Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3672103 A
Publication typeGrant
Publication dateJun 27, 1972
Filing dateDec 31, 1969
Priority dateDec 31, 1969
Publication numberUS 3672103 A, US 3672103A, US-A-3672103, US3672103 A, US3672103A
InventorsRobert A Kost
Original AssigneeCity Of Fort Collins
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Modular utility vault
US 3672103 A
A modular construction for underground utility vault. Semi-cylindrical end sections are molded in the form of a relatively thin shell from fiberglass or other moldable material of similar physical characteristics. The shells are formed with a series of radially offset circumferentially extending ribs which provide increased rigidity to the shell and also form shelves for supporting elements such as transformers, connection points, etc. within the vault. The end section is one form of structural module which may, in some installations, be combined with a second modular element in the form of a flat side panel having a cross-sectional configuration matching that of the end section. Two end sections may be secured to each other to form a cylindrical vault or, alternatively, two end sections may be assembled with one or more pairs of side panels attached to and mounted between the opposed end sections. A cover element of laminated molded sheet material closes the opening at the upper end of the completed vault and is provided with internal stiffening ribs. A lock and retainer-hinge assembly is employed to releasably lock the cover in position and enables the cover, when unlocked, to either be swung upwardly as on a hinged mounting or removed entirely.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Kost 1451 June 27, 1972 [72] inventor:

' 137/363, 174/37 [51] Int. Cl. ..E02d 29/14, i-l02g 9/10 [58] Field 0! Search ..52/19, 20, 169, 245; 174/37;

1,363,439 5/1964 France ..52/245 9,418 1/1896 Great Britain... 31,365 1 1/1920 Norway ..52/20 Primary Examiner-Frank L. Abbott Assistant Examiner-Leslie A. Braun Attorney-Ralph F. Crandell and John G. Batchelder [5 7] ABSTRACT A modular construction for underground utility vault. Semicylindrical end sections are molded in the form of a relatively thin shell from fiberglass or other moldable material of similar physical characteristics. The shells are formed with a series of radially offset circumferentially extending ribs which provide increased rigidity to the shell and also form shelves for supporting elements such as transformers, connection points, etc. within the vault. The end section is one form of structural module which may, in some installations, be combined with a second modular element in the form of a flat side panel having a cross-sectional configuration matching that of the end section. Two end sections may be secured to each other to form a cylindrical vault or, alternatively, two end sections may be assembled with one or more pairs of side panels attached to and mounted between the opposed end sections. A cover element of laminated molded sheet material closes the opening at the upper end of the completed vault and is provided with internal stiffening ribs. A lock and retainer-hinge assembly is employed to releasably lock the cover in position and enables the cover, when unlocked, to either be swung upwardly as on a hinged mounting or removed entirely.

6 Claims, 7 Drawing Figures [56] References Cited UNITED STATES PATENTS 1,473,001 11/1923 White ..70/159 3,390,224 6/1968 Wyatt.... ..52/20 3,508,363 4/1970 Criveilo etal. ..292/256 3,519,726 7/1970 Ewing ..174/37 574,834 1/1897 Tobin.... ....137/364 599,441 2/1898 Dorr ..94/34 1,165,804 12/1915 Quigley ..94/34 1,265,767 5/1918 Fouts ..94/34 2,163,221 6/1939 Slocum .;.....94/34 FOREIGN PATENTS 0R APPLICATIONS 616,608 3/1961 Canada ..52/169 sa as I Ill!" ."1 56 HF; g i 1 I 44 P'ATENTE'nJum 1972 v 3. 572, 1 03 SHEET 10E 3 Robert A. K051 Artorneys PAIENTEDJum m2 3. 6 72.103

SHEET 3 or 3 Inventor Robert A. Kosr a y 37% q W Ahorneys MODULAR UTILITY VAULT BACKGROUND OF THE INVENTION In recent years, there has been a substantially increased use of underground or buried systems for supplying electricity and telephone connections particularly in residential areas. Underground systems of this type require the use of junction points or connection boxes where various branch lines are brought together and/or connected into the main distribution system. To achieve full realization of all of the advantages of an underground system, many forms of underground vaults have been employed. In their most usual form, such vaults are constructed either from poured concrete or from metal, usually in the form of galvanized corrugated sheet metal.

