Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3674031 A
Publication typeGrant
Publication dateJul 4, 1972
Filing dateMar 25, 1970
Priority dateMar 29, 1969
Also published asDE1916343A1, DE1916343B2
Publication numberUS 3674031 A, US 3674031A, US-A-3674031, US3674031 A, US3674031A
InventorsWeiche Hans-Joachim
Original AssigneeLinde Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of and device for cryogenic surgery
US 3674031 A
Abstract
A system for performing cryogenic surgery, especially the removal or treatment of mammalian tissue such as tonsil tissue, wherein the tissue is drawn by suction into the cavity of an instrument the walls of which are chilled, e.g., by liquid nitrogen.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

I United States Patent [151 3,674,03 1 Weiche [4 1 July 4, 1972 [54] METHOD OF AND DEVICE FOR [56] References Cited RYO ENI C G C UNITED STATES PATENTS [72] 233 796,114 8/1905 Currey ..12s/3o0 x 872,688 12/1907 Saighman .....l28/275.1 [73] Assignee: Linde Aktiengesellschaft, Wiesbaden, Ger- 1 ,011,06 12/1911 Fulton ..l28/400 X many 1,991,784 2/ 1935 Bohemier et a] ..128/400 UX 3,298,371 1/1967 Lee ..128/400 [22] 1 3,425,419 2/1969 Dato ..128/400 211 Appl. No.: 23,165

Primary Examiner-Channing L. Pace l [30] Foreign Application Priority Data Anomey Kat F Ross March 29, 1969 Germany ..P 19 16 343.0 1 1 ABSTRACT A system for performing cryogenic surgery, especially the [521 US. Cl ..128/303.l, 62/293, l28/275.1, removal or heatmem f mammalian tissue such as tonsil 128/300 128/400 sue, wherein the tissue is drawn by suction into the cavity of an [51] Int. Cl ..A6lb 17/36,A61m l/0O,F25d 3/00 instrument the walls of which are il by hquid [58] Field ofSearch ..62/293; 128/275.1, 300, 303.1, "imam 6 Claims, 3 Drawing Figures PATENTEDJUL 4 I972 3,674,031

Hans-Joachim Weiche I N VEN TOR.

s$ 00A R0 Attorney BACKGROUND OF THE INVENTION It has been proposed heretofore to provide cryogenic devices for a rapidly expanding branch of surgery referred to as "cryosurgery or low-temperature surgery. For this purpose, a low-temperature fluid, e.g., liquid nitrogen, is fedthrough a probe or like structure which is applied to the tissue to be treated or removed, thereby abstracting heat rapidly from this tissue and destroying the tissue structure so that the 2 thereof with minimum damage to the vascular system adjoining such tissues. v

' It is a further object of my invention to provide a device readily' and; accurately manipulatable by surgeons or other cells can be taken from the body of the tissue so treated or growth or the like can be separated from the body of the tis-' sue.

Such systems have, however, encountered difficulty in that the cold transmitted to the tissuetends to spread divergently from the site of contact of the probe with the surface of the tissue and often adversely affects healthy tissue or cell growth which is not to be removed or treated and which in many cases may be vital.

Also, even when removal of the tissue to which the cold is transmitted is desired, the total freezing of the cell tissue in regions somewhat removed from the contact site is not complete, thereby rendering the surgery relatively difiicult and often imprecise. It has been difiicult, therefore, to concentrate the cold at the tissue site with precision and yet without such dissipation of the low temperature as to enable.

clean removal of the cellular tissue.

It has been proposed to make use of such cryogenic probes in tonsillectomies which heretofore have required local anesthetic and enucleation or extirpation of the cellular tissue with prolonged convalescence and bed rest. Furthermore, the conventional operation was bloody and could not be carried out effectively with patients in whom loss of blood might lead to other complications. The use of the cryogenic probe eliminated these difficulties by permitting removal of the tonsil follicles without bleeding and while the patient remains ambulatory. The tonsils may be wholly or partly removed upon necrosis resulting from contact with the cryogenic probe.

The use of such probes intonsillectomies has, however, the disadvantage that immediately behind the tonsils lies the venal and arterial (vascular) system removing blood from and feeding it to the head. Excessive travel of cold from the probe to these sensitive organs has been found to deteriorate the blood vessels and possible damage not only to the surrounding tissue but also to the tissues in the region of the tonsils which must remain intact. As a matter of fact, the damage to such blood vessels increases the time required for healing-the region of the tonsillectomy. Consequently, cryogenic probes have not been found to be satisfactory to many surgeons. In fact they have not received wide spread acceptance in the ear, nose and throat field and, while they ofier many advantages over conventional tonsillectomy techniques, their handling is difiicult, complex and frequently gives rise to complications.

OBJECT S OF THE INVENTION It is, therefore, the principal objectof the present invention to provide an improved instrument for cryogenic surgery.

wherein the aforementioned disadvantages can be avoided.

Anotherobject of this invention is to provide an improved apparatus or device for the removal of cellular tissue, especially mammalian tissue, without excessive damage to sur workers in the field with minimum danger of complications and maximum effectiveness for the removal of tonsils and like cellular tissue.

SUMMARY OF THE INVENTION- These. objects and others which will become apparent hereinafter are obtained, in accordance with the present invention, by the provision of a concave shellat the end of the cryogenic instrument which may be placed over the area to be subjected to cryogenic surgery and communicating with a suction source while being provided with means for cooling the wall of this cell externally of the concavity. The present system thus includes a suction device for drawing'the cellular tissue into the concavity concurrently with the cryogenic freezing of this tisue by heat transferthrough the wall of the cavity of a cryogenic fluid in contact with this wall. The cooling system may includemeans for circulating a coolant through the'instrument or merely designed to deliver a coolant to the surface whereupon the coolant may be discharged.

