Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3663858 A
Publication typeGrant
Publication dateMay 16, 1972
Filing dateNov 6, 1970
Priority dateNov 6, 1969
Also published asDE1955914A1
Publication numberUS 3663858 A, US 3663858A, US-A-3663858, US3663858 A, US3663858A
InventorsGiuseppe Lisitano
Original AssigneeGiuseppe Lisitano
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Radio-frequency plasma generator
US 3663858 A
A plasma generator which utilizes radio frequency power and is of the kind having a slotted transmission line consisting of a hollow tubular body electrically matched to an RF generator, in which the hollow body makes up a delay line in which the RF energy is caused to propagate with a time delay in the direction of the axis of said hollow body the radiofrequency power, by enabling heating of the plasma independent of the intensity of a magnetic field used for confining the plasma, provides a highly dense plasma.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Unite States Lisitano atent 1 1 May 16, 1972 [54] RADIO-FREQUENCY PLASMA 3,363,138 l/l968 Gruber et al ..315/39 GENERATOR 3,432,722 3/1969 Naydan et al. 315/39 3,388,287 6/1968 Keenan 315/39 [721 mam, Max'planche'strasse 3 317 784 5/1967 Ferran ..315/39 Garching near Munich, Germany [22] Filed: Nov. 6, 1970 FOREIGN PATENTS OR APPLICATIONS [21] APPL 87,534 1,261,608 2/1968 Germany ..315/3.5

Primary Examinerl-lerman Karl Saalbach Foreign Application Data Assistant Examiner-Saxfield Chatmon, Jr.

Nov. 6, 1969 Germany ..P 19 55 914.9 stem 52 us. (:1 ..315/39, 315/111, 176/3, ABSTRACT 176/7 A plasma generator which utilizes radio frequency power and [5 I I Ila. Cl. ..H01J l] is f the having a S'otted transmission line consisting of a [58] new of Search l 11 hollow tubular body electrically matched to an RF generator, in which the hollow body makes up a delay line in which the [56] References Cmd RF energy is caused to propagate with a time delay in the UNITED STATES PATENTS direction of the axis of said hollow body the radiofrequency power, by enabling heatmg of the plasma independent of the Targ et al ..315/3.5 intensity of a magnetic used for confining the plasma 3,1 1 1,604 1 H1963 Agdur provides a highly dense plasma, 2,842,712 7/1958 Mildoon et al.. 3,378,723 4/1968 Napoli et al. ..315/39 5 Claims, 5 Drawing Figures RADIO FREQUENCY I0 G E N ERATO R v 2 0 l I H l I l W 5 --s zz g 24 1s 24 SQ;

3 Sheets-Sheet 1 RADIO FREQUENCY w. v wm 10 F GENERATOR m, if 24 Pakenfied may 16, 1972 5 Sheets-Sheet :3

RADIO-FREQUENCY PLASMA GENERATOR The subject invention consists of a plasma generator which utilizes radiofrequency power as transferred by means of a transmission line placed internally of a metal tube, in order to obtain a highly dense plasma and to heat it independently from the intensity of the magnetic field used for confining the plasma.

The radiofrequency line is electrically coupled to a generator which produces energy in a frequency band which is extended from a few megacycles to the field of centimetric waves.

Plasma generators utilizing radiofrequency power are well known in the art. They couple radiofrequency power to the plasma by means of a) transmission lines placed internally of a metal tube; b) radiofrequency inductance coils; c) microwave cavity resonators and d) microwave horn radiators.

However, for confining magnetic field strengths higher than those corresponding to ionor to electron cyclotron resonance, none of said known radiofrequency plasma generators is able to produce: a) high density fully ionized plasma, and b) collisionless heating of otherwise produced high density plasma.

It is the principal object of this invention to provide a simple radiofrequency plasma generator operative at any value of the confining magnetic field strength.

Another object is to provide a plasma generator giving fully ionized plasma for gases of any mass number.

A further object is to provide a high density plasma having a particle number density (N, cmof interest for controlled thermonuclear fusion research work.

Further objects of this invention are: a) stabilization of the produced plasma by means of a minimum radiofrequency field configuration; b) easy adaptation of the present radiofrequency plasma source to almost any available device for plasma physics and controlled thermonuclear fusion research work; c) utilization of high levels of radiofrequency power at any available frequency in the frequency range between a few Mc/s and many tens of thousands of Mc/s.