The obvious disadvantage of a vault of metallic construction employed underground is that sooner or later the metal will rust and corrode. Further, when a metal vault is employed in an underground electrical or telephone distribution system, care must be taken to make sure that the vault wall is electrically insulated from the current-carrying portions of the distribution system.

While concrete vaults avoid the rust and corrosion problems of steel vaults, they suffer a serious drawback from the standpoint of weight and non-machinability. The weight of a concrete vault, even when broken down into several sections, is usually such as to require the use of power-driven hoisting equipment during its installation. Further, when it is desired to bring additional lines into a concrete vault, the only way this can be accomplished is by knocking a hole through the side of the vault, which can be extremely difficult and complicated by existing equipment already mounted in the vault.

While a concrete vault does'not rust or corrode, metal parts which come in contact with the concrete are, by their very contact, extremely susceptible to rust and corrosion, as well as to electrolytic action.

SUMMARY OF THE INVENTION The present invention is designed to overcome the problems outlined above in connection with the use of steel or concrete vault structures. A vault constructed in accordance with the present invention is assembled from standardized units formed of relatively thin, and hence lightweight, molded plastic material. Preferably the material employed is fiberglass, although there are many other commercially available plastic materials having physical characteristics quite similar to those of fiberglass. In addition to being resistant to rust, corrosion and chemical and electrolytic reactions with metal parts in contact with the fiberglass, the structural characteristics of fiberglass are such that individual modular elements having adequate structural rigidity can be formed in reasonably thinwalled sections so that the individual modular elements can easily be handled manually. Further, the fiberglass shells can be readily pierced by a conventional drill or hole saw to provide cable entrances and exits at desired locations and also to enable elements of the distribution system to be mounted upon and attached to the fiberglass shell.

One form of modular unit consists of a semi-cylindrical shell or end section which is of generally uniform wall thickness and formed with a plurality of radially offset ribs. The ribs enhance the structural rigidity of the shell and further provide shelves at the interior of the vault to support various elements of the distribution system. Two end sections may be bolted together to form a cylindrical vault, or pairs of generally flat side panels having a cross-sectional shape matching that of the end sections can be attached between two end sections to form a vault of larger dimensions. A cover of a laminated fiberglass sheet construction is employed to close the upper end of the vault and is provided with a series of integral internal ribs for structural strength. The top of the cover is provided with a recess into which passes a padlock hasp secured to the top of the shell wall at one side of the shell. At the opposite side of the pass inwardly through openings in the cover to provide a retainer-hinge assembly. The various elements are described in grater detail below.

IN THE DRAWINGS FIG. 1 is an exploded perspective view showing various elements of a modular utility vault embodying the present invention;

FIG. 2 is a vertical cross-sectional view of a typical vault installation embodying the present invention;

FIG. 3 is a side elevational view of a modified form of installation, with certain parts broken away and shown in section;

FIG. 4 is a top plan view of the installation of FIG. 1 with the cover removed;

FIG. 5 is a top plan view of the cover of the installation of FIG. 3;

FIG. 6 is a detail cross-sectional view showing details of the cover lock; and

FIG. 7 is a detail cross-sectional view of the cover retainerhinge.

Referring first to FIG. 1, there are disclosed various modular units employed in the practice of the present invention. These units include a generally semi-cylindrical end section designated generally 10, a side panel 12 and a cover 14. Depending upon the requirements of the particular installation, an installation may consist simply of two end sections 10 secured to each other to form a generally cylindrical vault, in which case a circular cover such as 14 would be employed. In other cases, where a larger vault is required, the end sections 10 may be spaced from each other by one or more pairs of side sections 12 as in the embodiment of FIGS. 3 and 4, in which case a modified form of cover 16 such as that disclosed in FIG. 5 would be employed.

