Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3669093 A
Publication typeGrant
Publication dateJun 13, 1972
Filing dateDec 30, 1969
Priority dateSep 5, 1969
Also published asDE1945015A1
Publication numberUS 3669093 A, US 3669093A, US-A-3669093, US3669093 A, US3669093A
InventorsGoedecke Hans, Sauerwein Kurt
Original AssigneeGoedecke Hans, Sauerwein Kurt
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for giving medical treatment by irradiation from radioactive substances
US 3669093 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

nited States Patent Sauerwein et a1.

1451 June 13, 1972 [54] APPARATUS FOR GIVING MEDICAL TREATMENT BY'IRRADIATION FROM RADIOACTIVE SUBSTANCES [72] Inventors: Kurt Sauerweln, Dillenburger Weg 3,'Dusseldorf; Hans Goedecke, Weimarer Strasse 59, Mettmann Rhineland, both of Germany 22 Filed: Dec.30,1969

21 Appl.No.: 889,128

Primary Examiner-Channing L. Pace Attorney-Arthur O. Klein ABSTRACT Apparatus for treating human or animal patients by local irradiation from a radioactive substance comprises a hollow probe closed at one end for introduction into a natural or surgically produced opening in the body of the patient and a capsule which contains a quantity of the radioactive substance and is fixed to the end of a flexible but longitudinal thrusttransmitting cable which propels the capsule between the interior of a shielding block and the interior of the probe which is fixed to the block by a delivery tube through which the cable extends. The cable passes through a passage in the block and when the capsule is situated in the interior of the block the cable extends from the block through an opening in the end of the block remote from the delivery tube, around the greater part of the periphery of a driving wheel which is situated in the housing containing the shielding block, through a storage tube to a terminal stop. The cable is pressed against the driving wheel by spring-loaded rollers so that it is moved when the driving wheel rotates and the storage tube extends between the housings of two photo-electric assemblies which detect the movementof the end of the cable remote from the capsule and respond by controlling the movements of the driving wheel. The efi'ective length of the storage tube, measured between the two photo-electric cell assemblies is equal to the distance traveled by the radiation capsule between the interior of the block and the end of the probe so that the two photoelectric cell assemblies stop the driving wheel when the capsule is either in its position at the closed end of the probe or in its position within the block.

10 Claims, 10 Drawing Figures PATENTED UH 13 m2 3, 669 093 SHEEI 10F 3.

,4 ttorn, ay

APPARATUS FOR GIVINGMEDICAL TREATMENT BY IRRADIATION FROM RADIOACTIVE SUBSTANCES This invention relates to apparatus for treating human or animal patients by local irradiation from a radioactive substance. It is particularly concerned with apparatus for this purpose of the kind comprising a hollow probe closed at one end for introduction into a natural or' surgically produced opening in the body of 'the patient, and a capsule which contains a quantity of a radioactive substance (the radiator) and is fixed to the end of a flexible but longitudinal thrust-transmitting cable which moves the capsule from the interior of a shielding block, through a delivery tube into the interior of the probe which is fixed to the end of the tube. Apparatus of this kind must be capable of producing the highest possible irradiation intensity in. the smallest possible space during the shortest possible period, particularly when using radioactive sources of high and very high specific activity. It is therefore important to ensure that the capsule, containing theradioactive substance, is propelled with the utmost reliability and precision from its position of rest in the middle of the shielding block to the location of treatment,that is to say the location where the closed end of the probe has been positioned by the surgeon before the capsule is introduced into the probe. It is equally important to ensurethat on the expiry of the period of time specified by the surgeon, that is to say at theend of the precisely timed treatment period, the-capsule containing the radioactive substance is returned precisely to its initial position of rest in the shielding block. This movement of the radiation capsule, from the shielding block outto the closed end of the probe and back again into the shielding block, must take place automatically and by remote control, because nobody except the patient can be allowed to remain within the effective range of the radiation capsule when it is outside its shielding block. The operator of the apparatus therefore cannot observe the movements of the capsule.