The present invention improves absorption of RF energy by the plasma in such a way that, for a certain RF power level, very high ionization degrees and temperatures for a gas are obtained.

In addition, the present invention permits to obtain discharges of ionized gases in metal tubes which have been filled with gases having various mass numbers and at very low pressure in the order of between 10 Torr up to the atmospherical pressure. This object can be achieved by virtue of the basic feature of this invention which permits to match high RF power densities per volume unit within tubes having an inside diameter which is much smaller than the wavelength of the matched energy.

The above objects are achieved, according to the invention, by an RF plasma generator which is formed by a hollow cylindrical body having an RF transmission line arranged so as to provide a delay line, so that the RF energy is propagated in the axial direction with a phase velocity which is much lower than the propagation speed of the wave in vacuo.

The hollow body contains a slot of helical configuration, which is wound around the axis of the hollow body and is electrically matched to an RF generator.

The invention is disclosed in the following with the aid of a few practical examples, as shown in the accompanying drawings.

FIGS. 1, 2 and 3 show constructional examples of the invention, with coaxial matching of the input energy, whereas FIGS. 4 and 5 show constructional examples of the invention with waveguide type input.

The slotted transmission line as disclosed by the present invention is shown in FIGS. 1 to 5. In the present arrangement the transmission line is slotted helically on a tubular cylinder. Radiofrequency power is fed through a matched transition from a coaxial or from a waveguide input connector to one end of the slotted transmission line. The other end of the transmission line may be openor short-circuited.

The plasma absorption mechanism of the radiofrequencypower fed to the slotted transmission line structure of this invention is believed to depend upon: a) the polarization of the E-field of the radiofrequency power and b) the strength of the fringing E-field across the slots of the slotted transmission line.

In the following, said absorption mechanism will be illustrated describing the distinguishing features of the present slotted-line structure compared with other radiofrequency coils or helical conductors windings used in other devices such as, for example, travelling wave tubes.

Some of said distinguishing characteristics, which are essential properties of the present invention, are:

a. Provision of matched transition from coaxial or waveguide input connectors to the slotted transmission line of the present wave-couplin g devices.

b. Fringing E-Fields of the radiofrequency power travelling along the slotted transmission line have a field strength which is independent of the path of said transmission line.

c. Polarization of the E-Field of the radiofrequency power:

This is very important in any plasma-wave interaction process and can be fixed in a very simple way, in the present invention, by fixing the path of the slotted transmission line. It is thus possible to take account of the particular plasma-wave dispersion relation in order to couple said wave to the plasma. As an example, in the FIGS. 1 to 5 of the present invention, the E-fringing field of the radiofrequency power is mainly directed axially in the same direction of the applied magnetostatic field, like the polarization of an ordinary wave.

It is probably due to this particular characteristic of the present invention, that the plasma can be produced independent of the strength of the confining magnetostatic field, in agreement with the non-dependence of the propagation of an ordinary wave from the magnetostatic field strength.

d. Provision of a minimum radiofrequency field configuration inside the slotted cylinder:

When the diameter of the slotted cylinder has cut-off dimensions for the wavelength of the radiofrequency power, the only possible radiofrequency field is the fringing field across the slotsof the slotted transmission line. Therefore a minimum r.f. field configuration will be established inside the slotted cylindrical structure, in absence of plasma.

In presence of plasma, the minimum r.f. field configuration is still established even for a structure diameter larger than that corresponding to cut-off. In fact, at the operating plasma particle number density, N, 10 cm the plasma frequency is much larger than the frequency of the applied radiofrequency power. The radiofrequency power, being polarized like an ordinary wave, is radiated transversally to the applied magnetic field and is thus cut-off at the plasma-boundary. This establishes again the condition of a minimum r.f.-field configuration in presence of plasma.

e. Stabilization of the produced plasma by said minimum r.f.field configuration.

