Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3668486 A
Publication typeGrant
Publication dateJun 6, 1972
Filing dateJan 8, 1971
Priority dateJan 8, 1971
Publication numberUS 3668486 A, US 3668486A, US-A-3668486, US3668486 A, US3668486A
InventorsJoseph Silver
Original AssigneeCrest Ultrasonics Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Load-sensitive generator for driving piezo-electric transducers
US 3668486 A
Abstract
An oscillatory circuit, operating in the ultrasonic or high sonic frequencies, generates power for a piezo-electric transducer in proportion to mechanical resistances or loadings encountered by the transducer. High sensitivity and instantaneous power adjustment to a wide variety of loads is obtained, and instant "turn-on" and "turn-off" at the adjusted power settings are secured, by a circuit in which the input to the first stage of a two-stage oscillatory circuit comprises the sum of three feedback components plus a DC forward bias.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Silver [54] LOAD-SENSITIVE GENERATOR FOR DRIVING PIEZO-ELECTRIC TRANSDUCERS [72] Inventor:

[73] Assignee:

Joseph Silver, Levittown, Pa.

Crest Ultrasonics Corporation, Trenton, NJ.

[22] Filed: Jan. 8, 1971 [21] Appl.No.: 104,957

[52] U.S.Cl ..3l8/ll6, 310/8.1 [51] lnt.Cl. ..110lv 7/00 [58] FieldofSearch... .....33l/116R, 158,159;318/1l4,

[ 51 'June 6,1972

[56] References Cited UNITED STATES PATENTS 3,432,691 3/1969 Shoh ..3l8/l18 X 3,137,826 6/1964 Boudrias ..331/116 R X Primary Examiner-D. F Duggan Attorney-Sperry & Zoda 57] ABSTRACT An oscillatory circuit, operating in the ultrasonic or high sonic frequencies, generates power for a piezo-electric transducer in proportion to mechanical resistances or loadings encountered by the transducer. High sensitivity and instantaneous power.

adjustment to a wide variety of loads is obtained, and instant turn-on" and turn-off" at the adjusted power settings are secured, by a circuit in which the input to the first stage of a two-stage oscillatory circuit comprises the sum of three feedback components plus a DC forward bias.

9 Claims, 2 Drawing Figures 0.0 POWER SUPPLY PATENTEDJUN 6 I972 INVENTOR. Joseph 57LvEz ATTORNEYS due to the fact that in the rent feedback LOAD-SENSITIVE GENERATOR FOR DRIVING PIEZO- ELECTRIC TRANSDUCERS BACKGROUND OF INVENTION driving piezo-electric transducers, is found in the lack of true sensitivity of said generators to widely varying mechanical resistances or loading encountered by the transducer during the normal operation thereof.

7 Transducers are conventionally pre-loaded mechanically, prior to starbup. It is necessary to correspondingly pre-adjust the power supply system to correspond to the pre-load. And, after start-up, the resistances encountered by the transducer vary, as a result of which the power may be too great or too little, reducing operating efficiency to a marked degree.

Another characteristic of prior art generators is in the means for tum-on and tum-ofi of the power supply. Conventionally, upon tum-on of the power supply, there is an undesirable time lag between closure of the on-oif switch and the appearance of power at the requisite operating voltage. This is prior art systems, a large filter capacitor must be charged each time the power supply is turned on.

It has heretofore been suggested, in Der Pat. No. 3,129,367, that a power supply system be provided embodying means responding to changes of the resonant frequency of the transducer-to change the power supply frequency toward the new resonant frequency of the transducer. I

In that patent, as in the present invention, feedback components are sensitive to changes in the mechanical loading of the transducer to adjust the power supply.

However, the patented invention is not believed to relate the several feedback components in such fashion as to automatically regulate the load power with maximum efficiency. And, there is no suggestion in the patented invention for incorporating a coactive relationship between theself-re gulating power supply circuitry and an improved means for tum-on and turn-off of power, calculated to provide power instantaneously, as compared to prior art arrangements in which time is lost during each operating cycle while a large filter capacitor is being charged.

SUMMARY OF THE INVENTION Summarized briefly, the invention is an oscillatory electrical circuit operating in the ultrasonic or high sonic range, adapted to drive a piezo-electric converter or transducer which encoupling transformer. through a step-up third transformer.