To this end, according to this invention in an apparatus of the kind described the cable extends from the radiation capsule when this is situated in the interior of the shielding block, out of the shielding block through an opening in the end of the shielding block remote from the delivery tube around the greater part of the periphery of a driving wheel which is situatedin a housing containing the shielding block, the cable being pressed against the driving wheel by spring loaded rollers distributed around the periphery of the driving wheel, through a storage tube to a terminal stop, the storage tube extending between thehousings'of two photo-electric cell assemblies which detect the movement of the end of the cable remote from the capsule and respond by controlling the movements of the driving wheel, the effective length of the storage tube, measured between the two photo-electric cell assemblies being equal to the distance traveled by the radiation capsule between the interior of the block and the end of the probe.

The driving wheel which drives the cable is itself preferably driven, in a manner which is conventional in apparatus of this kind, by a reversible motor which is switched ofi as soon as the radiation capsule reaches the end of the probe whereupon the motor has its polarity reversed so that when it is switched on again it rotates in the opposite direction. By means of the arrangement in accordance with the invention when the apparatus is put into operation by switching on the motor, the radiation capsule is propelled from a location precisely in the middle of the shielding block out to a location precisely at the closed end of the probe. The motor is then stopped automatically, When it is started again, the capsule moves back again equally precisely.

This precision in the movement of the radiation capsule can be still further improved, for the purpose of compensating any inaccuracies orchanges in the lengths of the cable or tubes, by making the cable slightly longer than the distance between the closed end of the probe and the beam of the photo-electric cell assembly nearest to the driving wheel, and by providing the cable with a lateral clearance in the delivery tube and in the storage sufficient to allow the cable to flex elastically in the tubes, to a certain extent, adopting a slightly wavy shape. The effect obtained is that when the cable has been driven outwards the capsule is thrust firmly and accurately against the closed end of the probe, the cable adopting a slightly wavy shape in the delivery tube, and similarly when the cable is fully retracted its rear end is thrust firmly against the terminal stop,

the cable adopting a slightly wavy shape in the storage tube.

The end thrusts are applied by the elastic resiliency 0f the cable.

For the same purpose the duct which guides the cable passages in the part of the shielding block extending between the position of the capsule in the interior of the block and the delivery opening changes direction a number of times and is enlarged in diameter at least at the bends, to allow a free passage for the capsule and cable.

According to a further preferred feature of the invention, in order to ensure that a reliable, slip-free drive is obtained under all circumstances between the driving wheel and the cable the diameter of which may be only 2 mm the periphery of the driving wheel is covered with a layer of frictional material, for example the kind of material usually used for brakes and clutches. It should however be observed that these materials are often electrically conductive. In order to prevent the cable itself, or other parts which might come intocontact with the cable, from acquiring electric potential, the frictional material is electrically insulated from the driving wheel, which is itself electrically connected through its driving shaft to the shaft of the electric motor.

The radiation capsule preferably has the same diameter as the cable, to ensure that both these parts can move easily through the guiding passages. A further precaution to ensure easy movement is that wherever one end or the other of the cable passes from one part of the apparatus to another the guiding passage is enlarged in diameter to form a double cone.

Reliable and easy movement is ensured not only by giving the capsule and the cable the same diameter but also by joining the two together in such a way that a smooth transition is obtained. For this purpose the radiation capsule consists of a hollow cylinder with a closed bottom and containing the radioactive substance interposed between the bottom and a partition and the open end of the capsule receives the end of the cable which is locally reduced in diameter to allow insertion. This can be done, for example in the case of a cable consisting in a conventional way of a core made of one or more coiled steel wires, surrounded by an outer coil, by cutting off from the end of the cable ashort length of the outer coil and inserting the projecting length of core into the open end of the capsule, the joint being made secure by brazing.

As a safety precaution, to ensure that the control system which controls the drive cannot fail, each photocell assembly preferably contains a number of light sources and a number of photo-electric cells, the light beams crossing each other in the same transverse plane in the path of movement of the cable.

