Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3662554 A
Publication typeGrant
Publication dateMay 16, 1972
Filing dateApr 27, 1970
Priority dateFeb 19, 1970
Publication numberUS 3662554 A, US 3662554A, US-A-3662554, US3662554 A, US3662554A
InventorsAxel De Broqueville
Original AssigneeAxel De Broqueville
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electromagnetic propulsion device for use in the forward part of a moving body
US 3662554 A
Abstract
At least two parallel annular electrodes are disposed on the outside dielectric surface of the body starting from the forward edge thereof, perpendicularly to the direction of the symmetry axis of a magnetic field around the body. A propulsion electromagnetic force field is produced around the body such as to substantially decrease the overpressure in front of said moving body while accelerating the surrounding fluid backward and aside from said body, thereby to reduce the shock wave due to said overpressure.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent De Broqueville 51 May 16,1972

ELECTROMAGNETIC PROPULSION DEVICE FOR USE IN THE FORWARD PART OF A MOVING BODY Axel De Broqueville, Translaan 478, Sterrebeek, Belgium Apr. 27, 1970 lnventor:

Filed:

Appl. No.:

Foreign Application Priority Data Feb. 19, 1970 Belgium ..85.403

[1.8. C] ..60/202, 294/62, 244/ l 30 Int. Cl. ...F03h 1/00, F03h 5/00, H05h l 1/00 Field of Search ..60/202; 102/105, 49.3; 244/62,

[56] References Cited UNITED STATES PATENTS 3,162,398 12/1964 Clauser et al. ..60/202 X 2,949,550 8/1960 Brown 3,446,464 5/1969 Donald ..244/l30 Primary ExaminerMark M. Newman Attorney-Flynn & Frishauf [57] ABSTRACT At least two parallel annular electrodes are disposed on the outside dielectric surface of the body starting from the forward edge thereof, perpendicularly to the direction of the symmetry axis of a magnetic field around the body. A propulsion electromagnetic force field is produced around the body such as to substantially decrease the overpressure in front of said moving body while accelerating the surrounding fluid backward and aside from said body, thereby to reduce the shock wave due to said overpressure.

9 Claims, 10 Drawing Figures ELECTROMAGNETIC PROPULSION DEVICE FOR USE IN THE FORWARD PART OF A MOVING BODY BACKGROUND OF THE INVENTION The present invention relates to an electromagnetic propulsion device intended to be used in the forward part of a moving body and which creates in the surrounding flow medium, or fluid (such as air or water) an electromagnetic force field accelerating the fluid backward and expanding it aside from the body. Overpressure generated by the body motion in the fluid is reduced or suppressed. In case of a supersonic motion, the shock wave generated by that overpressure in front of the body can be minimized or suppressed.

Different electromagnetic propulsion devices acting upon the surrounding fluid outside of a vehicle are known. One was used in the electromagnetic submarine EMS-l (experiment by Westinghouse in Santa Barbara in 1966) but the magnetic symmetry axis therein is substantially perpendicular to the direction of the body motion and the electric field not does not an axial symmetry. Consequently, an eventual reduction of the sonic boom is not possible all around the body.

Other similar electromagnetic devices have been studied in view of their application to re-entry-maneuvers of satellites into planetary atmospheres, but they are not propulsion devices; on the contrary they increase drag and shock wave intensity.

Electrostatic devices have been studied in connection with the reduction of the sonic boom in front of a supersonic vehicle, but their action is essentially based on a progressive deceleration of surrounding flow and not its acceleration. For that reason their effect is unstable and furthemiore they have the very poor efficiency of any electrostatic device in the atmosphere.

Electro-magnetic propulsion devices having, some similarity with a Hall radial accelerator (as described in the report NASA TN D-3332, Mar. 1966) were suggested. The action of the latter is inside the vehicle and the fluid is not expanded but compressed by the Hall effect, and therefore it cannot suppress a shock wave.

SUMMARY OF THE INVENTION The invention provides an electromagnetic propulsion device intended to be mounted in the forward part of a moving body, comprising an electromagnetic coil for generating a magnetic field around said body, the symmetry axis of said magnetic field having substantially the same direction as the relative motion between the body and the surrounding fluid, at least two annular electrodes placed on the outside dielectric surface of said body perpendicularly to the symmetry axis of said magnetic field, one of said electrodes being mounted at the forward end of said body, ionization means for the said fluid between said electrodes around said body, and a power generator having its terminals connected to said electrodes for generating between same an electric field and an electric current in the ionized fluid around said body, the action of said electric current in said magnetic field causing said fluid to rotate such as to produce a centrifugal force while at the same time the electric current due to the Hall effect produces an additional force effective to accelerate the ionized fluid backward and aside from the said body, thereby to increase the centrifugal force and produce a propulsion force acting on said body.

