Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3667221 A
Publication typeGrant
Publication dateJun 6, 1972
Filing dateApr 17, 1969
Priority dateApr 17, 1969
Also published asCA922907A, CA922907A1, DE2018485A1
Publication numberUS 3667221 A, US 3667221A, US-A-3667221, US3667221 A, US3667221A
InventorsTaylor Jack R
Original AssigneeGen Electric
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fuel delivery apparatus
US 3667221 A
Abstract
Apparatus is disclosed for premixing air and fuel or carbureting air prior to introduction thereof into the primary zone of a combustor, said apparatus including a housing defining a spin chamber therein; the spin chamber is adapted to receive air and fuel and vaporize and/or atomize said fuel and deliver said air and fuel into said combustor as a vortical flow.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Taylor [15] 3,667,221 [451 June 6, 1972 [54] FUEL DELIVERY APPARATUS [72] Inventor: Jack R. Taylor, Cincinnati, Ohio [73] Assignee: General Electric Company [22] Filed: Apr. 17, 1969 21 Appl. No.: 816,985

[52] U.S.Cl. ..60/39.74 R, 261/79 R,431/173, 60/3971 [51] Int. Cl. ..F02c 7/22 [58] Field of Search ..60/39.7 I 39.65, 39.74; 431/9, 431/173; 261/78, 79 R; 123/119 R [56] References Cited UNITED STATES PATENTS 2,097,255 10/1937 Saha 431/9 2,560,074 7/1951 Bloomer.... 431/9 2,560,076 7/1951 Bloomer ..431/9 2,674,846 4/1954 Bloomer ..60/39.65 2,698,050 12/1954 Bloomer....., ..60/39.65

2,438,858 3/1948 Lindsey ..60/39.65 3,121,996 2/1964 Smith 3,242,674 3/1966 Clarke 3,483,699 12/1969 Harvey ..60/39.74

FOREIGN PATENTS OR APPLICATIONS 675,092 7/1952 Great Britain ..60/39.7l 726,538 3/1955 Great Britain ..60/39.71 765,327 l/l 957 Great Britain ..60/39.74

Primary Examiner-Douglas Hart Attorney-Derek P. Lawrence, Erwin F. Berrier, Jr., Lee H. Sachs, Frank L. Neuhauser and Oscar B. Waddell 5 7] ABSTRACT Apparatus is disclosed for premixing air and fuel or carbureting air prior to introduction thereof into the primary zone of a combustor, said apparatus including a housing defining a spin chamber therein; the spin chamber is adapted to receive air and fuel and vaporize and/or atomize said fuel and deliver said air and fuel into said combustor as a vertical flow.

2 Claims, 4 Drawing Figures PATENTEDJUH 6 I972 INVENTOQ. JACK R. TAYLOR ATTORNEY- FUEL DELIVERY APPARATUS This invention relates to combustion apparatus and, more particularly, to apparatus for supplying fuel to a combustion chamber.

Delivery of fuel into a continuous burning combustion apparatus, as for example in gas turbine engines, in a highly dispersed manner so as to achieve complete and efficient combustion of the fuel and, at the same time, minimize the occurrence of fuel-rich pockets which, upon combustion produce carbon or smoke, has posed a continuing design problem. Solutions of this problem are further complicated in applications such as gas turbine engines by the severe temperature environment of the combustion chamber as well as overall length limitations for the combustion apparatus.

While spray atomizing nozzles of the type adapted to deliver a single or dual atomized conical fuel spray through a small discharge orifice have heretofore enjoyed widespread usage, such devices are generally complex and expensive in nature and generally require a relatively expensive and complex high pressure fuel delivery or distribution system. Furthermore, such spray atomizing nozzles tend to produce local fuel-rich pockets and are sensitive to fouling by carbon deposits or other deleterious matter.

Another approach which has been heretofore employed involves the use of tubes which extend into the combustion chamber for delivery of air and fuel to a cup which is disposed in the primary combustion zone of the combustor and is adapted to extract energy from the combustor flame to vaporize the fuel. With such an approach, however, life problems are encountered with respect to the elements protruding into the hot region of the combustor.

This invention, then, is concerned with an efiicient fuel delivery apparatus which overcomes the foregoing problems.