End sections 10 and side panels 12 are molded from synthetic plastic materials, such as fiberglass. Desirable characteristics of the actual material employed are that it be electrically non conductive, that it be resistant to corrosion, non-electrolytic, and that is possesses reasonable capabilities for being cut or machined. In addition, the physical characteristics of the material should be such that in its molded form it poxesses a relatively high strength-to-weight ratio. F iberglass has been found to adequately satisfy all of these conditions and is a preferred material for the present invention, however, many of the synthetic thermoplastic materials presently commercially available will be found to be adequate for the present purposes.

Referring now particularly to FIGS. 1 and 2, end sections 10 are of one-piece molded construction in the form of a relatively thin, generally semi-cylindrical shell. Inthe particular embodiment disclosed, the shell is formed with three radially olfset ribs 18, 20, and 22. As best seen in the cross-sectional view of FIG. 2, the three ribs are of identical configuration, each having an inwardly inclined lower wall 180, 20a, 22a respectively. The ribs extend circumferentially of end section 10, and the upper walls 18b, 20b and 2212 all lie in general planes which extend radially of the axis of the semi-cylindrical shell which defines the end section 10.

At the lower end of each end section I0, an outwardly projecting radial flange 24 is integrally formed, and radially outwardly projecting side flanges extend along the axial edges of the shell. Flanges 26 are formed with a series of bolt receiving openings 28 which enable two end sections 10 to be fixedly secured to each other with the flanges 26 of the respective end vault, one or more bolts, mounted in the top of the shell wall flange 36 extending along its lower edge, and with vertically extending outwardly projecting side flanges 38 along each vertical edge, the side flanges being provided with bolt receiving openings 40 as was the case with the flanges 26 of end section 10.

Ribs 18, 20 and 22 and flanges 24 and 26 serve to increase the structural rigidity of the semi-cylindrical end sections, thus enabling the shell, which is of uniform thickness throughout, to achieve adequate structural rigidity with a relatively thin wall thickness, hence resulting in a completed shell of light weight. Where the material employed is fiberglass, a shell of adequate strength having overall dimensions of approximately six feet in length and three feet in diameter can be constructed with a wall thickness of between three-eighths and one-half inch. A shell of these dimensions is light enough to be easily handled by one man.

Referring now to FIG. 2, there is shown, in vertical cross section, a typical installation wherein two end sections 12 are secured to each other to form a cylindrical underground vault.

As is apparent from FIG. 2, ribs 18, 20 and 22 not only function as stiffeners for the shell structure, but also provide internal shelves for mounting and supporting equipment within the interior of the vault. In the installation of FIG. 2, the upper walls 22b of the lowermost rib 22 serve as a support for a support frame 42 upon which is in turn supported an electrical transformer 44. Support frame 42 may be of any suitable construction. In FIG. 2 it takes the form of a simple X-shaped frame constructed from U-shaped channel members. An X frame of this type may also be employed in rigidifying the assembled structure by resisting horizontal forces directed inwardly of the shell structure. The transformer is held in position by means of a U-shaped metal bracket 46 bolted to the transformer casing as at 48 and to the wall of one of the end sections as by bolts 50. The properties of the fiberglass shell are such that it can be easily pierced by a drill or hole saw so that structural elements such as bracket 46 can be located to suit the convenience of the particular installation in the field and holes through the wall of the shell, such as 50 for the passage of electric power cables such as 52 into and out of the shell, can easily be made at the desired location.

In the installation of FIG. 2, an electric junction point 54 is supported upon the upper wall or shell of rib 20, and held in position by bolts 56 passing through the shell wall.

The upper wall of rib 18 is employed as a closure cover seat to support cover 14. Cover 14 is preferably of two-piece construction and includes an upper lid 58 and a lower member 60 which is preferably formed with one or more diametrically extending ribs 62. The upper edges of rib 62 are flush with the upper edge of an upstanding peripheral flange 64 formed as an integral part of member 60, and the flat bottom surface of lid 58 is permanently bonded to the upper edges of flange 64 and rib 62. The purpose of ribs 62 is to rigidify the cover. As indicated in FIG. 2, the top edge of end section shells 10 are buried flush with the surface of the ground so that cover 14 is likewise flush with the ground surface. Cover 14 thus must possess sufficient rigidity to enable persons to walk across the top of the cover.