The basic effect of this propulsion device is that it does not only push the fluid aside from the body by centrifugal and Hall efiects, but that it also accelerates the fluid backward (and does not decelerate the fluid forward as in other magnetic or electrostatic devices) such as to produce a propulsion efi'ect simultaneously with a reduction of the drag due to the overpressure generated by the body motion relative to the fluid. In fact, thanks to the backward acceleration and in order to satisfy the conservation of mass condition, the fluid can be pushed aside from the body by the electromagnetic forces (and not by a pressure gradient as in ordinary flow) without or with a reduced increase of pressure such that the fluid is actually expanded aside from the body. Furthermore as the shock wave is only generated by compression flow, such a propulsion device also reduces drag and can suppress the shock wave generated in front of a supersonic body.

DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic elevational view of a body nose incorporating a particular embodiment of the electromagnetic propulsion device according to the invention;

FIG. 2 is a horizontal view of the body of FIG. 1;

FIGS. 3, 4 through 8 show schematically in vertical projection (FIGS. 3, 5 and 7) and in horizontal projection (FIGS. 4, 6 and 8) the magnetic field configurations, the electric current lines and the resulting forces;

FIG. 9 is an elevational view of a body nose incorporating a variant of the propulsion device according to the invention;

FIG. 10 illustrates an ionization device according to the invention.

DETAILED DESCRIPTION:

FIGS. 1 and 2 show (in elevational and horizontal view respectively) the forward part of a body 1 which may be the nose of an aircraft having a general axial symmetry aboutlom gitudinal axis 2. In this case the propulsion device according to the invention is used for the aircraft propulsion or as an assist part of the aircraft propulsion system together with conventional propulsion devices, and acting at the same time to reduce or suppress the front shock wave, thereby to reduce drag and noise. It may also be used for the aircraft deceleration by inverting the force field as will be seen hereinafter.

The electromagnetic coil 5 generates a magnetic field having a symmetry axis that is illustratively coinciding with the aircraft axis 2. The field is a poloidal magnetic field, in contrast to a toroidal magnetic field. A toroidal magnetic field is a magnetic field which can be represented in cylindrical coordinates by the equation:

H l TT where Tis a scalar function. This equation means that the magnetic lines of force are annular or that the magnetic field is like a torus.

A poloidal magnetic field is a magnetic field which is not toroidal or whose magnetic lines of force are perpendicular to those of a toroidal magnetic field. Such a magnetic field is general and it can be represented in cylindrical coordinates by the equation: a

H, V X (1 XTP) where P is a scalar function. Toroidal coils which produce approximately force-free magnetic fields are used. They provide a toroidal magnetic field inside a torus (including the coils) and a poloidaP magnetic field outside the torus. The magnetic stresses of the toroidal magnetic field are opposite to the stresses of the poloidal magnetic field. Therefore the resulting stresses on the coils are strongly reduced or balanced. The poloidal magnetic fields are the most common magnetic fields, but the term poloidal" has been introduced considering that only the poloidal component of the magnetic field would be outside the vehicle and consequently the only active component. This field is represented by vector H and has field lines 50 that go through the body envelope and have in the surrounding space a configuration as shown in FIGS. 1, 3, 5 and 7. The coil itself can advantageously be made of superconductors disposed inside a torus 5 (e.g. cooled by liquid Helium), the disposition of the conductors being such that the magnetic field approaches a force free or balanced" state, thereby reducing the magnetic stresses in the coil such that a dimensionally large (i.e.

edge may be blunt or pointed and the shape of the electrode thereat can then be considered as the limit of the ring.

The power generator symbolized by box 6 is connected to the electrodes by the connections 7 and 8 with the appropriate polarityJt may comprise any current generator such as a dynamo driven by a gas turbine, etc. It can also advantageously use the magnetic field inside the vehicle and the necessary energy can be found in the magnetic field itself which then would serve as an energy source.