An example of an apparatus constructed in accordance with the invention is illustrated diagrammatically in the accompanying drawings in which:

FIG. 1 is a longitudinal section through the complete apparatus, constructional details and parts which do not form part of the present invention having been omitted for greater clarity;

FIG. 1a is a longitudinal section through a delivery tube and through the probe, showing the radiation capsule in its terminal operative position;

FIG. 2 is a cross section through a driving mechanism for the cable;

FIG. 3 is a longitudinal section through the driving mechanism for the cable;

FIG. 4 is a longitudinal section through a housing forming a rear end stop for the cable;

FIG. 5 is a half cross section through the housing forming the rear end stop for the cable;

FIG. 6 is a longitudinal section through a. housing for a photo-electric cell assembly;

FIG. 7 is a half cross section through the housing for the photo-electric cell assembly;

FIG. 8 is a longitudinal section through a part of the radiation shielding block; and,

FIG. 9 is a cross section through the part of the radiation shielding block.

The forward end of a housing 1 contains a radiation shielding block 2 which, for manufacturing reasons, consists of two parts 2a and 2b. The part 2a of the shielding block contains an axial bore 2d. When the apparatus is not being used a capsule 3 containing the radioactive substance rests in this bore, in the middle of the shielding block, shielded in all directions by the radiation absorbing mass of the shielding block. When a patient is to be given treatment, the capsule is propelled from the middle of the shielding block 2, through a delivery tube 4 into a hollow closed-ended probe 5, connected to the other end of the delivery tube. The capsule 3 is moved as far as the closed end of the probe, which has been inserted'by the surgeon in position with its closed end at the location of treatment. The bore 2d is connected at its forward end to a passage 2c passing through the part 2b of the shielding block, with several changes in direction an outlet end 1b of the passage 2c being located in a cover plate la which forms the forward closure of the housing I. The outlet lb can be closed by a cover 6 mounted rotatably on the closure plate la, the cover 6 being lockable in two positions by means of a lock 6a. When the cover 6 is in the position shown in FIG. 1, the outlet opening lb is open, ready to receive a terminal coupling 40 of the delivery tube 4, whereas by rotating the cover 6 through 180 the opening lb can be closed. The radiation capsule 3 is attached to the forward end of a cable 7 which extends backwards, from the middle of the shielding block 2a, 2b, through the axial bore 2d into the interior of the rear part of the housing 1, passing through a storage tube 8 as far as stationary stop plate 9. Between the shielding block 2 and the storage tube 8 the cable 7 passes around most of the periphery of a driving wheel 10, the cable being thrust firmly against the peripheral surface of the driving wheel by several spring loaded thrust rollers 11, as shown in FIG. 2. The storage tube 8 extends between the housings of two photo-electric cell assemblies 12, 13 which sense the movements of the rear end 7a of the cable 7 and respond by controlling the driving wheel 10, the forward cell assembly 12 stopping the driving wheel as soon as the cable end 711, during the delivery of the capsule 3, ceases to interrupt the beam path of the cell assembly 12. The photo-electric cell assembly 13, on the other hand, stops the driving wheel 10, during the return movement of the capsule 3 into the shielding block 2 as soon as the rear end 7a of the cable interrupts the beam path of the cell assembly 13. The effective distance between the two cell assemblies 12 and 13, measured along the storage tube 8, is exactly equal to the length of the path followed by the capsule 3 between its position of seat in the middle of the shielding block and its terminal position at the closed end of the probe 5, the capsule advancing through this distance during its forward stroke and returning through the same distance on its return stroke.

The thrust rollers 11 consist of the outer rings of ball bearings, the inner rings of which are mounted on axle pins 14. One end of each axle pin 14 is radially movable with respect to the axis of the driving wheel in the interior of a driving wheel housing 15. The outer end of each axle pin 14 projects outwards from the housing 15 and supports a pulley wheel 16. An endless elastic cord 16a, for example a rubber band or an endless helical spring passes around the outside of all the pulley wheels 16. The cord 16a applies an inward thrust to all the pulley wheels 16, thrusting them radially inwards towards the axis of the driving wheel 10 and so thrusting the rollers 11 inwards against the outer surface of the cable 7, to the effect that the cable 7 is thrust firmly against the peripheral surface of the driving wheel 10.

In order to increase the frictional grip between the cable and the driving wheel 10, so as to ensure a slip-free drive for the cable, the peripheral surface of the driving wheel 10 carries a frictional layer 10a which has a groove in its outer surface to accommodate the cable, the depth of the groove being approximately half the cable diameter. The driving wheel 10 is mounted on the driving shaft 17a of a gear box 17, the outer end of the driving shaft 17a being supported by an auxiliary ball bearing 18 mounted on the driving wheel housing 15. The layer 10a is electrically insulated from the wheel and this insulates the cable from the shaft 17a.