The absence of this property would cause (like in other known systems of radiofrequency plasma generators) wall losses and instabilities of the produced plasma.

f. Radiofrequency power capabilities of the present devices:

These are such as to allow the coupling of a large amount of radiofrequency power, of the order of many kilowatts per liter of plasma volume. The absorption mechanism of this r.f. power is believed to be due to an increased resistance of the plasma to the alternative fringing fields across the slots.

At large values of said fringing E-fields, the electron velocities are randomized by the alternating radiofrequency fields, thus producing an "effective collision frequency much higher than that corresponding to a cold plasma at the same neutral gas pressure. This increased r.f. resistivity, in an otherwise collisionless plasma, is believed to be the main absorption mechanism of the wave launched by this structure.

g. Distribution of the radiofrequency power:

The r.f. power is uniformly distributed all around the surface of the plasma. This very important characteristic of the present invention, avoids the instabilities and the losses of other conventional systems like wave-guide radiators, which inject large amount of r.f. power through a small plasma surface.

The radiofrequency power coupled by the structure disclosed in the present invention is absorbed as it travels along the slotted transmission line. A large plasma surface can be enclosed by using more than one of such structures.

h. Discharge parameters:

The present device has been tested for a wide range of neutral gas pressure p magnetic field strength B, radiofrequency power level P, plasma diameter D, plasma frequency w, and exciting frequency m or wavelength The following table gives the tested ranges of the discharge, but the limitations are only due to the limitations of available test apparatus and energy, used up to date for these tests.

The plasma generator shown in FIG. 1 contains an RF generator 10, which, through a coaxial line as represented in a diagrammatical fashion, 12, is matched to a system which has a solid cylindrical portion, 14, and an inner cylinder, 16, with helical slots, 18. The outer cylindrical portion, 14, is connected to the external line of the coaxial cable 12, and the inner cylindrical portion is connected to the internal line of the coaxial cable 12. The assembly as shown in FIG. 1, and especially the cylinder 16 with its grooves 18, makes up a delay line by whose means the RF as supplied by the generator, 10, is propagated in the direction of the axis, 20, with a diminished velocity. In the interior of the cylinder, 16, a hot plasma having a high density can be obtained with a high effciency of RF energy conversion, even under the influence of extreme variations of the pressure of the neutral gas and in the presence of wide variations of the axial magnetic field B. This is because the delay line has a very satisfactory match in a very wide band for matching the RF generator, 10, to the plasma.

The external portion, 14, can be formed by a portion of a vacuum container (not shown in the drawings) to which it is connected by end flanges, 22. The magnetic field can be generated by the coils, 24, which have been very diagrammatically shown in FIG. 1. With a system according to FIG. 1, for which the inside diameter of the slotted cylinder 16 was about 3 ems. and with and RF generator 10, having an output power of about 70 watts at 2 Gigahertz, it has been possible to generate a plasma having a density of a few 10 cm The degree of ionization has been 30 percent and the electronic temperatures, as measured, were of about to 12 eV. The intensity of the axial magnetic field could be varied between 1.5 kiloGauss and the maximum value available was 4.5 kiloGauss. With radiofrequency powers above 150 watts, it has been possible to achieve a full ionization of a neutral gas, e.g. argon, at working pressures of Torr.

In the applications for discharges at atmospherical pressures, the influence of the magnetic field as regards the priming of the discharge results in very high frequency of the electron-ion collisions. Apparently, the use of an axial magnetic field, in addition to diminishing the losses towards the walls of the plasma generator, lends itself in an outstanding manner to the formation of magnetic nozzles having a controlled rate of flow.

FIG. 2 shows the external portion, 14a and the internal portion, 16a, of a second embodiment of the invention, which differs from that of FIG. 1 only in the method of matching the coaxial line, 12a, the latter being shown in cross-section.

The constructional example of FIG. 3, has, also, a coaxial inlet, 12b, from which start the helical slots 18b, these being symmetrical with respect to a plane containing the center of the axial connector, 12b, and arranged perpendicularly to the axis, 20.

FIG. 4 gives an example of construction of the invention, wherein the energy coming from an RF generator is matched to the inner portion, 160, by the waveguide 120, and is terminated at the slot 18c. The inner portion is still shielded by a continuous The constructional example of FIG. 4 is especially suitable for the case where the diameter D of the internal cylinder is greater than the RF wavelength.