A primary object of this invention is to provide relatively simple and economical means for delivery of fuel into a combustion chamber in a highly dispersed manner.

Another object of this invention is a long life fuel delivery apparatus adapted to receive air and fuel, atomize and/or vaporize the fuel, and carburet the inlet air with such fuel or premix the fuel and air prior to introducing the fuel into the primary zone of the combustor.

A further object of this invention is an apparatus for supplying fuel to a combustion chamber which is relatively insensitive to fouling, does not require a high pressure fuel distribution system, and is of relatively short axial length.

Yet another object of this invention is an apparatus which is adapted toutilize the energy of the inlet air to effect delivery of the fuel to the combustion chamber in a highly dispersed manner.

The above and other objects are achieved in the present invention by providing a housing having a central or core outlet in flow communication with the combustion chamber and defining a spin chamber around the outlet. The spin chamber is adapted to receive and circulate pressurized air and fuel around the outlet and generate a vortical discharge of air from the outlet. In this manner, the fuel is vaporized and/or atomized and delivered into the combustion chamber with the air vortex. The spin chamber is preferably formed with an involute or spiral shaped outer wall and generally planar upstream and downstream end walls. Inlet passage means may be provided for receiving a generally axially directed flow of pressurized air and directing such air in a generally streamline manner into the spin chamber. The inlet passage means may also be adapted to receive and direct the fuel into the swirl chamber although separate passage means may be used. Swirl vanes may be employed to enchance the rotational velocity of the vortex discharge as well as accurately locate the vortex centrally of the outlet.

While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of this invention, it is believed the invention will be better understood upon reading the following description of the preferred embodiment in conjunction with the accompanying drawing wherein:

FIG. 1 is a fragmentary axial cross section view ofan exemplary gas turbine engine combustion apparatus embodying the present invention;

FIG. 2 is a front elevational view, in partial cross section, of the fuel delivery apparatus of this invention;

FIG. 3 is a side view, in partial cross section, of the apparatus of FIG. 2; and

FIG. 4 is a cross sectional view taken along lines 4--4 of FIG. 2.

Referring now to the drawings, and particularly to FIG. 1, a continuous burning combustion apparatus of the type suitable for use in a gas turbine engine has been shown generally at 10 as comprising a hollow body 12 defining a combustion chamber 14 therein. The hollow body 12 includes a domed upstream end 16 having an opening 18 therein for receiving a fuel/air mixture. As will be understood by those skilled in the art, the combustion chamber 14 may be of the annular type, the cannula: type or the can type, with the apparatus 10 having a plurality of circumferentially spaced openings 18.

An outer shell 20 may be provided to enclose the hollow body 12 and define passages 22 and 24 in cooperation with the hollow body 12 and a snout assembly 26. As will be understood, the passages 22 and 24 are adapted to deliver a flow of pressurized air from a suitable source, such as a compressor 28, into the combustion chamber 14 through suitable apertures or louvers 30 for cooling of the hollow body 12 and dilution of the gaseous products of combustion.

The snout assembly 26 is suitably secured to the upstream end of the hollow body 12 and is adapted to function as a flow splitter to divide the pressurized air delivered from the compressor 28 between passages 22, 24 and a passage 32 formed through the snout assembly.

The fuel injection or carbureting apparatus of this invention has been shown generally at 34 as comprising a housing having inlet passage means 36 for receiving pressurized air from snout assembly passage 32, a central or core outlet 38 in flow communication with the hollow body opening 18 for delivery of an air/fuel mixture into the combustion chamber 14 as a vortical flow 40, and means 42 for receiving fuel from a suitable conduit 44 which extends through the snout assembly 26 and outer shell 20 and communicates with a source of pressurized fuel. Although the fuel injection apparatus 34 is particularly suited for use with liquid fuel and will be hereinafter described in connection with a liquid fuel, it will be appreciated that fuel in the liquid state, gaseous state,, solid state or a combination thereof may be employed.

As will be understood, suitable ignition means (not shown) of well known construction are provided within the combustion chamber 14 to provide initial ignition of the combustible air/fuel mixture discharged through outlet 38.