The driving wheel 10 is driven, in both directions, through the gear box 17 by a reversible motor 19 which can be directed, by a conventional remote control device which need not be described here in detail, to an external source of electric power situated outside the apparatus housing 1.

In front of the driving wheel housing 15, the cable 7 passes through a tube 20 which connects the housing 15 to the radiation shielding block 2. Rearward from the driving wheel housing 15 the cable passes through a tube 21 which connects the housing 12 to the housing of the photocell assembly 12. As shown in FIG. 2, the tubes 20 and 21 are attached to the driving wheel housing 15 by cap nuts 22 screwed onto externally threaded projections 15a on the housing 15.

The cable 7 runs with a small amount of lateral clearance in the tubes 4 and 8 so as to allow the capsule 3 to be thrust firmly against the closed end of the probe by lateral elastic deflection of the cable, which has enough room to flex into a slightly wavy shape in the tubes. Similarly the rear end 7a of the cable is thrust firmly against the stop plate 9 by the resilient action of the cable.

The passage 20 inside the part 2b of the shielding block also has excess diameter beyond what would be necessary for practice guiding of the cable. This is not only to allow the cable to adopt a slightly wavy shape, but allows sufficient room for the capsule 3, which is a rigid body, to move almost frictionessly through the duct.

The passage 2c in the part 2b of the shielding block has ends which expand conically in diameter. There are similar conically expanded openings in the coupling 4a and in the shielding block 2a where the axial bore 2d meets the passage 2c in the shielding block part 2d. This is to ensure that wherever the capsule 3 passes, on its journey, from one part of the apparatus into another part it is able to travel freely and without encountering obstructions. The same precaution to ensure easy movement is taken where the rear end 7a of the cable, in its return movement, passes through the photocell assembly housing 12 into the storage tube 8 (FIG. 6).

As shown in FIGS. 8 and 9, the shielding block part 2b is subdivided into two unequal parts by a separation plane extending parallel to the axis of the part 2b but displaced away from the axis through a distance equal to half the diameter of the passage 2c. The passage 2c is cut as a groove occupying an axial plane in the larger of the two separated parts, the smaller of the two separated parts having a flat separation surface and acting as a closing cover to enclose the groove, forming a closed passage.

As shown in FIGS. 4 to 7 each of the photo-electric cell assemblies l2 and 13 contains two light sources and two photocells, the light beams crossing each other on the same cross section of the cable path. For this purpose each cell housing has two bores 23, 24 which cross each other in the middle of the cable path. Each bore 23, 24 has an outward extension 23a, 24a extending from one end of the bore and an opposite extension 23b, 24b extending from the other end of the bore. Each of the first two extensions 23a, 24a contains an electric lamp and each of the opposite extensions 23b, 24b contains a photocell, so that in effect each photocell assembly contains two independent photo-electric cell sensors the light beams of which cross. The terminal cell assembly 13 is shown in FIG. 4. Only one side of this assembly is connected to the storage tube 8, the other side of the assembly forming the stationary terminal stop plate 9 for the rear end 7a of the cable.

In order to minimize frictional resistance in the tubes and bores and at their transition the capsule 3 has the same diameter and the same cross section as the cable 7. For the same purpose the cable duct is expanded in diameter conically at the transitions between one part of the apparatus and another.

The radiation capsule 3 preferably consists of a hollow cylinder closed at one end and containing the radioactive substance interposed between its bottom and a second bottom forming a partition which is brazed in place or otherwise secured. The end of the cable 7, which is locally reduced in diameter is inserted into the open end of the capsule 3. The cable 7 consists, in the known way, of a core of one or more coiled wires, surround by a sheath which is also in the form of a coiled wire. The cable is joinedto the radiation capsule 3 by cutting away a short terminallength of the outer coil and insetting the projecting end of thecore into the open end of the capsule 3. To ensure that a perfectly reliable joint is obtained the core is securely anchored in the capsule, preferably by brazing If desired however other methods for securing the joint can be used for example welding or adhesive bonding.