Cover 14 is releasably locked in its assembled position by a lock structure designated generally 68 and a retainer-hinge arrangement designated generally 70. Details of lock assembly 68 and retainer-hinge assembly 70 are best seen in FIGS. 6 and 7.

Referring first to FIG. 6, the lock assembly includes a U- shaped hasp 72 which is fixedly mounted on upper wall 18b of rib 18 by a pair of nuts threadably received on each of the two legs of hasp 72 above and below wall 18b. Cover lid 58 is formed with an indented recess 76 and, when the cover is in position, hasp 72 projects upwardly into recess 76 through suitably located openings 78 and 80 in lower member 60 and in the bottom of recess 76 respectively. Peripheral flange 64 of lower member 60 is formed with a recess 82 complimentary in shape to recess 76. Recess 76 is dimensioned to receive a conventional padlock 84 which is passed through hasp 72 to lock to cover in position.

The cover is retained on the seat defined by upper wall 18b at its opposite side by a bolt 84 (FIG. 7) fixedly mounted to the upper portion of a shell 10 above upper wall 18b as by a nut. A bore 88 through peripheral flange 64, having a diameter somewhat larger than that of bolt 84 receives the bolt when the cover is assembled.

When the padlock at the diametrically opposite side of cover 14 from opening 88 is unlocked and disengaged, the enlarged bore 88 permits the cover to be swung upwardly, as if bolt 84 were a hinge to permit a cursory inspection of the interior of the vault. If it is desired to completely remove the cover, the elevated cover is simply pulled free from bolt 84 and removed.

It will be noted that the mounting of the junction point upon the shelf defined by rib 20 near the top of the vault makes the connections of the junction point readily accessible, once cover 14 has been removed. This is of extreme convenience in the event it is necessary to disconnect or break the circuit at the junction point since the junction point can easily be reached from the exterior of the vault. Because the fiberglass shell can be readily drilled, the junction point can be located at any desired point around the periphery of the vault and it is a simple matter to install additional junction points or other units as required.

In FIGS. 3 through 5, a modified form of vault is disclosed which includes a pair of end sections 10 and a pair of side panels 12 installed between the two end sections to result in an elongated oval type vault, as compared to the cylindrical construction of the FIG. 2 embodiment. The side flanges 38 of side panels 12 are bolted to the corresponding flanges 26 of the respective end sections, the ribs 30, 32 and 34 of the side panels forming continuations of the corresponding ribs 18, 20 and 22 of the end sections.

The embodiment of FIG. 3 necessarily employs a different cover configuration which, because of its enlarged area is provided with a somewhat more extensive system of internal ribs 90. Apart from its overall shape and arrangement of internal ribs, the cover 16 is similar to cover 14. Because of its shape, two or more retainer-hinges 700 are employed at spaced points along one of the two side panels 12 in combination with a single lock assembly 680. Lock assembly 680 and the individual retainer-hinge assemblies 70a are of the same construction respectively as the lock assembly 68 and the retainer-hinge 70 of the FIG. 2 embodiment.

In an arrangement such as the FIG. 3 embodiment, where one or more pairs of side panels 12 are employed, it may be desirable to provide some transverse bracing between the opposed side panels. This may be accomplished by employing a platform-like member 92 as a support member for mounting on the lowermost of the three shelves, supplemented, if necessary, by an I-I-shaped bracing member 94 at the intermediate shelf. The inward pressure exerted by the soil against the vault walls depends, to a large extent, on the characteristics of the soil and in many installations, transverse cross-bracing of the type provided by platform 92 or brace 94 is not necessary. In the cylindrical embodiment of FIG. 2, the cylindrical configuration of the completed vault is quite stiff against radially directed forces, but transverse bracing may be required in those installations where flat side panels 12 are employed. It is only necessary that the vault function to, in effect, maintain an underground chamber, and hence a slight deflection of the vault walls is usually acceptable.