Referring now to FIG. 2, the housing comprises an involute outer wall 48 and generally planar, spaced, upstream and downstream end walls 50 and 52, respectively, peripherally joining the outer wall and defining, in cooperation therewith, an air vortex generator or spin chamber 46 within the housing outwardly of the core opening 38. As shown in FIG. 2, the outer wall 48 is generally involute or spiral in shape with a progressively decreasing radius from the inlet passage 36 to a terminal edge or lip 54 which defines, in part, the inlet opening from the passage 36 to the spin chamber 46. The inlet passage 36 is formed with a generally axially facing, upstream end opening for receiving the flow of pressurized air from passage 32 and has one wall formed as a streamline continuation of the involute outer wall 48 so as to deliver the inlet air in a generally streamline manner into the spin chamber 46. In this manner, pressurized air is directed into the spin chamber 46 in a circular motion of ever-decreasing radius so as to generate the vortical or cyclonic discharge 40 having a hollow core 56. To further enhance the swirling motion of the air as well as accurately position the vortical flow 40 relative to the opening 38, a plurality of swirl vanes 58, each of which extends between the upstream and downstream walls 50 and 52, may be provided in a peripheral array about the outlet 38 as shown in FIG. 2. Such an array of swirl vanes may also be crease the rotational velocity of the vortical flow 40.

While the outer wall 48 of the spin chamber 46 and the passage means 36 have been shown and described as being involute, and such is the preferred construction, it should be understood that other vortex generator or spin chamber and passage means configurations may be employed. For example, the spin chamber may be circular and the passage means may be adapted to deliver the inlet air in a tangential manner.

In order to maintain a generally uniform rotational velocity of the inlet air within the spin chamber 46, outwardly of the vanes 58, the outlet 38 and swirl vanes 58 are preferably positioned with respect to the outer wall 48 so that the cross sectional flow area between the outer wall 48 and the vanes 58 or opening 38 progressively decreases from the inlet 36 to the lip The apparatus 34 may be secured in the position of FIG. 1 by any suitable means, such as by welding to the snout assembly 26 and/or the hollow body 12 or by employing suitable bracketry (not shown).

In operation, liquid fuel 60 is delivered to inlet passage 36 through means 42. Some of this fuel is immediately vaporized and/or atomized and picked up by or entrained within the high velocity inlet air and carried into the combustion chamber 14. The remaining fuel lands on the interior surface of the inlet passage 36 and is drivenor pushed by the high velocity inlet air into the spin chamber 46 and centrifugally along the outer wall 48. During such flow, a portion of the fuel may be vaporized and entrained within the inlet air flow. A portion of g the fuel flow along outer wall 48 which is not so evaporated is then sheared off the lip 54, as at 62, and again passes across the high velocity, generally high temperature, inlet air flow which results in more fuel being vaporized and/or atomized and entrained within the inlet air. Since the inlet air from the compressor 28 may be at an elevated temperature of 700 F. or higher, it will be appreciated that significant vaporization may occur during such flow through the vortex generator or spin chamber 46. In addition to the above and with reference to FIG. 4, it has been found that the liquid fuel circulating within spin chamber 46 is carried in a swirling flow along the inner surface of upstream wall 50 by the swirling air flow. This swirling flow liquid fuel is carried through vanes 58 and forms a ring of fuel 64 where the fuel velocity forces are balanced by the centrifugal forces. During such flow along the inner surface of upstream wall 50 to the ring 64, some of the fuel may be vaporized from the surface by the high temperature inlet air and by radiant heat from the flames within the combustion chamber 14. It has been found that the liquid fuel within the ring of fuel 64 is spun off and atomized into extremely small fuel droplets by the high velocity vortical flow of air 40 and directed toward the combustion chamber 14 as a generally conical spray 66. Since these atomized fuel droplets are extremely small, they quickly vaporize and mix with the air vortex 40.