We claim:

1. In apparatus for providing medical treatment for patients by local irradiation, from -a radioactive substance, said apparatus including a hollow probe for introduction into an opening in the body of said patient, means closing one end of said probe, a radiation capsule, a quantity of radioactive substance in said capsule, a radiation shielding block, means defining a passage through said block, a delivery tube fixing said probe to said block, a flexible and longitudinal thrust transmitting cable fixed to said capsule and extending through said delivery tubeand said passage and means for moving said cable to move said capsule between a first position in the interior of said block and a second position at the closed end of said probe, the improvement wherein said means for moving said cable includes a driving wheel, means rotatably mounting said driving wheel on the side of said block remote from said delivery tube, means for rotating said driving wheel and spring-loaded roller means for pressing said cable against said driving wheel around the greater part of the periphery thereof, and further comprising a storage tube for said cable extending from said driving wheel on the side thereof remote from said block, terminal stop means at the end of said storage tube remote from said driving wheel and two photo-electric detecting means for detecting movement of the end of said cable remote from said capsule, said cable extending from said capsule when said capsule is in said first position out of said block through an opening, around said driving wheel and through said storage tube, the effective length of said storage tube measured between said two photo-electric detecting means being equal to the distance traveled by said radiation capsule between said first position and said second position and said photo-electric detecting means being operative to control said means for rotating said driving wheel whereby said rotating means is stopped by one of said photo-electric detecting means when saidcapsule reaches said first position from said second position and said rotating means is stopped by the other of said photo-electric detecting means when said capsule reaches said second position from said first position.

2. Apparatus as claimed in claim 1, wherein said photo-electric detectingv means at the end of said storage tube nearer said driving wheel measured along the path of saidcable, is situated at a predetermined distance from said closed end of said probe measured along the path of said cable around said driving wheel, through said block and through said delivery tube and said cable has a length slightly longer than said predetermined distance, and means defining a lateral clearance between said cable and said delivery tube and said storage tube, said lateral clearance being sufficient to allow said cable to flex elastically under longitudinal compression whereby said cable adopts a wavy shape within aid tubes.

3. Apparatus as claimed in claim 1, further comprising means defining a delivery opening at the junction between said passage through said block and said delivery tube, the part of said passage extending between said first position and said delivery opening having a plurality of changes in direction, and means defining enlargements in diameter of said passage at said changes in direction to allow free movement of said capsule and said cable through said pan of said passage. I

4. Apparatus as claimed in claim 1, further comprising a layer of frictional material and means fixing said layer of frictional material around the periphery of said driving wheel.

5. Apparatus as claimed in claim 4, wherein said means fixing said layer of frictional material to said periphery of said driving wheel includes electrical insulating means whereby said cable is electrically insulated from said driving wheel.

6. Apparatus as claimed'in claim 1, wherein said capsule and said cable have the same diameters and cross sections as each other.

7. Apparatus as claimed in claim 1, further comprising means forming an enlargement in said passage through said block and in said delivery and storage tubes at transitions between said passage and said tubes.

8. Apparatus as claimed in claim 1, wherein said radiation capsule comprises a hollow cylinder, means closing one end of said cylinder, partition means extending across said cylinder adjacent said one end, said partition means and said means closing said one end defining a space containing said radioactive substance and the other end of said cylinder being open, said end of said cable which is fixed to said capsule being of reduced diameter and being received in said open end of said cylinder.

9. Apparatus as claimed in claim 8, wherein said cable comprises a plurality of intercoiled wires forming a core and a coil of wire surrounding said core, an end portion of said coil of wire being removed to bare said core to form said reduced diameter portion of said cable and said bared core being received in said open end of said cylinder, and means securing said bared end in said cylinder.