.T he input to the first stage comprises three AC components plus a DC forward bias. The summing of these at the input of the input stage, is productive of the self-regulating power characteristic, by reason of the fact that at least one is a curcomponent that is fully sensitive to, and varies proportionately to a wide range of mechanical loads or resistances encountered by the transducer during normal operation.

A second component is a conventional voltage feedback from the output of the second stage to the input of the first stage, while the third component feeds back from a point between the two amplifier stages (thus being unafiected by the mechanical load), contributing the important capability of starting under load.

All three components serve important individual functions, while coacting to provide in sum an automatic regulation of the power supply to the transducer fully responsive to changes in the mechanical loading of said transducer.

The output stage drives a transducer transformer, and the primary winding of a components plus a DC forward bias. Component E,

Summarized further, the invention includes a DC power A supply combined with a relay-controlled turn-on circuit to in a standby condition,

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a schematic illustration of a power supply system according to the present invention; and

FIG. 1a is a view showing a conventional D.C. operating voltage supply circuit by means of which power is supplied to the generator comprising the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT The numeral 10 designates a typical high-power electroacoustic converter or transducer, which when energized provides mechanical vibration energy, typically at a frequency of 20 kHz.

The illustrated transducer 10 is typical and does not per se constitute part of the present invention. A transducer of this type is frequently used, for example, in ultrasonic welding of plastics, an application in which heavy mechanical loading of the transducer occurs during each duty cycle thereof.

High frequency power is supplied by a generator 30, through a cable 32, to the transducer.

The generator 30 consists of two stages: a first or input stage 40 and a second or output stage 44 coupled by transformer 42 transformer 48. A conventional DC power supply 60, shown in detail in FIG. la, supplies operating voltage to amplifier stages 40, 44 through conductors 65, 64 respectively.

The inductance of primary winding 48a added to the in- This frequency is established mainly by transducer assembly 10, which has the highest Q factor of all the tuned elements in the loop.

desired self-regulating characteristic of the generator.

The input to the first stage consists of three AC feedback Component I5 developed in winding 42c of the first stage transfonner is independent of and unaffected by loading forces. Being derived from an inner loop, it contributes the important capability of starting under load.

Component E derived from secondary windings 48b and 46c of transformers 48, 46 respectively, is a transformed fracdevelops automatic, load-sensitive power output characteristic of the present invention.

developed Another aspect of the invention relates to on-off control.

conventionally, intermittently-operating generators are cycled on and off by means of a main control switch 8,, located in the primary power circuit lPC having conductors 50, 51 and controlling the flow of current from the illustrated llO V-AC source, to the typical DC operating voltage supply 60 illustrated in detail in FIG. la. A substantial and undesirable lapse of time occurs at each turn-on, by reason of the necessity of charging a large filter capacitor 61 normally provided as part of the DC operating voltage supply. As a second and less critical characteristic of the conventional on-off control circuitry, a heavy current surge is drawn at each turn-on to charge the large filter capacitor and also, to start the oscillator circuit itself. This causes line voltage dips objectionable to others sharing the same power line, blown fuses and short life of the contacts of said switch.

However, the main undesirable characteristic of the conventional control circuitry, as noted above, is the excessive time needed to charge the filter capacitor 61.

In contrast, the disclosed generator is cycled on and off by closing a switch S to open light-duty, normally closed contacts of relay l(,. Opening these contacts ungrounds the power supply of stages 40, 44 allowing turn-on bias to be applied. In turn, stage 40 when conducting supplies turn-on bias through a connector 49 to the output stage 44, resulting in completion of the oscillatory loop, and the generation of ultrasonic power output; Conversely, closing the relay contacts grounds the power supply to stages 40, 44, and thereby extinguishes oscillation and power output. At all times, however, filter capacitor 61 remains fully charged.

The generator is initially placed on standby, by closing switch S, which charges the above-mentioned filter capacitor incorporated as part of the DC voltage supply. The charge, by reason of the inventive arrangement disclosed, produces an initial current surge of only about one-half the normal value.

Subsequently, the oscillator is instantaneously supplied from this fullycharged filter capacitor, whenever relay K is operated, with an even smaller line current surge.

This eliminates the heavy line transient at every operating cycle with its attendant objectionable consequences and even more importantly, eliminates to all intents and purposes the highly undesirable time lapse now required to charge filter capacitor 61 at the beginning of each operating cycle.