The resulting vault shape of FIGS. 3 and 4 is particularly advantageous for installations that are to enclose both a transformer and switching units or junction points. In a 220-1 l0 volt system, for example, the transformer may be centrally located on platform 92 with the neutral junction units placed on the available shelf just above the transfonner in a central position below hasp 72. The pair of high-voltage junction units are then placed on the same shelf individually near respective opposite ends of the vault. The three different electrical circuits thus are well separated, while, at the same time, the junction units of each are readily available near the top of the vault so that an operator can actuate any or all of them from an external, safe position.

The invention contemplates use of the modular approach for the formation of vaults having overall shapes, in plan view, different from that illustrated thus, the cylindrical end shells may be modified so that polygonal forms result, and various other combinations may be constructed, including those that are rectangular or L-shaped. Generally speaking, however, it is preferred to utilize curved surfaces as much as possible in order to gain structural strength.

In normal circumstances, the bottom of the vault is left open to permit free drainage of any surface water which may find its way into the interior of the vault. If, however, it is desired to seal the bottom of the vault, this may be done simply by bond ing a cover of appropriate shape in position at the vault bottom. In view of the fact that the openings through which the various cables pass through the vault walls are not usually provided with weather-tight fittings and the fact that no watertight seal is provided between the cover and vault walls, the usual practice is to leave the vault bottom open.

Having described two exemplary embodiments of the invention, I claim:

1. A utility vault comprising a pair of like semicircular sections of a molded plastic material having a high strength-toweight ratio, such as fiberglass, each of said sections comprising an axially elongate generally semicylindrical shell of relatively thin uniform wall thickness, a plurality of radially ofiset circumferentially inwardly extending ribs integrally formed in each of said shells, the ribs on the respective shells being axially aligned with each other to extend continuously around the periphery of the tubular vault, each rib having a flat substantially horizontal first wall extending radially inwardly from the semicylindrical shell wall and a frusto-conical second wall integral with and inclined outwardly from the radially inner edge of said first wall to the sembcylindrical shell wall, the first walls of said ribs being disposed on the upper side of said ribs when said tubular vault is in an upright position, to define a plurality of peripherally extending shelves in the interior of the vault, the uppermost one of said shelves being located in adjacent spaced relationship to the upper end of the vault to constitute a closure seat, said ribs further defining frusto-conical channels in the exterior walls of said shell with the upper wall of said channels being substantially horizontal, means on the vertical edges of each of said sections for securing said sections together to form a tubular vault, and a cover closure comprising an upper and a lower member of sheet plastic material having a high strength-to-weight ratio, such as fiberglass, said lower layer being interconnected to said upper layer and having vertically extending rib sections having a depth substantially equal to the vertical spacing between said upper end of said vault and said uppermost one of said shelves.

2. A vault as defined in claim 1 wherein said securing means includes a pair of like side panels secured to and extending between said semi-circular sections, each of said side panels having a generally flat configuration and having a plurality of offset ribs thereon identically matching the interior and exterior configuration of said ribs on said semi-circular sections and defining a continuation of said interior shelves and said exterior channels.

3. A vault as defined in claim 1 wherein said ribs define at least two shelves in addition to said uppermost one of said shelves, one of said two shelves being located adjacent said uppermost one of said shelves and the other of said two shelves being located adjacent the lower end of said shell.

4. A utility vault as defined in claim 1, wherein said closure cover comprises a generally flat upper lid member, shaped to overlie and project outwardly beyond the upper rim of saidtubular vault and said lower lid member is integrally bonded to the lower side of said upper lid member and said rib sections comprise uniformly spaced vertical inner and outer ribs extending substantially around the peripheral area of said lower lid member, with uniformly spaced vertical ribs extending transversely of said lower member between opposite locations on said inner rib.

5. A utility vault as defined in claim 1 including means for locking said cover closure in place to enclose the upper end of the vault, means defining a lock receiving recess in said cover closure having a hasp receiving opening therein, said means for locking including a hasp fixedly secured to said uppermost one of said shelves and projecting upwardly therefrom through said opening, and detachable hinge means on the side of said vault opposite said locking means comprising pin means fixedly secured to at least one of said shells above said uppermost shelf and projecting radially inwardly, and opening means defined in said vertically extending rib section of said cover closure for receiving said pin means to detachably and hingeably couple said cover closure to said shells.