10. Apparatus as claimed in claim 1, wherein each of said photo-electric detection means includes a plurality of light sources and a plurality of photo-electric cells, said light sources being adapted to produce beams of light shining on said cells and said beams crossing each other in a common transverse plane in the path of movement of said cable.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3861380 *Oct 24, 1972Jan 21, 1975Commissariat Energie AtomiqueRadioactive source projector
US3866050 *Nov 9, 1973Feb 11, 1975Atomic Energy Of Canada LtdRemotely controlled brachytherapy unit
US3872856 *Jul 24, 1973Mar 25, 1975Ralph S ClaytonApparatus for treating the walls and floor of the pelvic cavity with radiation
US4241728 *Nov 27, 1978Dec 30, 1980Stuart MirellMethod and apparatus for dispensing radioactive materials
US4314157 *Jun 21, 1979Feb 2, 1982Industrial Nuclear Company, Inc.Safety lock for radiography exposure device
US4509506 *May 11, 1981Apr 9, 1985Minnesota Mining & Manufacturing Co.Shielding device for radioactive seed
US4574196 *Dec 10, 1984Mar 4, 1986Beckman Instruments, Inc.Coil spring conveyor for positioning an external radioactive standard in a liquid scintillation counter
US4692628 *Oct 30, 1985Sep 8, 1987Kurt SauerweinPipeline switch
US4851694 *Jan 27, 1988Jul 25, 1989Campaignie ORIS IndustrieDevice for driving and positioning a source holder in an applicator used in radiotherapy
US4881937 *Jul 10, 1987Nov 21, 1989Eric van't HooftMethod of treating a part of the body with radioactive material and a trolley for use therein
US4881938 *Feb 18, 1987Nov 21, 1989Hooft Eric T VanMethod and an apparatus for treating a part of the body with radioactive material
US4897076 *Nov 25, 1985Jan 30, 1990Puthawala Ajmel ADetachable and remote controllable afterloading device for radiation
US4969863 *Oct 28, 1988Nov 13, 1990Eric van't HooftAdaptor for remote after-loading apparatus for radiotherapy
US5030194 *Nov 15, 1989Jul 9, 1991Eric van't HooftMethod and apparatus for effecting radioactive therapy in an animal body
US5092834 *Oct 12, 1990Mar 3, 1992Omnitron International, Inc.Apparatus and method for the remote handling of highly radioactive sources in the treatment of cancer
US5103395 *Aug 20, 1990Apr 7, 1992Spako David WSystem for remote positioning of a radioactive source into a patient including means for protection against improper patient exposure to radiation
US5147282 *Oct 9, 1990Sep 15, 1992William KanIrradiation loading apparatus
US5344383 *Aug 14, 1992Sep 6, 1994Wang LipingApparatus for radioactive treatment inside the human body and the method using the same
US5418379 *Nov 8, 1993May 23, 1995Amersham CorporationConnector assembly for a radiographic camera
US5683345 *Oct 27, 1994Nov 4, 1997Novoste CorporationMethod and apparatus for treating a desired area in the vascular system of a patient
US5800333 *Feb 20, 1996Sep 1, 1998United States Surgical CorporationAfterloader provided with remote control unit
US5899882 *Apr 4, 1996May 4, 1999Novoste CorporationCatheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US6019718 *May 30, 1997Feb 1, 2000Scimed Life Systems, Inc.Apparatus for intravascular radioactive treatment
US6059713 *Mar 5, 1998May 9, 2000Scimed Life Systems, Inc.Catheter system having tubular radiation source with movable guide wire
US6059812 *Mar 6, 1998May 9, 2000Schneider (Usa) Inc.Self-expanding medical device for centering radioactive treatment sources in body vessels
US6071227 *Jan 27, 1997Jun 6, 2000Schneider (Europe) A.G.Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6074338 *Jun 28, 1994Jun 13, 2000Schneider (Europe) A.G.Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6099454 *Mar 6, 1997Aug 8, 2000Scimed Life Systems, Inc.Perfusion balloon and radioactive wire delivery system
US6110097 *Mar 6, 1997Aug 29, 2000Scimed Life Systems, Inc.Perfusion balloon catheter with radioactive source