. The high-voltage secondary 46b of transformer 46 connects through primary winding 48a of transformer 48 to piezo-electric transducer 10. Capacitor C3 is a trimming value used with the other fixed components in the load circuit to establish resonance at the operating frequency, typically ZOkl-lz.

The illustrated arrangement charges the filter capacitor 61 of the DC voltage supply with a moderate current surge when line switch S1 is closed, placing the generator on standby. The oscillator circuit is instantaneously cycled on, subsequently, by closing a switch S2. This may be a limit switch in the work stand, which closes when the desired pre-load has been applied to the work pieces (for example, when contact is made with plastic workpieces to be welded, not shown, by a horn tip of transducer The capacitor 61 of the DC voltage supply supplies the starting current of the oscillator and greatly attenuates the line voltage transients which would be produced if the generator itself was cycled on and off. Switch S2 may be arranged to open at the conclusion of each duty cycle, awaiting application of the horn tip to the next following workpiece to be welded or otherwise acted upon.

There is a particular coaction between the feedback components and the turn-on means incorporating relay K1 and switch S2. A feedback signal, derived from an inductive component of the resonant circuit, is combined with conventional positive feedback in a sense and proportion yielding said power regulating characteristic. An additional feedback component, derived'from the first stage, yields improved starting under load. And finally, turn-on of the generator is accomplished by completing the path between the DC voltage supply and the stages 40, 44 by closure of switch S2 during each duty cycle, in an arrangement in which filter capacitor 61 remains fully charged so that power will be instantaneously supplied, without the usual time lag noted in the prior art systems.

A highly desirable result is achieved in that power dissipated in the converter (transducer) remains at a low level, while still permitting power transferred to the load to vary over wide limits, on demand. With the self-regulating, load-sensitive characteristic of the generator herein described, the disintegration, power dissipation is low, thus preventing overheating and consequent destruction of the transducer and genera- I01.

Further, the adaptability of the invention to start up instantaneously under mechanical load, increases the versatility and operating efficiency of the apparatus to a marked degree. For example, such a condition obtains when the transducer horn is immersed in a liquid, as for cleaning, cell disintegration, emulsifying and mixing. This condition is also encountered when the apparatus is used for welding plastics ultrasonically. Here, in order to avoid marring the work, it is desirable to pre-load the transducer horn against the plastic work pieces prior to startup. The invention, and particularly the improved selfregulating power characteristics thereof, greatly simplifies the task of establishing the pre-load, the power setting, and the operating interval.

It is worth considering, at this point, the particular relationship of components E1, E2, E3, in light of description already provided, to obtain a completely clear and full understanding of the relationship of these components one to another.

Component E1 is a transformed fraction of the amplifier output voltage applied to the resonant circuit that includes the transducer. This component is fed back with a positive sense, to sustain oscillation at the resonance frequency of the transducer. However, if the transducer is under a mechanical load, its reflected electrical impedance will usually reduce the output stage gain sufficiently to prevent the start of oscillation.

Component E2 is a transformed fraction of the output of the first stage of the amplifier, also with a positive sense. it is relatively insensitive to the transducer load, by virtue of the isolation afforded by the output stage.

The combination of components E1 and E2 is sufiicient to reliably start and maintain oscillation under load, but does not have an inherent capability for load power regulation.

Component E3 is a transformed fraction of the resonance voltage developed across the inductor in series with the transducer. The inductor primary resonates with the capacity of the transducer and with a parallel trimming capacitance. Its value increases sharply with mechanical loading of the transducer. it is chiefly this component which imparts the self-regulating or load-sensing characteristic of the generator. Without this component, the power dissipated in the unloaded converter may approach or even exceed the power drawn under load.

Typical values of the component parts of the illustrated circuit are:

R1 1 5,000 ohms R2 330 ohms 61 500 mfd C l 0. l mfd C2 0.02 mfd C3 0.005 mfd The abstract of this application is not intended to constitute a comprehensive discussion of all the principles, possible modes or applications of the invention disclosed in this document and should not be used to interpret the scope of the claims which appear hereinafter.

