Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3669871 A
Publication typeGrant
Publication dateJun 13, 1972
Filing dateSep 10, 1969
Priority dateSep 10, 1969
Also published asDE2042023A1
Publication numberUS 3669871 A, US 3669871A, US-A-3669871, US3669871 A, US3669871A
InventorsElmgren Jarl A, Rodite Robert R R
Original AssigneeIbm
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sputtering apparatus having a concave source cathode
US 3669871 A
Sputtering apparatus in which the sputtering cathode is concave to produce a focusing effect on dislodged particles and concentrate the particles toward a point. The substrate being coated is movably mounted to construct the desired coating configuration. A modification is to orient single crystal bits on the cathode surface to further enhance preferential directional emission during sputtering.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[ 1 June 13, 1972 Wurmet al .........204/l92 Sapoffet al............................204/192 to further enhance preferential ABSTRACT Sputtering apparatus in which the sputtering cathode is consurface 2 Claims, 2 Drawing Figures Primary Examiner-John H. Mack Assistant ExaminerSidney S. Kanter Attorney-K. P. Johnson and Hanifin and Jancin cave to produce a focusing effect on dislodged particles and concentrate the particles toward a point. The substrate being coated is movably mounted to construct the desired coating configuration. A modification is to orient single crystal bits on the cathode directional emission during sputtering.

..204/298 .i..C23c 15/00 .204/298, l92

CONCAVE SDURCE CATHODE [72] inventors: Jarl A. Elmgren; Robert R. R. Rodite,

both of Endwell, N.Y.

Assignee: International Business Machines Corporation, Arrnonk, N.Y.

Sept. 10, 1969 Appl. No.: 856,762

Int. References Cited UNITED STATES PATENTS 3,250,694 5/1966 Maissel et a1 Eimgren et al.


[S8] FieldofSearch.........................................

PATENTEuJun 13 m2 x 4k. l

FIG. i

lNVE/VTORS JARL A. ELMGREN ROBERT R. R. RODITE /zf r7 ATTNEY SPUTTERING APPARATUS HAVING A CONCAVE SOURCE CATI-IODE BACKGROUND OF THE INVENTION In the art of vacuum deposition of thin film coatings for microcircuits, sputtering is a preferred method. Sputtering provides a coating that is relatively smooth, adheres well to the substrate surface, and is the same composition as the source material. Various materials that are either electrical insulators or conductors can be deposited by this method. The temperature characteristics of the target material are of minor concern because the process can be kept sufficiently cool as it proceeds.

A sputtered coating is generally deposited by spacing a planar workpiece with its coated surface parallel to the bombarded planar surface of the source electrode or target. The dislodged target particles then move to the surface of the workpiece and coat the entire surface. The thickness of the layer so formed decreases with distance from the center of the target. The reason for this, of course, is that the probability increases for particles dislodged by ion impact to miss the workpiece upon approaching the edge.

After thin films have been applied by the usual method, the coatings are selectively removed by etching to leave only specific areas in the form of circuit lines and lands or insulation thereover. The usual etching technique requires several intermediate processing steps to define and create the coated areas desired. In addition, a large portion of the sputtered material is not used and there is a significant quantity of target material sputtered onto nearby apparatus within the vacuum chamber. Attempts have been made to use masks to define coated areas but this method still requires frequent clean-up or mask replacement. Also, a sputtered coating is deposited at a relatively slow rate.

A variation in the usual sputtering arrangement is making the target in the form of a cylinder. The workpiece is placed on the longitudinal axis of the cylinder. Sputtered particles are loosened by ionized gas particles and are moving in all directions within the cylinder. This arrangement is particularly useful to coat the exterior surface of irregularly shaped objects. The cylindrical arrangement, however, still has the disadvantage of having little control over the direction taken by sputtered particles, so that the entire surface is coated.

Accordingly, a primary object of this invention is to provide sputtering apparatus by which the dislodged particles can be substantially focused and directed to a predetermined area on the workpiece.

A further object of this invention is to provide apparatus for applying focused sputtered coatings in varying configurations on a workpiece as desired by moving the workpiece during coating.