Means for ionizing the surrounding fluid may comprise any device such as a particle emitter, a high frequency electromagnetic field generator, etc. In the illustrative embodiment the ionization is assumed to be initiated by means (not shown) such asa spark generator, a device for applying an instantaneous high voltage between the electrodes, etc. In this case, the ionization is assumed to be maintained by the electric field generated by said power generator. Thus the power generator would produce a glow discharge (which must be close to an arc discharge at the atmospheric pressure). It is favored by the annular configuration and the transverse magnetic field such that it has a good efficiency with a small electrode corrosion. Furthermore the expanding and centrifugal forces reduce heat transfer with the dielectric outside surface. However devices may simultaneously be used for a better efficiency or to have ionization varying according to operating conditions.

The forces produced in the fluid by the device as described and their reaction applied to the vehicle through the magnetic coil may be divided into different species. Their action will be better understood by assuming three different operating conditions in which only one species is predominant, the other ones being then relatively negligible.

lst case (see FIGS. 3 and 4) the body velocity is slow enough such that the induced electric current is negligible and the magnetic field strength and the fluid pressure are such that the Hall effect is negligible (since the Hall coefficient C w 1' is proportional to the electron cyclotron frequency a) which in turn is proportional to the magnetic field strength, and inversely proportional to the electron collision frequency 1/? which in turn is proportional to the pressure).

Under these conditions, the electric current j between electrodes 3 and 4 and its resulting force field F in the fluid are as sketched in FIGS. 3 and 4; said force field causes the fluid to rotate and by reaction it induces an opposite couple to the body through the magnetic coil.

The air rotation produces underpressure due to the centrifugal force F, and the underpressure in turn reacts with the body surface, accelerating the fluid backward F and inducing to the bodythrough its surface a propulsion reaction F S similar to the sucking effect in a cyclone. The vector relationship of the forces is seen in FIG. 3. The centrifugal force F produced by the air rotation reacts with the body surface such that it can be divided into two components: F, is perpendicular to the surface and F is tangent to the surface. The surrounding fluid is accelerated backward: due to the axial symmetry, F s in turn can be divided into two components: F that is perpendicular to the symmetry axis and F, that is parallel to the symmetry axis, which gives the said propulsion reaction.

However if the body motion is not negligible, the underpressure will be balanced by an overpressure and the induced electric current will also increase the overpressure as it will be seen in the second case.

2nd case (FIGS. 5 and 6) there is no applied electric field.

In pure aerodynamics, the fluid radial acceleration due to the body motion U is obtained by a pressure gradient, i.e. an

overpressure which decelerates the fluid too, producing on' the body a drag partially balanced at subsonic speed only by a similar overpressure in the back of the body.

As the surrounding fluid is ionized, the body motion U induces an azimuthal electric current j assketched in FIGS. 5 and 6, generating a decelerating compressure force F, as well as the reaction F thereof. This induced force increases the pressure gradient or overpressure in front of the body, increasing drag and shock stand-off distance as it was proposed to be used for the re-entry of satellites.

The device according to the invention is characterized by its capability of inverting said induced force thanks to the Hall effect asit will be seen in the third case.

3rd case (FIGS. 7 and 8) the Hall effect is important as is the case at high altitude and with high magnetic field strength.

The Hall effect is the electric current tendency of going perpendicularly to the electric and magnetic field directions and therefore in this case the Hall current flows parallely to the electrodes, i.e. following an azimuthal direction.

Provided that the applied electric field is high enough and has the right polarity, the azimuthal Hall current j will be larger than and opposite to the induced electric current and their combined action F H will be reversed, as sketched in FIGS. 7 and 8, with a propulsion reaction F R applied to the body through the magnetic coil.

The transverse component j of the electric current causes the surrounding fluid to rotate, inducing a centrifugal force as in the first case, but, for a large Hall coefficient, i.e. at low pressure or high altitude, this action will be negligeable (j j n)- The Hall force F can be divided into two components, a radial force F,., similar to the centrifugal force, and a backward acceleration force F,, both of them being necessary in order to reduce or suppress the overpressure produced by the body motion. In fact, the pressure gradient can be replaced by the radial force F, to curve the streamlines aside from the body, but the conservation of mass condition implies a similar backward acceleration of the surrounding fluid along those contracting streamlines which are progressively narrowing, by the F component.