Since the vortex core 56 is at a reduced pressure, a reverse or recirculation flow is established from the combustion chamber 14 into the apparatus 34 as generally shown by the flow arrows 68 in FIGS. 2 and 4. This recirculation of high temperature gas from the chamber 14 into the central or core portion of the spin chamber 46 further enhances vaporization of the liquid fuel from the spin chamber surfaces, as well as vaporization of any atomized fuel droplets carried by the intake air or the atomized droplets expelled from the fuel ring Since the outlet 38 is relatively large as compared, for example, with the discharge orifice of prior fuel spray atomizing nozzles of the well known type, the apparatus of this invention is relatively insensitive to tolerance variations in construction and to problems of deteriorated performance due to clogging by carbon or other deleterious matter; Additionally, since the apparatus of this invention utilizes the energy of the inlet air and does not relay on fuel pressure to effect its atomized spray, lower fuel delivery pressures and, consequent] simp ified and more economical fuel delivery or drstrr ution systems may be employed. It will also be noted that since the apparatus of this invention is positioned externally of and does not project into the combustion chamber 14, it is not sub- 5 jected to the severe environmental stresses of the chamber 14 and, accordingly, may readily be adapted to yield long and reliable service life.

From the foregoing, it will be appreciated that the present invention provides compact and economical means for carbureting air or premixing air and fuel prior to introduction thereof into the primary zone of combustor and, hence, for delivery of the fuel into a combustion chamber in a highly effective and dispersed manner.

While an exemplary embodiment of this invention has been depicted and described as including an involute outer wall 48, involute passage means 36 for introducing air and fuel into spin chamber 46, and a circular array of swirl vanes 58, it should be understood that the swirl vanes 58 may be eliminated and other suitable geometrical housing and inlet passage constructions may be employed to generate the circulation of fuel and air about outlet 38 and the vortical flow discharge 66. Additionally, although the passage 36 has been shown as being adapted to deliver both the fuel and the air to the spin chamber 46, and while such is the preferred construction, separate passages may be employed. Accordingly, although one embodiment of the present invention has been depicted and described, it will be appreciated by those skilled in the art that many modifications, substitutions and changes may be made thereto without departing from the inventions fundamental theme.

What is claimed is:

1. A combustion apparatus including, in combination:

a hollow body defining a combustion chamber therein, said hollow body formed with an opening therein, and

a housing disposed outwardly of said combustion chamber,

said housing including a downstream wall fonned with an outlet of generally circular flow area in the fluid flow communication with said hollow body opening, an upstream wall facing said outlet, an involute outer wall extending between and joining said upstream and downstream walls so as to define a spin chamber internally of said housing and a generally tangential inlet to said spin chamber, an annular array of swirl vanes extending between said upstream and downstream walls around said outlet, and passage means in fluid flow connection with said tangential inlet for delivery of liquid fuel and air to said spin chamber at a point radially outwardly of said vanes.