Other important objects of this invention include the provision of sputtering apparatus in which: neutral particles can be used to selectively coat a workpiece; sputtered material is conserved by concentrating and focusing the particles at the desired coating location; either electrically insulative or conductive materials can be selectively coated; and a concave source electrode is used to direct particles to the coating location desired.

SUMMARY OF THE INVENTION The foregoing objects are attained in accordance with the invention in its broad aspects by providing a sputtering target having a concave surface opposite the workpiece to be coated and thereafter producing ion bombardment of the target. A workpiece is spaced from the target along a centerline normal to the target concavity. When ionized particles bombard the concave target, they tend to impact along lines normal to the target surface or equipotential lines. Dislodged particles leave the target surface approximately at an angle equal to that of the impinging ion so that the result is a focusing of the particles toward the centerline of the concavity. By appropriately locating the workpiece at the point of greatest concentration of particles, a high deposition rate is possible and sputtered material can be confined to a relatively small area on the workpiece. A mask is used immediately above the workpiece to precisely define the coated area.

This arrangement provides several significant advantages. Coating efficiency is improved because of the higher deposition rate, and less extraneous coating occurs because of the focused particles, thus reducing clean-up requirements. By simultaneously controlling an X-Y positioning table for supporting the workpiece, a conductive line or insulation pattern can be generated with the concentrated stream of particles. This procedure eliminates several of the prior processing steps such as applying, exposing and developing photo-resist, and etching. The concave target can be used with either direct current or radio frequency (RF) sputtering arrangements.

The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawings wherein:

FIG. 1 is an elevation view, partially in section, of a preferred embodiment of a sputtering apparatus constructed in accordance with the invention; and

FIG. 2 is an elevation view of an alternative target electrode, partially in section, that may be used in the apparatus of FIG. 1.

DETAILED DESCRIPTION Referring to FIG. 1, there is shown sputtering apparatus comprising generally a vacuum chamber 10, a sputtering cathode l1, sputtering anode 12, workpiece 13 and support pedestal. Vacuum chamber 10 encloses the various elements and is formed by cylinder 16 suitably sealed between base plate 17 and cover plate 18. The chamber is capable of holding a high vacuum. The vacuum chamber may be constructed of the conventional materials, such as glass, metal or the like. Various required inputs and outputs to the vacuum chamber are made through base and cover plates 17 and 18; these include a duct 19 to a vacuum pump, inlet and outlet ducts 20, 21, respectively, for electron source coolant and duct 22 for a variable leak gas input for the inert ionizable gas. Ducts 23, 24 provide coolant for sputtering cathode 11. Other connections through the base and cover are for electrical conductors supplying the required energizing potentials and controls.

Sputtering cathode 11, sometimes referred to as the target, is dome-shaped, being formed as a symmetrical cavity having its surface 25 generated on a radius R with origin at point 27 on workpiece 13. The cathode is preferably made as base portion 28 with a layer 29 of the material to be sputtered. With this arrangement the sputtering material can be relatively thin and the base can be used for different source materials. The source materials can be applied by electroplating, laminating, vapor deposition, or mechanical clamping. The cathode base is suspended within the vacuum chamber from cover plate 18. Cathode base 28 is also formed with cooling passages 30 and, if desired, may comprise two or more assembled units to facilitate manufacture. Coolant is taken in via inlet duct 23, circulated through sputtering cathode 11, and removed via duct 24. Surrounding sputtering cathode ,11 is a conductive ground shield 33, also suspended from cover plate 18, which is maintained at or near ground potential to confine the dark space during sputtering.

The sputtering anode is an electrically conductive plate 12 having an aperture 38 and is adjustably secured to a support 39 fixed to base plate 17. The anode is maintained at ground potential and serves as a mask to permit sputtered particles to reach workpiece 13 only through the aperture. The size of aperture 38 will be varied according to the purpose of the material deposited, i.e., insulator or conductor, and the level of the anode above the workpiece will also be adjusted to control the size of the coated area and its edge definition.