Therefore it is only because the device according to the invention generates radial expansion simultaneously with a backward acceleration that it can actually suppress the overpressure generated by the body motion and, thanks to its axial symmetry, this is achieved in the whole surrounding fiow.

The mechanism just described above can be analyzed using the magnetohydrodynamic equations which can be written, when neglecting dissipative effects and for axi-symmetric flow:

mass conservation:

with, deduced from the generalized Ohms law:

j,,B 0' (uB, vB,)B C,,(E,B, E B W82) jr r B 1 H( r H (18? r 1 where T7 0/ l-l-C is the reduced conductivity.

'It is possible to recognize in these flow equations: the pressure gradient, {lp/Elr d a /ar, which must satisfy, in the forward part of the moving body, the conditions zi /ax s 0 and Zip/6r O in order to have no overpressure (it is interesting to note that such flows with a /a 2 0 are not unstable as those created by electrostatic devices because of the condition tip/6x s 0 instead of flp/ax 0 in the latter), the electromagnetic backward force j B,. which must be positive or j,,B,. O,

the electromagnetic radial force jgB, which must be positive in order to replace the pressure gradient tip/6r which is negative in ordinary flows,

the centrifugal force pw /r,

the rotation electromagnetic force j,B, j,B,,

the Coriolis force pwv/r, and, from the generalized Ohms law, it can be seen that the Hall effect produces an apparent decrease of conductivity (corresponding to a proportional increase of Joule dissipation and electromagnetic work) and that C must be not negligeable in order to have the applied radial electromagnetic force larger than the induced one, proportional to uB, vB,.

These equations are fully determined by the boundary conditions, determined themselves by the shape of the body, and by the electromagnetic configuration, determined itself by the Maxwells equations and the electrode'disposition. Therefore any body shape is not susceptible to satisfy the conditions 6p/ (Ix s O and ilp/r'lr 2 0 and, for that reason, although the device according to the invention will reduce the overpressure generated in front of a vehicle, it will actually completely suppress that overpressure only for a particular range of body shapes determined by constant pressure flow conditions, i.e. Ftp/Hr O and r'Ip/r'lx 0.

When pressure flows become constant (that is, do not increase) the least energy is required The study of shaped and flows was done by the applicant in a M.Sc. thesis.

As that condition suppresses one variable p, it was necessary to introduce other variables related with the body shape and electromagnetic configuration in order to make the flow equations compatible and a numerical approximate resolution method was established therefrom, proving that such flows were actually achievable. This method can be applied to the particular electromagnetic configurations according to the invention, although it needs new experimental data.

From that study, optimum body shapes relating to operating conditions can be found. However this device can be used independently from optimum conditions and more elaborated embodiments than those of FIGS. 1 and 2 can provide operating adaptability as will be disclosed hereinafter.

It will be necessary to note that the device according to the invention can work as a deceleration device when, for instance, the applied electric field is reversed or when C,,(uB, vB,)B is larger than E ,B, LB, wB which is the condition for partially recovering the body kinetic energy. It is also possible to make the deceleration varying, thanks to the Hall effect, when varying the applied electric field.

The device according to the invention can also be used inside a channel in order to accelerate a fluid without large variations of the channel cross section and pressure. In this case the magnetic coil may be disposed outside of the channel and the device will work as an electromagnetic pump or accelerator. It will not be very different from a radial Hess accelerator, except for the magnetic field convergence. It can be used together with the outside fluid acceleration, using the same magnetic field, in order to increase the total thrust. In this case the nose of the body would be hollow.

In conclusion, it may be interesting to summarize the main properties and advantages of a device according to the inventron.

It is firstly a propulsion device, reducing also the drag and noise generated by the front shock wave in case of a supersonic body. It can also be used for deceleration with body kinetic energy partial recovery, by increasing drag. In this case it will reduce heat transfer produced at hypersonic speed, by increasing shock stand-off distance.

It has a good efficiency for an electromagnetic propulsion device to be used in the atmosphere. In fact the electrical and mechanical efficiencies are increased because the usable cross section outside of a body or vehicle is larger than the one inside of the vehicle, allowing smaller electric current densities and smaller fluid acceleration for the same thrust. Furthermore the ionization is favored by the axial symmetry with transverse magnetic field. It can have as good an efiiciency as similar annular glow or are discharge with a reduced heat transfer and electrode corrosion.

The structure of the invention may be used with auxiliary devices for certain conditions of operation. Variable geometry, retractable wings, auxiliary propulsion devices, etc. may be used without objection.

