getters SpaModulare getter-pumpe
EP0144522A2 *Aug 9, 1984Jun 19, 1985Siemens AktiengesellschaftGetter sorption pump having a heat accumulator for high-vacuum and gas discharge plants
EP0146685A2 *Aug 9, 1984Jul 3, 1985Siemens AktiengesellschaftGetter sorption pump with heat accumulator for high-vacuum and gas discharge plants
WO1996017171A2 *Nov 30, 1995Jun 6, 1996Saes Pure Gas IncGetter pump module and system
WO1998058173A1 *Jun 11, 1998Dec 23, 1998Andrea ConteGetter pump especially suitable for the use upstream, in proximity and coaxially with respect to a turbomolecular pump
WO2008003724A2 *Jul 4, 2007Jan 10, 2008Ardenne Anlagentech GmbhGetter pump and vacuum coating installation comprising a getter pump
Classifications
U.S. Classification96/129, 417/51, 96/154, 55/521
International ClassificationH01J7/18, H01J7/00, H01J41/12, H01J41/00, F04B37/02, F04B37/00
Cooperative ClassificationH01J7/18, H01J41/12
European ClassificationH01J7/18, H01J41/12