Workpiece 13 is preferably supported on a table surface that can be moved along either or both of two axes during deposition. Such a table 40 is schematically shown on a pedestal and has a control cable 41 connected to external controls. The capability of table motion permits the generation of lines of varied configurations. Suitable X-Y positioning tables and controls are believed well-known, requiring no further explanation here.

To the left of the table is a filament 42 which provides a source of electrons, and filament housing 43. The filament is connected to a power supply 44 and housing 43 is connected to a source of coolant through ducts and 21. An electron anode 46 is supported in alignment with the opening of the filament housing and is connected to a source of suitable potential for emitting the plasma stream to, in turn, produce the ion sheath. The sputtering apparatus can be used either with or without the filament 42 and electron anode 46. Either DC or RF voltage can be applied to cathode 28 with the filament turned on. However, RF is preferred when operation without filament 42. The RF mode enables the sputtering of dielectric materials.

workpiece 13 is preferably placed at focal point 27 of the concavity which is the point of heaviest concentration of sputtered particles. Ions impact sputtering cathode surface 29 substantially normal thereto so that particles are dislodged at approximately the same angle. The configuration of surface 29 thus directs the particles toward the center of curvature or the point to be coated on the workpiece. Ion-particle collisions will occur which create some dispersion of the particles from their locus of concentration. The size of aperture 38 and its height above the workpiece aid in limiting the area coated by the sputtered particles. Occasional cleaning of anode 12 is required.

Although the concavity has been illustrated as defined by a radius from the workpiece, other configurations tending to concentrate the sputtered particles can be used. Parabolic and hyperbolic surfaces will also produce a high concentration of particles along a line coincident with the focal points.

The focusing effect of the shaped cathode 11 is of significant advantage because of the elimination of processing steps heretofore required for subtractive processes. This arrangement enables controlled deposition along desired circuit lines and lands merely by moving the workpiece with positioning table 40.

FIG. 2 shows a modification of sputtering cathode 11 which utilizes the known phenomenon of directional particle emission from crystalline structure. Particles of such coating material are ejected, as a result of ion bombardment, along preferential lines according to the orientation of the crystal faces. In FIG. 2, portions 60 of single crystal material, such as copper, are supported in a bulk layer 61 of the same material. Portions 60 are cut from a single crystal, oriented to expose the preferred face and embedded in the bulk metal with outer surfaces coincident in a common curved surface. The oriented crystal portions will further aid in the directionality of the ejected particles.

While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those skilled in the art that the forego ing and other changes in form and details may be made therein.

What is claimed is:

l. Sputtering apparatus for concentrating portions of dislodged, sputtered material toward a point comprising:

a first electrode having a surface area portion covered with said material to be sputtered, said entire covered surface area portion being shaped to form a single concavity;

a second electrode opposite said concavity of said first electrode and spaced to provide a glow discharge region therebetween adjacent said concave surface of said first electrode when energized, said second electrode being normal to the axis of said concavity and lying between the focal point of said concavity and said first electrode, and having an aperture therein on said axis for admitting said dislodged portions to said focal point;

means for introducing ionizable particles into said region energizing means connected to said electrodes for lOmZll'lg said particles to create a glow discharge between said electrodes and dislodged portions of said material to be sputtered; and

means for supporting a workpiece with an area to be coated with said portions at the focal point of said concavity on its axis.