To increase the effectiveness, further annular electrodes may be used, as shown in FIG. 9, which illustrates a body 1 similar to that shown in FIG. 1. Four electrodes 61 to 64 are shown similar to electrodes 3 and 4 in FIGS. 1 and 2. It may also be advantageous to provide an additional pair of annular electrodes such as 65 and 66 where the body diameter is larger in order to suppress or modify the reaction couple applied to the vehicle.

Moreover, other electrodes such aselectrodes 67 to 72, substantially parallel to the direction of the fluid motion relative to the body, may also be used for modifying the motion direction or be used as auxiliary propulsion or deceleration device.

Ionization devices may also be used in order to modify locally or generally the surrounding fluid ionization. According to another aspect of the invention one illustrative embodiment of such a device is schematically shown in FIG. 10. Electrodes such as 72 and 73, e.g. of annular shape, are disposed on the outside surface of the dielectric body envelope 1. Another electrode 75 is disposed on the inside surface of the body envelope. The electrodes 72 and 73 are connected to a DC voltage source 74 which may be constituted by the electric field generator. Electrode 75 is connected to an AC voltage source 76. Ionizing alternative glow discharge is thus induced between the dielectric body surface 71 and the outside electrodes 72 and 73. The frequency and voltage of source 76 are to be adjusted in term of the operating conditions.

In the foregoing the invention was described illustratively in its application to a body moving in an electrically non conducting surrounding fluid, e.g. in the atmosphere. However the invention is not limited thereto but it will be apparent that it is applicable to a body moving in an electrically conducting fluid as well such as the ionosphere or sea water. In that case provision of ionization means is not necessary for ionizing the surrounding fluid or initiate said ionization as explained hereabove. The operation of such a device is quite identical to that described in the foregoing.

What is claimed is:

1. Electromagnetic propulsion device to be mounted in the forward part of a body adapted to move in an ionizable fluid medium, comprising an electromagnetic coil for generating a poloidal magnetic field around said body, the symmetry axis of said magnetic field having substantially the same direction as the relative motion between the body and the surrounding fluid; at least two annular electrodes placed on the outside dielectric surface of said body perpendicularly to the symmetry axis of said magnetic field, one of said electrodes being mounted at the forward end of said body; and a power generator having its terminals connected to said electrodes for generating between same an electric field sufficient to provide for ionization of the fluid and an electric current in the ionized fluid around said body, the combined action of said electric current in the fluid subjected to said magnetic field causing said fluid to rotate such as to produce a centrifugal force, the electric current due to the Hall effect producing simultaneously an additional force effective to accelerate the ionized fluid backward and radially aside from the said body to increase the centrifugal force and produce a propulsion force acting on said body.

2. The electromagnetic propulsion device of claim 1, comprising means for changing the applied electric field strength and polarity to adapt the device to operating conditions and for reversing the force field direction in order to produce a deceleration effect with a body kinetic energy partial recovery.

3. The electromagnetic propulsion device of claim 1, further comprising a pair of annular parallel electrodes disposed on the outside surface of said body perpendicularly to the symmetry axis of said magnetic field thereby to modify or suppress the reaction rotation couple applied to said body.

4. The electromagnetic propulsion device of claim 1 further comprising at least two electrodes disposed on the outside surface of said body substantially parallel to the fluid relative motion, for changing the direction of motion and for increasing thrust or deceleration.

5. The electromagnetic propulsion device of claim 1, wherein the ionization means comprise at least one device for producing an ionizing alternative glow discharge between the said electrodes and the body dielectric surface, thereby to modify the ionization of the fluid around said body.

6. Electromagnetic propulsion device to be mounted in the forward part of a moving body surrounded by an electrically conducting fluid, comprising an electromagnetic coil for generating a magnetic field around said body, the symmetry axis of said magnetic field having substantially the same direction as the relative motion between the body and the surrounding fluid; at least two annular electrodes placed on the outside dielectric surface of said body perpendicularly to the symmetry axis of said magnetic field, one of said electrodes being mounted at the forward end of said body; and a power generator having its terminals connected to said electrodes to produce an electric current between said electrodes in the electrically conducting fluid surrounding said body, the action of said electric current in said magnetic field causing said fluid to rotate and to produce a centrifugal force while at thesame time the electric current, due to the Hall efi'ect, produces an additional force effective to accelerate the ionized fluid backward and laterally aside from the said body to increase the centrifugal force and produce a propulsion force acting on said body.