FIG. 5 shows a constructional example which is essentially akin to that of FIG. 4. The difference consists in that, whereas the slot 18c of FIG. 4 is a continuous helix fed at the center, the slot 18d of FIG. 5 comprises two helical grooves which are symmetrical with respect to the feeding point and thus have opposite directions of winding relative to the axis, 20.

The constructional examples as described above, can, of course, be modified without departing from the scope of the invention. While the portion 16 should be constructed with a conductive material, at least on its surface, the portion 14 can be made either of a conductive or nonconductive material, and possibly it may even be dispensed with completely. The portions 14 and 16 need not take a cylindrical shape but they can have the shape of conical sector, parabolic sectors prisms, pyramids and others. The slot 18 can be open or can be filled with dielectric material(25 In the latter instance, the portion 16 can become an integral part of the vacuum system for the discharges at low pressure or it can become an integral part of a portion of the discharge duct for residual gases, for example for discharges at high pressures, in the order of the atmospherical pressures.

What is claimed is:

1. A plasma generator assembly of the type utilizing radiofrequency power for its heating means and wherein a static coaxial magnetic field is used to confine plasma, comprising: an outer container for plasma; a radiofrequency generator means for supplying radiofrequency power to the plasma; a transmission member connected to said generator means and disposed in the outer container for conveying radiofrequency energy to the plasma, the transmission member including a slotted substantially tubular hollow conductive body; and means to produce a static magnetic field to confine the plasma therein, the assembly characterized in that the arrangement of the slotted hollow body of the transmission member enables polarization of a fringing radiofrequency field to be directed relative to the confining static axial magnetic field.

2. A plasma generator assembly as claimed in claim 1 in which said tubular hollow conductive body is helically slotted, the-assembly including coaxial connector matching means to match the radiofrequency generator means with the helically slotted conductive body.

3. A plasma generator assembly as claimed in claim 1 in which said tubular hollow conductive body is helically slotted, the assembly including waveguide input connector means to match the radiofrequency generator means with the helically slotted conductive body.

4. An assembly as claimed in Claim 1 in which said outer I container is substantially tubular and is coaxial with said slotted substantially tubular hollow body.