2. The apparatus of claim 14 further characterized in that said passage means is formed with an upstream facing inlet for receiving a generally axially directed flow of air and includes one side wall formed as a generally streamline continuation of said involute outer wall.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2097255 *Mar 15, 1935Oct 26, 1937 Method of and apparatus fob burn
US2438858 *Jul 20, 1943Mar 30, 1948Armstrong Siddeley Motors LtdLiquid-fuel combustion chamber
US2560074 *Dec 21, 1948Jul 10, 1951Lummus CoMethod and apparatus for burning fuel
US2560076 *Jun 14, 1949Jul 10, 1951Lummus CoMethod and apparatus for burning fuel
US2674846 *Dec 18, 1950Apr 13, 1954Lummus CoCombustion chamber with baffle means to control secondary air
US2698050 *Jun 10, 1949Dec 28, 1954Lummus CoCombustion for liquid fuels
US3121996 *Oct 2, 1961Feb 25, 1964Lucas Industries LtdLiquid fuel combustion apparatus
US3242674 *Jul 8, 1964Mar 29, 1966Lucas Industries LtdLiquid fuel combustion apparatus
US3483699 *Jan 29, 1968Dec 16, 1969Rolls RoyceFuel injector for a gas turbine engine
GB675092A * Title not available
GB726538A * Title not available
GB765327A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3804578 *Oct 10, 1972Apr 16, 1974Robbins DCyclonic combustion burner
US3811278 *Feb 1, 1973May 21, 1974Gen ElectricFuel injection apparatus
US3944634 *May 29, 1973Mar 16, 1976John M. AndersonCarburetor idling system
US4036914 *Aug 14, 1975Jul 19, 1977John HawrylukLiquid fuel mixing device
US4092826 *Nov 30, 1976Jun 6, 1978Rolls-Royce LimitedFuel injectors for gas turbine engines
US4177637 *Dec 19, 1977Dec 11, 1979Rolls-Royce LimitedInlet for annular gas turbine combustor
US4245961 *Sep 8, 1978Jan 20, 1981Martin Marietta CorporationEjector utilizing a vortex flow
US4365951 *Jun 13, 1980Dec 28, 1982Jan AlpkvistDevice for combustion of a volatile fuel with air
US4375801 *Oct 1, 1981Mar 8, 1983Eckman Donald ECharge mixing carburetor plate
US4388045 *Apr 21, 1978Jun 14, 1983Martin Marietta CorporationApparatus and method for mixing and pumping fluids
US4974416 *Feb 27, 1989Dec 4, 1990General Electric CompanyLow coke fuel injector for a gas turbine engine
US5343691 *Jul 26, 1993Sep 6, 1994General Electric CompanyReducing thermal deposits in propulsion systems
US5609655 *Dec 19, 1994Mar 11, 1997Northern Research & Engineering Corp.Gas turbine apparatus
US5672187 *Apr 29, 1996Sep 30, 1997Cyclone Technologies Inc.Cyclone vortex system and process
US5805973 *Mar 12, 1997Sep 8, 1998General Electric CompanyCoated articles and method for the prevention of fuel thermal degradation deposits
US5891584 *Mar 17, 1997Apr 6, 1999General Electric CompanyCoated article for hot hydrocarbon fluid and method of preventing fuel thermal degradation deposits
US6113078 *Mar 18, 1998Sep 5, 2000Lytesyde, LlcFluid processing method
US6244573Oct 14, 1999Jun 12, 2001Lytesyde, LlcFluid processing system
US6253538Sep 27, 1999Jul 3, 2001Pratt & Whitney Canada Corp.Variable premix-lean burn combustor
US6347789Mar 20, 2000Feb 19, 2002Lytesyde, L.L.C.Fluid processing system
US6648306Feb 18, 2002Nov 18, 2003Lytesyde, LlcFluid processing system and method
US7104528Aug 15, 2003Sep 12, 2006Lytesyde, LlcFuel processor apparatus and method
US7547002 *Apr 15, 2005Jun 16, 2009Delavan IncIntegrated fuel injection and mixing systems for fuel reformers and methods of using the same
US7559742 *Jul 14, 2009Hitachi Industries Co., Ltd.Inlet casing and suction passage structure
US7681569Mar 23, 2010Lytesyde, LlcMedical liquid processor apparatus and method
US7717096Jan 23, 2006May 18, 2010Lytesyde, LlcFuel processor apparatus and method
US7780151 *Jan 19, 2007Aug 24, 2010Alstom Technology Ltd.Mixer assembly
US8028674Aug 7, 2007Oct 4, 2011Lytesyde, LlcFuel processor apparatus and method
US8641020 *Feb 14, 2013Feb 4, 2014Mark W. BaehrSystem for dissolving gases in fuel
US20050035219 *Aug 15, 2003Feb 17, 2005Rock Kelly P.Fuel processor apparatus and method
US20050254941 *May 6, 2005Nov 17, 2005Hitachi Industries Co., Ltd.Inlet casing and suction passage structure
US20070113555 *Jan 19, 2007May 24, 2007Richard CarroniMixer Assembly
US20070169760 *Jan 23, 2006Jul 26, 2007Rock Kelly PFuel processor apparatus and method
US20070169773 *Jan 23, 2006Jul 26, 2007Lytesyde, LlcMedical liquid processor apparatus and method
US20090038582 *Aug 7, 2007Feb 12, 2009Lytesyde, LlcFuel Processor Apparatus and Method
US20090065957 *Apr 15, 2005Mar 12, 2009Chien-Pei MaoIntegrated fuel injection and mixing systems for fuel reformers and methods of using the same
US20130187298 *Feb 14, 2013Jul 25, 2013Helpful Technologies, Inc.System for dissolving gases in fuel
WO1995016881A1 *Dec 16, 1994Jun 22, 1995Abb Stal AbMethod and apparatus for atomizing liquid fuel
Classifications
U.S. Classification60/737, 431/173, 261/79.1
International ClassificationF23R3/12, F23R3/30, F23R3/04
Cooperative ClassificationF23R3/12, F23R3/30
European ClassificationF23R3/30, F23R3/12