US6117065 *Jun 24, 1998Sep 12, 2000Scimed Life Systems, Inc.Perfusion balloon catheter with radioactive source
US6137114 *Jul 11, 1996Oct 24, 2000Isotopen-TechnikIrradiation apparatus
US6146322 *Oct 30, 1996Nov 14, 2000Schneider (Europe) AgIrradiating filament and method of making same
US6203485Oct 7, 1999Mar 20, 2001Scimed Life Systems, Inc.Low attenuation guide wire for intravascular radiation delivery
US6231494Nov 17, 1997May 15, 2001Schneider (Europe) A.G.Medical device with radiation source
US6234951Jan 10, 1997May 22, 2001Scimed Life Systems, Inc.Intravascular radiation delivery system
US6258019Sep 8, 1999Jul 10, 2001Scimed Life Systems, Inc.Catheter for intraluminal treatment of a vessel segment with ionizing radiation
US6264596Nov 3, 1997Jul 24, 2001Meadox Medicals, Inc.In-situ radioactive medical device
US6267775Mar 6, 2000Jul 31, 2001Schneider (Usa) Inc.Self-expanding medical device for centering radioactive treatment sources in body vessels
US6302865Mar 13, 2000Oct 16, 2001Scimed Life Systems, Inc.Intravascular guidewire with perfusion lumen
US6306074May 4, 1999Oct 23, 2001Novoste CorporationMethod and apparatus for radiation treatment of a desired area in the vascular system of a patient
US6352501Sep 23, 1999Mar 5, 2002Scimed Life Systems, Inc.Adjustable radiation source
US6398708Oct 28, 1998Jun 4, 2002Scimed Life Systems, Inc.Perfusion balloon and radioactive wire delivery system
US6398709Oct 19, 1999Jun 4, 2002Scimed Life Systems, Inc.Elongated member for intravascular delivery of radiation
US6413203Sep 16, 1998Jul 2, 2002Scimed Life Systems, Inc.Method and apparatus for positioning radioactive fluids within a body lumen
US6416457Mar 9, 2000Jul 9, 2002Scimed Life Systems, Inc.System and method for intravascular ionizing tandem radiation therapy
US6422989Nov 5, 1999Jul 23, 2002Scimed Life Systems, Inc.Method for intravascular radioactive treatment
US6514191Jan 25, 2000Feb 4, 2003Schneider (Europe) A.G.Medical appliances for the treatment of blood vessels by means of ionizing radiation
US6575891Feb 15, 2000Jun 10, 2003Cordis CorporationManual ribbon delivery system for intravascular radiation therapy
US6582352Jan 2, 2001Jun 24, 2003Schneider (Europe) A.G.Medical appliance for treatment by ionizing radiation
US6599230Mar 14, 2001Jul 29, 2003Scimed Life Systems, Inc.Intravascular radiation delivery system
US6616629Jun 14, 1999Sep 9, 2003Schneider (Europe) A.G.Medical appliance with centering balloon
US6635008Jun 4, 1999Oct 21, 2003Interventional Therapies LlcSystem and method for delivering a medical treatment to a treatment site
US6676590Dec 8, 1997Jan 13, 2004Scimed Life Systems, Inc.Catheter system having tubular radiation source
US7066872Apr 11, 2003Jun 27, 2006Best Vascular, Inc.Method and apparatus for treating a desired area in the vascular system of a patient
US7160238Dec 21, 1999Jan 9, 2007Best Vascular, Inc.Method and apparatus for treating a desired area in the vascular system of a patient
US7530941Feb 2, 2004May 12, 2009Best Medical International, Inc.X-ray and gamma ray emitting temporary high dose rate brachytherapy source
US20040254418 *Feb 2, 2004Dec 16, 2004Munro John J.X-ray and gamma ray emitting temporary high dose rate brachytherapy source
EP0012004A1 *Nov 26, 1979Jun 11, 1980Tech/Ops, Inc.Apparatus for manipulating a quantity of radioactive material between a stored position and a use position
EP0278829A1 *Jan 25, 1988Aug 17, 1988Cis Bio InternationalDevice for driving and positioning a source holder in an applicator used in radioactive therapy
WO2000048664A2 *Feb 15, 2000Aug 24, 2000Cordis CorpAutomatic ribbon delivery system for intravascular radiation therapy
WO2005094934A1 *Mar 24, 2005Oct 13, 2005Lothar GumbRemote-controlled needle guide
Classifications
U.S. Classification600/7, 250/497.1
International ClassificationA61M36/04, A61M31/00, A61N5/10, A61M36/00, A61M25/01
Cooperative ClassificationA61N5/1007, A61M31/00, A61N2005/1008, A61M25/0113
European ClassificationA61M31/00, A61N5/10B2, A61M25/01C3