5. An assembly as claimed in claim 9 in which at least the slots of the slotted tubular hollow body are filled with an insulating material.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2842712 *Mar 6, 1953Jul 8, 1958Philco CorpElectronic signal generator
US3111604 *Jun 5, 1961Nov 19, 1963Ericsson Telefon Ab L MElectronic device for generating or amplifying high frequency oscillations
US3171053 *Dec 15, 1959Feb 23, 1965Sperry Rand CorpPlasma-beam signal generator
US3317784 *Aug 2, 1963May 2, 1967M O Valve Co LtdTravelling wave tube using a plasmafilled waveguide as a slow wave structure
US3363138 *Nov 4, 1964Jan 9, 1968Sperry Rand CorpElectron beam-plasma device operating at multiple harmonics of beam cyclotron frequency
US3378723 *Jan 2, 1964Apr 16, 1968Rca CorpFast wave transmission line coupled to a plasma
US3388287 *Jan 4, 1965Jun 11, 1968Lockheed Aircraft CorpTm01 mode rf pulse generator
US3432722 *Jan 17, 1966Mar 11, 1969Gen ElectricElectromagnetic wave generating and translating apparatus
DE1261608B *Dec 22, 1965Feb 22, 1968Inst Plasmaphysik G M B HHochfrequenz-Plasmagenerator
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3757518 *Oct 20, 1971Sep 11, 1973Messerschmitt Boelkow BlohmIon engine
US3814983 *Feb 7, 1972Jun 4, 1974R BosisioApparatus and method for plasma generation and material treatment with electromagnetic radiation
US3911318 *Feb 4, 1974Oct 7, 1975Fusion Systems CorpMethod and apparatus for generating electromagnetic radiation
US4057462 *Feb 26, 1975Nov 8, 1977The United States Of America As Represented By The United States Energy Research And Development AdministrationRadio frequency sustained ion energy
US4390495 *Jan 19, 1981Jun 28, 1983Energy Profiles, Inc.Control of colliding ion beams
US4584159 *Oct 15, 1982Apr 22, 1986Energy Profiles, Inc.Plasma wave damping system and method
US4792732 *Jun 12, 1987Dec 20, 1988United States Of America As Represented By The Secretary Of The Air ForceRadio frequency plasma generator
US5276386 *Mar 14, 1991Jan 4, 1994Hitachi, Ltd.Microwave plasma generating method and apparatus
US5648701 *Jun 28, 1994Jul 15, 1997The University Of North Carolina At Chapel HillElectrode designs for high pressure magnetically assisted inductively coupled plasmas
US5668442 *May 13, 1994Sep 16, 1997Hughes ElectronicsPlasma-assisted tube with helical slow-wave structure
US5958266 *Oct 24, 1997Sep 28, 1999Fugo; Richard J.Method of plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator
US6479785Jul 9, 1998Nov 12, 2002Richard J. FugoDevice for plasma incision of mater with a specifically tuned radiofrequencty electromagnetic field generator
US6518703 *Mar 11, 1999Feb 11, 2003Matsushita Electrical Industrial Co., Ltd.Electrodeless discharge energy supply apparatus and electrodeless discharge lamp device using surface wave transmission line
US6787730Oct 31, 2001Sep 7, 2004Damian CoccioDevice for plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator
US6867387Jun 10, 2003Mar 15, 2005Richard J. FugoDevice for plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator
US7173211Feb 1, 2005Feb 6, 2007Rjf Holdings Ii, Inc.Device for plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator
US7770456 *Jun 4, 2004Aug 10, 2010Adrian StevensonElectromagnetic piezoelectric acoustic sensor
US8088126Aug 13, 2007Jan 3, 2012Fugo Richard JMethod and apparatus for plasma incision of cardiovascular tissue
US8137341Oct 19, 2011Mar 20, 2012Richard J FugoMethods and apparatus for plasma incision of tissue
US8796934Jan 28, 2011Aug 5, 2014Forschungsverbund Berlin E.V.Miniaturizable plasma source
US20050173383 *Feb 1, 2005Aug 11, 2005Damian CoccioDevice for plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator
US20060207330 *Jun 4, 2004Sep 21, 2006Stevenson AdrianElectromagnetic piezoelectric acoustic sensor
US20080045941 *Aug 13, 2007Feb 21, 2008Fugo Richard JMethod and apparatus for plasma incision of cardiovascular tissue
CN102612863B *Jul 6, 2010Nov 19, 2014韩国基础科学研究院Microwave antenna for generating plasma
DE3711184A1 *Apr 2, 1987Oct 20, 1988Leybold AgVorrichtung zur einbringung von mikrowellenenergie mit einem offenen mikrowellenleiter
DE3915477A1 *May 11, 1989Nov 23, 1989Hitachi LtdMikrowellen-plasmaherstellungsvorrichtung
DE4004560A1 *Feb 14, 1990Aug 16, 1990Hitachi LtdMikrowelleninduzierte plasmaquellen
DE4337119A1 *Oct 29, 1993May 24, 1995Univ Dresden TechVHF plasma source useful for etching and coating processes
DE19923018C2 *May 19, 1999Sep 27, 2001Univ Dresden TechVorrichtung zur Bearbeitung bandförmiger Werkstücke mit Hilfe resonanter Hochfrequenzplasmen
DE102010001395A1 *Jan 29, 2010Aug 4, 2011Forschungsverbund Berlin e.V., 12489Miniaturisierbare Plasmaquelle
DE102010001395B4 *Jan 29, 2010Nov 14, 2013Forschungsverbund Berlin E.V.Miniaturisierbare Plasmaquelle
EP0502269A1 *Mar 6, 1991Sep 9, 1992Hitachi, Ltd.Method of and system for microwave plasma treatments
WO1994006263A1 *Aug 17, 1993Mar 17, 1994The University Of North Carolina At Chapel HillHigh pressure magnetically assisted inductively coupled plasma
WO1999021496A1 *Oct 2, 1998May 6, 1999Fugo Richard JDevice for plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator
U.S. Classification315/39, 376/123, 376/132, 376/140
International ClassificationH05H1/46
Cooperative ClassificationY02C10/08, Y02C10/06, H05H1/46
European ClassificationH05H1/46