6. In a utility vault designed to be buried in the ground with its uppermost part substantially flush with the ground surface, means on the uppermost part of said vault defining an upwardfacing closure seat, a cover for said vault comprising: a generally flat horizontal lid member shaped in conformity with said uppermost part of said vault, a generally flat lower horizontal member spaced below said lid member, each of said members being of fiberglass or the like, a peripheral flange and a plurality of vertical ribs integrally bonding said members to each other, means defining a releasable lock between said walls and said cover, a pin projecting horizontally inwardly of said vault above said seat, and means for defining an opening in said peripheral flange loosely receiving said pin to positively retain said cover on said seat in cooperation with said lock and to accommodate hinging and removal of said cover when said lock is released.

l i i

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US574834 *Oct 13, 1896Jan 5, 1897 Air-box
US599441 *May 22, 1896Feb 22, 1898 Edgar s
US1165804 *Mar 25, 1915Dec 28, 1915Quigley Furnace And Foundry CoManhole-cover fastening.
US1265767 *Feb 7, 1917May 14, 1918Calvin C FoutsMeter-box.
US1473001 *Jul 1, 1921Nov 6, 1923Armstrong & WhiteLock for switch safety boxes
US2163221 *Dec 24, 1937Jun 20, 1939American Telephone & TelegraphManhole structure
US3390224 *Sep 28, 1966Jun 25, 1968New England Realty CoAdjustable underground shell
US3508363 *Jun 19, 1968Apr 28, 1970Mc Graw Edison CoTamper-proof locking assembly for underground electrical vaults
US3519726 *Nov 6, 1968Jul 7, 1970Youngstown Steel & Alloy CoTransformer vault for underground installation
CA616608A *Mar 21, 1961Herbert Lancaster JohnstonSwimming pool construction and method
FR1363439A * Title not available
GB189609418A * Title not available
NO31365A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3728464 *Apr 17, 1972Apr 17, 1973Griffing RUnderground transformer enclosure, and method of installing the same
US3930372 *Nov 28, 1973Jan 6, 1976Johns-Manville CorporationMethod and arrangement for controlling the position of an underground manhole assembly
US3938285 *Jan 6, 1975Feb 17, 1976Owens-Corning Fiberglas CorporationManhole and method of manufacture
US3968601 *Dec 19, 1974Jul 13, 1976Brown Clayton SHandhole to receive and locate connections of underground secondary electrical power cable terminations
US3974599 *Mar 20, 1975Aug 17, 1976Indian Head Inc.Underground reinforced plastic enclosure
US4014475 *Jan 30, 1976Mar 29, 1977Environment/One CorporationCombined manway and collection tank for sewage grinder
US4089139 *Aug 24, 1976May 16, 1978Armco Steel CorporationSegmented cylindrical reinforced plastic manhole structure
US4158102 *Mar 27, 1978Jun 12, 1979Bright William LEnclosure for equipment
US4242847 *Dec 27, 1978Jan 6, 1981Universal Sanitary Equipment Manufacturing Co., Inc.Modular lift station construction
US4345998 *Nov 3, 1980Aug 24, 1982Graffis Kelly RPlastic catch basin
US4416836 *Dec 3, 1981Nov 22, 1983Kennecott Corp.A seamless shell of polyethylene
US4541209 *Aug 15, 1983Sep 17, 1985Jack E. HoagVault mount for electrical apparatus
US4632041 *Oct 19, 1984Dec 30, 1986Aktiebolaget BoforsFor containing high pressure and fragments produced by an explosion
US4662777 *Nov 21, 1984May 5, 1987Newton John RComposite article
US4709723 *Jul 17, 1986Dec 1, 1987Hancor, Inc.Septic tank for alternative sewer systems
US4726707 *Feb 19, 1987Feb 23, 1988Newton John RFiber-reinforced plastic; lightweight filler