2. Apparatus as described in claim 1 wherein said concavity surface lies on a radius from a point on the center axis of said concavity.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3250694 *Oct 17, 1962May 10, 1966IbmApparatus for coating articles by cathode sputtering
US3483114 *May 1, 1967Dec 9, 1969Victory Eng CorpRf sputtering apparatus including a wave reflector positioned behind the target
US3540993 *Sep 16, 1966Nov 17, 1970EuratomSputtering apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3988232 *Jun 13, 1975Oct 26, 1976Matsushita Electric Industrial Co., Ltd.Method of making crystal films
US4026787 *Sep 12, 1975May 31, 1977Coulter Information Systems, Inc.Thin film deposition apparatus using segmented target means
US4096055 *Dec 29, 1976Jun 20, 1978Johnson Andrew GElectron microscopy coating apparatus and methods
US4201654 *Oct 6, 1978May 6, 1980The United States Of America As Represented By The Secretary Of The Air ForceAnode assisted sputter etch and deposition apparatus
US4597847 *Oct 9, 1984Jul 1, 1986Iodep, Inc.Non-magnetic sputtering target
US4610774 *Nov 14, 1985Sep 9, 1986Hitachi, Ltd.Target for sputtering
US4957605 *Apr 17, 1989Sep 18, 1990Materials Research CorporationMethod and apparatus for sputter coating stepped wafers
US5196400 *Aug 17, 1990Mar 23, 1993At&T Bell LaboratoriesHigh temperature superconductor deposition by sputtering
US5215639 *Mar 14, 1991Jun 1, 1993Genus, Inc.Composite sputtering target structures and process for producing such structures
US5336386 *Oct 28, 1992Aug 9, 1994Materials Research CorporationTarget for cathode sputtering
US5458754 *Apr 15, 1994Oct 17, 1995Multi-Arc Scientific CoatingsPlasma enhancement apparatus and method for physical vapor deposition
US5556525 *Sep 30, 1994Sep 17, 1996Advanced Micro Devices, Inc.PVD sputter system having nonplanar target configuration and methods for operating same
US5985115 *Apr 11, 1997Nov 16, 1999Novellus Systems, Inc.Internally cooled target assembly for magnetron sputtering
US6024843 *Aug 27, 1992Feb 15, 2000Novellus Systems, Inc.Sputtering apparatus with a rotating magnet array having a geometry for specified target erosion profile
US6042706 *Jan 14, 1997Mar 28, 2000Applied Materials, Inc.Ionized PVD source to produce uniform low-particle deposition
US6139964 *Jun 6, 1995Oct 31, 2000Multi-Arc Inc.Plasma enhancement apparatus and method for physical vapor deposition
US6217716May 6, 1998Apr 17, 2001Novellus Systems, Inc.Apparatus and method for improving target erosion in hollow cathode magnetron sputter source
US6277253 *Oct 6, 1999Aug 21, 2001Applied Materials, Inc.External coating of tungsten or tantalum or other refractory metal on IMP coils
US6500321 *Mar 2, 2000Dec 31, 2002Novellus Systems, Inc.Control of erosion profile and process characteristics in magnetron sputtering by geometrical shaping of the sputtering target
US6699375Jun 29, 2000Mar 2, 2004Applied Materials, Inc.Method of extending process kit consumable recycling life
US7804040May 22, 2006Sep 28, 2010Applied Materials, Inc.Physical vapor deposition plasma reactor with arcing suppression
US7820020May 25, 2005Oct 26, 2010Applied Materials, Inc.Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece with a lighter-than-copper carrier gas
US8062484Sep 7, 2005Nov 22, 2011Applied Materials, Inc.Method for plasma-enhanced physical vapor deposition of copper with RF source power applied to the target
US8512526Sep 7, 2005Aug 20, 2013Applied Materials, Inc.Method of performing physical vapor deposition with RF plasma source power applied to the target using a magnetron
US8562798 *Sep 7, 2005Oct 22, 2013Applied Materials, Inc.Physical vapor deposition plasma reactor with RF source power applied to the target and having a magnetron
US8821701Jun 2, 2010Sep 2, 2014Clifton HigdonIon beam sputter target and method of manufacture
US20060169578 *May 25, 2005Aug 3, 2006Applied Materials, Inc.Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece with a lighter-than-copper carrier gas
US20060169582 *Sep 7, 2005Aug 3, 2006Applied Materials, Inc.Physical vapor deposition plasma reactor with RF source power applied to the target and having a magnetron
US20060172517 *Sep 7, 2005Aug 3, 2006Applied Materials, Inc.Method for plasma-enhanced physical vapor deposition of copper with RF source power applied to the target
US20060191876 *Sep 7, 2005Aug 31, 2006Applied Materials, Inc.Method of performing physical vapor deposition with RF plasma source power applied to the target using a magnetron
U.S. Classification204/298.12
International ClassificationC23C14/34
Cooperative ClassificationC23C14/3478
European ClassificationC23C14/34G2