Iclaim:

1. An electrical generator for supplying power to a piezoelectric transducer, comprising an oscillatory circuit having an input and output connectable respectively to a power source and a transducer to be driven, said circuit including a feedback component taken from the output and sensitive to changes in the output voltage of said circuit, said component developing a proportionately adjusted voltage feeding back into the input end of said circuit for oscillation thereof, said generator including first and second amplifier stages in said circuit, said generator further including means for starting up said circuit under load, said means including a second feedback voltage component taken from the output of the first stage and extending as a loop back to the first stage input.

2. A generator as in claim 1 further including a third feedback component inductively derived from the output of said second stage and feeding back to the input of the first stage to adjust current feeding into the first stage in proportion to mechanical loadings imposed on said transducer.

3. A generator as in claim 2, further including a first transformer connected with said second stage and a second transformer connected between the first transformer and the transducer, the primary inductance of said second transformer being in series between the first transformer and transducer to develop varying resonance voltages, which voltages are a sensitive function of varying mechanical loadings imposed upon the transducer and hence are productive of said one feedback component, said third component being taken from said second transformer.

' 4. A generator as in claim 3 wherein said second transformer includes a secondary winding in which said third feedback component is developed as a transformed fraction of the resonance voltage present in said primary inductance.

5. A generator as in claim 4 wherein the first and second stages are coupled by a third transformer having a secondary winding in which said second feedback component is developed.

6. A generator as in claim 5 wherein the main power source is a DC bias current feeding directly into said first stage.

7. A generator as in claim 6 wherein there is a summing of the several feedback components and the DC bias at the input of the first stage.

8. An electrical generator for supplying power to a piezoelectric transducer, comprising an oscillatory circuit having an input and output connectable respectively to a power source and a transducer to be driven, said circuit including a feedback component taken from the output and sensitive to changes in the output voltage of said circuit, said component developing a proportionately adjusted voltage feeding back into the input end of said circuit for oscillation thereof, said generator further including a DC bias current feed to the resonant circuit and an on-off control for the resonant circuit in the form of a relay having normally closed contacts opening responsive to energizing of the relay, said contacts when closed grounding the feed of DC bias current to the resonant circuit while leaving the biasing circuit in a stand-by condition, said contacts when opened breaking the grounding connection to initiate feed of the bias current to the resonant circuit without production of heavy line voltage current surge normally occurring in said DC bias current in the presence of start-up conditions.