US4822213 *Dec 30, 1987Apr 18, 1989Environment/One CorporationNarrow accessway sewage collection tank assembly, remote operated quick connect-disconnect coupling and system using the same
US4869033 *Oct 27, 1987Sep 26, 1989Compagnie D'enterprises CfePressurized fluid storage tank
US4971477 *Dec 22, 1988Nov 20, 1990Total Containment, Inc.Secondary contained fluid supply system
US5147980 *Feb 19, 1991Sep 15, 1992Ferguson Jr Robert ASwimming pool flush mount junction box
US5263298 *Jul 27, 1992Nov 23, 1993Ballesteros Angel GProcedure for making in-situ manholes for underground electric and telephone lines ductwork
US5404676 *Apr 19, 1993Apr 11, 1995Dabico, Inc.Watertight pit cover
US5494374 *Nov 1, 1993Feb 27, 1996Youngs; AndrewSecondary containment flexible underground piping system
US5495695 *Jan 31, 1995Mar 5, 1996Dalworth Concrete Products, Inc.Vaulted underground storage tank
US5553971 *Dec 20, 1988Sep 10, 1996Intelpro CorporationDouble-containment underground piping system
US5603401 *Sep 29, 1995Feb 18, 1997Brunner; Martin C.Storage apparatus
US5653559 *Jan 26, 1995Aug 5, 1997Kabelmetal Electro GmbhUnderground housing for telecommunication device
US5722204 *Feb 7, 1996Mar 3, 1998Alcatel Kabel Ag & Co.Device for housing the active and passive junction assemblies of telecommunications installations
US5735430 *Aug 10, 1995Apr 7, 1998Gorman; Dewitt Y.For safeguarding and protecting valuable items from weather damage
US5775842 *Jan 3, 1997Jul 7, 1998Pisces By Opw, Inc.Double containment under ground piping system
US5778608 *Mar 4, 1996Jul 14, 1998Dalworth Concrete Products, Inc.Vaulted underground storage tank
US5865216 *Nov 8, 1995Feb 2, 1999Advanced Polymer Technology, Inc.System for housing secondarily contained flexible piping
US5956230 *Feb 11, 1997Sep 21, 1999Alcatel Alsthom Compagnie Generale D'electiciteDevice for housing the active and passive nodal point modules of telecommunication installations
US6050050 *Dec 30, 1997Apr 18, 2000Bp Amoco CorporationForm in-place submersible pump containment
US6061975 *Jun 12, 1998May 16, 2000Lucent Technologies, Inc.Telecommunications equipment enclosure system
US6116817 *May 27, 1998Sep 12, 2000Pisces By Opw, Inc.Hydrocarbon fuel piping system with a flexible inner pipe and an outer pipe
US6202675Apr 20, 1999Mar 20, 2001Robert A. ForteLift station flood control system
US6634374 *Mar 28, 2002Oct 21, 2003Larry R. KondasIn ground hose well
US8291646 *Sep 22, 2009Oct 23, 2012Aloys WobbenWind power installation pylon interior
US8395530 *Mar 11, 2010Mar 12, 2013Khaled Jafar Al-HasanTraffic control system
US20110221614 *Mar 11, 2010Sep 15, 2011Khaled Jafar Al-HasanTraffic Control System
US20140182226 *Dec 30, 2013Jul 3, 2014Anthony P. HABODASZModular cover for support column
USRE29636 *Jan 17, 1977May 23, 1978Owens-Corning Fiberglas CorporationManhole and method of manufacture
USRE37114Dec 19, 1996Mar 27, 2001Advanced Polymer Technology, Inc.Secondary containment flexible underground piping system
CN1080013C *Feb 8, 1995Feb 27, 2002电缆金属电气有限公司Housing in underground apparatus for communication equipment
DE9402158U1 *Feb 9, 1994Mar 24, 1994Kabelmetal Electro GmbhGehäuse in Unterflurausführung für fernmeldetechnische Geräte
WO1989006298A1 *Dec 19, 1988Jul 13, 1989Environment One CorpNarrow accessway sewage collection tank assembly, remote operated quick connect-disconnect coupling and system using the same
U.S. Classification52/20, 52/169.6, 52/245, 137/363, 174/37
International ClassificationH01F27/06, H02B7/08, H02G9/10, H02B7/00, H02G9/00
Cooperative ClassificationH02B7/08, H02G9/10, H01F27/06
European ClassificationH02B7/08, H01F27/06, H02G9/10