7. The electromagnetic propulsion device of claim 6 comprising means for changing the applied electric field strength and polarity to adopt the device to operating conditions and for reversing the force field direction in order to produce a deceleration effect with a body kinetic energy partial recovery.

8. The electromagnetic propulsion device of claim 6, comprising a pair of annular parallel electrodes disposed on the body external surface perpendicularly to the symmetry axis of said magnetic field, thereby to modify or suppress the reaction rotation couple applied to said body.

9. The electromagnetic propulsion device of claim 6, comprising at least two electrodes disposed on the outside surface of said body, substantially parallel to the fluid relative motion, for changing the direction of motion and for increasing thrust or deceleration.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2949550 *Jul 3, 1957Aug 16, 1960Whitehall Rand IncElectrokinetic apparatus
US3162398 *Jan 26, 1959Dec 22, 1964Space Technology Lab IncMagnetohydrodynamic control systems
US3446464 *Mar 9, 1967May 27, 1969William A DonaldMethod and apparatus for reducing sonic waves and aerodynamic drag
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4663932 *Jul 26, 1982May 12, 1987Cox James EDipolar force field propulsion system
US4891600 *Apr 30, 1987Jan 2, 1990Cox James EDipole accelerating means and method
US5087215 *Mar 8, 1990Feb 11, 1992Leonid SimuniOcean-going vessel and method for increasing the speed
US5249990 *Jul 24, 1990Oct 5, 1993Laukien GuentherMethod and apparatus for the propulsion of water vehicles
US5263661 *Sep 11, 1992Nov 23, 1993Riley Jennifer KSonic boom attenuator
US5320309 *Dec 7, 1992Jun 14, 1994British Technology Group Usa, Inc.Electromagnetic device and method for boundary layer control
US5352139 *May 23, 1990Oct 4, 1994Gunther LaukienMethod and apparatus for the propulsion of water vehicles
US5354017 *Dec 30, 1993Oct 11, 1994Orlev Scientific Computing, Ltd.Method for controlling turbulence
US5437421 *Dec 17, 1993Aug 1, 1995British Technology Group Usa, Inc.Multiple electromagnetic tiles for boundary layer control
US5964433 *Nov 19, 1996Oct 12, 1999The Trustees Of Princeton Univ.Staggered actuation of electromagnetic tiles for boundary layer control
US6179250 *Feb 10, 1999Jan 30, 2001Laurence WatersAir and space vehicle propulsion system
US6404089 *Jul 21, 2000Jun 11, 2002Mark R. TomionElectrodynamic field generator
US6492784Mar 3, 2000Dec 10, 2002Gravitec, Inc.Propulsion device and method employing electric fields for producing thrust
US7017508 *Oct 11, 2002Mar 28, 2006Arthur VanmoorHydrodynamically and aerodynamically optimized leading and trailing edge configurations
US7234667 *Dec 9, 2004Jun 26, 2007Talmage Jr Robert NModular aerospace plane
US7380756Nov 16, 2004Jun 3, 2008The United States Of America As Represented By The Secretary Of The Air ForceSingle dielectric barrier aerodynamic plasma actuation
US7735910Mar 10, 2007Jun 15, 2010Honda Motor Co., LtdPlasma wind deflector for a sunroof
WO1990014265A1 *May 23, 1990Nov 29, 1990Guenther LaukienProcess and device for marine propulsion
WO1991001915A1 *Jul 24, 1990Feb 21, 1991Guenther LaukienProcess and device for propelling watercraft
WO1994000342A1 *Jun 25, 1993Jan 6, 1994British Tech Group UsaElectromagnetic device and method for boundary layer control
WO1994010032A1 *Jun 25, 1993May 11, 1994British Tech Group UsaMultiple electromagnetic tiles for boundary layer control
WO1995000391A1 *Jun 24, 1994Jan 5, 1995British Tech Group UsaMultiple electromagnetic tiles for boundary layer control
Classifications
U.S. Classification60/202, 244/62, 244/130, 244/1.00N
International ClassificationF03H1/00, B63H11/02, B63B1/32
Cooperative ClassificationY02T70/12, F03H1/00, B63B1/32, B63H11/025
European ClassificationF03H1/00, B63B1/32, B63H11/02B