9. A generator as in claim 8 wherein said DC bias includes a main on-off switch whereby closure of the main switch permits charging of the DC bias to put the same in stand-by condition with accompanying elimination of heavy line current surges during subsequent operation of the relay contacts to open positions, and a second on-off switch controlling the energization of the relay in the closed condition of the first switch so as to in turn control application of the DC bias to the resonant circuit.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3137826 *Aug 9, 1961Jun 16, 1964Gen Precision IncMultiple frequency oscillator utilizing plural feedback loops
US3432691 *Sep 15, 1966Mar 11, 1969Branson InstrOscillatory circuit for electro-acoustic converter
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3866068 *Mar 20, 1974Feb 11, 1975Lewis CorpFrequency varying oscillator circuit vibratory cleaning apparatus
US3931533 *May 30, 1974Jan 6, 1976Sybron CorporationUltrasonic signal generator
US3967143 *Oct 10, 1974Jun 29, 1976Oki Electric Industry Company, Ltd.Ultrasonic wave generator
US4054806 *Jan 19, 1976Oct 18, 1977Matsushita Electric Industrial Co., Ltd.Drive circuit for piezoelectric high voltage generating device
US4141608 *Nov 10, 1977Feb 27, 1979L & R Manufacturing CompanyCircuitry for driving a non-linear transducer for ultrasonic cleaning
US4156157 *May 16, 1978May 22, 1979Societe SatelecAlternate constant current or voltage generator for an ultrasonic generator
US4184092 *Mar 6, 1978Jan 15, 1980Medtronic GmbhDrive circuits for ultrasonic tooth treatment transducers
US4227110 *Nov 10, 1976Oct 7, 1980Westinghouse Electric Corp.Transducer control system
US4264837 *Mar 30, 1979Apr 28, 1981Paul GaboriaudUltrasonic atomizer with automatic control circuit
US4371816 *Dec 27, 1976Feb 1, 1983Alfred WieserControl circuit for an ultrasonic dental scaler
US4445064 *Apr 25, 1983Apr 24, 1984E. I. Du Pont De Nemours And CompanySelf resonant power supply for electro-acoustical transducer
US4743789 *Jan 12, 1987May 10, 1988Puskas William LVariable frequency drive circuit
US4754186 *Dec 23, 1986Jun 28, 1988E. I. Du Pont De Nemours And CompanyDrive network for an ultrasonic probe
US4823775 *Sep 9, 1987Apr 25, 1989N.V. Verenigde Instrumentenfabrieken Enraf-NoniusApparatus for treating a patient with ultrasonic waves
US5023526 *Oct 17, 1989Jun 11, 1991Aisin Seiki Kabushiki KaishaVibratory motor
US5101599 *Jun 3, 1991Apr 7, 1992Brother Kogyo Kabushiki KaishaUltrasonic machine having amplitude control unit
US8061014Aug 26, 2009Nov 22, 2011Covidien AgMethod of assembling a cordless hand-held ultrasonic cautery cutting device
US8197502Mar 25, 2011Jun 12, 2012Covidien AgMethod of maintaining constant movement of a cutting blade on an ultrasonic waveguide
US8236020Mar 25, 2011Aug 7, 2012Covidien AgCordless hand-held ultrasonic cautery cutting device
US8333778Mar 25, 2011Dec 18, 2012Covidien AgCordless hand-held ultrasonic cautery cutting device
US8333779Mar 25, 2011Dec 18, 2012Covidien AgMethod of maintaining constant movement of a cutting blade of an ultrasonic waveguide
US8334468Aug 25, 2010Dec 18, 2012Covidien AgMethod of switching a cordless hand-held ultrasonic cautery cutting device
US8338726Aug 25, 2010Dec 25, 2012Covidien AgTwo-stage switch for cordless hand-held ultrasonic cautery cutting device
US8372099Nov 7, 2008Feb 12, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US8372101Mar 25, 2011Feb 12, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US8377085Mar 25, 2011Feb 19, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US8403948Nov 6, 2008Mar 26, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US8403949Nov 12, 2008Mar 26, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US8403950Nov 13, 2008Mar 26, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US8418349Mar 25, 2011Apr 16, 2013Covidien AgMethod of assembling a cordless hand-held ultrasonic cautery cutting device
US8419757Nov 6, 2008Apr 16, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US8419758Nov 6, 2008Apr 16, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US8425545Aug 26, 2009Apr 23, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device and method
US8435257Aug 26, 2009May 7, 2013Covidien AgCordless hand-held ultrasonic cautery cutting device and method
US8439939Feb 8, 2011May 14, 2013Covidien AgMethod of powering a surgical instrument
US8444662Nov 12, 2008May 21, 2013Covidien LpCordless hand-held ultrasonic cautery cutting device
US8487199Oct 19, 2012Jul 16, 2013Covidien AgMethod of switching a surgical device
US8497436Oct 19, 2012Jul 30, 2013Covidien AgTwo-stage switch for surgical device
US8497437Oct 19, 2012Jul 30, 2013Covidien AgMethod of switching a surgical device
US8502091Oct 19, 2012Aug 6, 2013Covidien AgTwo-Stage Switch for Surgical Device
US8663262Feb 8, 2011Mar 4, 2014Covidien AgBattery assembly for battery-powered surgical instruments
US8742269May 24, 2013Jun 3, 2014Covidien AgTwo-stage switch for surgical device
WO2012035024A1 *Sep 13, 2011Mar 22, 2012Tip Top Tips SarlGenerator suitable for powering a dental curing light
Classifications
U.S. Classification318/116, 310/316.1
International ClassificationB06B1/02
Cooperative ClassificationB06B2201/55, B06B1/0261
European ClassificationB06B1/02D3C2C
Legal Events
DateCodeEventDescription
Jul 11, 1984AS02Assignment of assignor's interest
Owner name: ULTRASONIC POWER CORPORATION
Effective date: 19840417
Owner name: ULTRASONIC POWER CORPORATION, 2 GOLF LANE, WINNETK
Jul 11, 1984ASAssignment
Owner name: ULTRASONIC POWER CORPORATION, 2 GOLF LANE, WINNETK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ULTRASONIC POWER CORPORATION;REEL/FRAME:004288/0231
Effective date: 19840417
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ULTRASONIC POWER CORPORATION;REEL/FRAME:004288/0231
Owner name: ULTRASONIC POWER CORPORATION,ILLINOIS