The suction action in accordance'with the present invention makes use of a cavity which is preferably dimensioned to the volume of the cellular tissue. to be affected by cryogenic surgery,i.e;, the volumeof the tissue to b'e-removed. It hasbeen found, most surprisingly, that by drawing the removabletissue out of its normal position, e.g., by distorting'the'tissueinto the concavity, it is possible to transfer cold to this limited volume resides in the convergence of the cold upon'the cellular tissue drawn into the concavity and the exclusion of adjacent tissue from-cryogenic attack. When the system is applied to tonsillectomies, therefore, the cryogenic attack and removal is limited to the tonsil follicles without any danger of adversely affecting the vascular system communicating blood to and from the head.

It is contemplated, in accordance with the present invention, to provide concavities of the character described in the form of heads at the ends ofan elongated handling facilitating manipulation of the instrument, theconcavity being dimensioned and shaped to correspond to the tissue'to beremovcd.

It be understood, of course, that a wide variety of sizes and shapes of the concavity, in terms of depth and breadth can be provided at relatively low cost in the form of a set of such instruments so that the practitioner need merely'select the instrument of closest proximity to the volume and configuration of the tissue removal desired. The dimensioning of the instrument, need not, however, be'precise since the suction action-- will invariably concentrateor localize the cryogenic action at the tissue drawn into the concavity and repeated operations may be carried outwith, say, a smaller concavity than might otherwise be desirable. I

The instrument according to the invention is advantageously provided with a hollow body open at one end and constituting a shell, the outer rim of which is bent outis preferably composed of a material having a high'coefi'icient' of heat transfer, advantageously a metal which is-inert and may be of the type commonly employed in surgical instruments: silver, stainless steel or the like. It has been found to be advantageous, moreover, to provide the concavity with a ratio of depth-to-mouth diameter between 1:10 and 1:1 and to provide a wall thickness which is of the order of millimeter and is in a ratio to the depth of the cavity between 1:2 and 1:10.

Most desirable, the hollow shell is of double-wall construction, i.e., is formed with a compartment extending along the outer wall of the concavity and constituting a cooling compartrnent and a handle may be provided in the form of a coaxial-tube arrangement one tube of which serves to deliver the coolant while the other carries it away from this chamber. Preferably the inner tube, which may be of relatively small diameter, supplies cryogenic liquid which expands into the chamber and passes through the outer tube as a vapor or gas. It is interesting to note that all of the embodiments described are characterized by a rapid transfer of cold (or abstraction of heat from) at the cellular tissue to be treated and indeed a significantly more rapidtransfer than conventional cold probes even though the wall thickness of the probe and the instrument according to the present invention are similar.

The present invention, while finding its most significant application in cryogenic surgery and in the treatment of human cellular tissue is also suitable for use in biology and veterinary medicine in general. In fact, wherever more or less flexible materials are to be cryogenically treated, the instrument of the present invention finds application.

DESCRIPTION OF THE DRAWING The above and other objects, features and advantages of the present invention will become more readily apparent from the following description, reference being .made to the accompanying drawing in which:

FIG. 1 is an axial cross-sectional view schematically illus trating the principles of the present invention;

FIG. 2 is a sectional view similar to FIG. 1 showing the instrument in operation; and

FIG. 3 is a further sectional view of a preferred embodiment of the invention.

SPECIFIC DESCRIPTION In FIGS. 1 .and 2, I have shown a device for performing tonsillectomies'but which is suitable for other cryogenic operations and substantially any treatment of relatively soft matter with cold.

' The device comprises a thin-walled metal cup 1 having a shell configuration and formed with a concavity In which is open against the tissue portion 2 to be treated with cold. As is apparent from FIGS. 1 and 2, the depth d of the concavity can be a fraction of the mouth diameter D or may equal or exceed this diameter as shown in FIG. 3 and as described above. The mouth lb of the shell 1 is formed with an outwardly turned and rounded rim 1c which defines a radius portion 1d at the annulus with which the instrument contacts the tissue 2. The radius 1d prevents tearing of the tissue when the latter is drawn by suction into the concavity la. At a portion of the shell distal from the surface 2a of the tissue body, I provided an orifice 1: which communicates between the concavity la and a tube 3 formed unitarily with the wall 2 and serving to apply suction to the concavity, e.g., via a suction pump or aspirator 3a.

In FIG. 2, I have shown the instrument of FIG. 1 in opera tion. Suction applied to the bore 3b of tube 3 reduces the pressure within the concavity la, thereby drawing the tissue body 2b surrounded within the annulus 1b into the concavity and into contact with the inner surface thereof. A cryogenic cooling medium, e. g., nitrogen, passes the outer surface 1b of the shell 1 as represented at 4, thereby cooling the shell which lies in heat conductive relationship to the bulge 2b of tissue received within the concavity. The cold transfer is represented diagrammatically by the arrows in FIG. 2 and appears to converge to a center close to the center of curvature of the inner wall of the concavity. As a result, freezingland cell destruction occurs along an arc defined by the arrow eads without spread In FIG. 3, I have shown an embodiment of this invention wherein the cooling medium may be recirculated. In this case, the shell 8 is substantially hemispherical and is formed as a double wall or socket body, the outer wall of which is represented at 7. The walls are formed unitarily with one another and adjoin at the rounded rim 8a defining an annulus contacting the tissue surface 2. The inner chamber 9 of the hollow-wall body 5 is a cooling compartment to which the coolant supplies via a passage 10a in an inner duct leading from a refrigerating system or liquid nitrogen tank 10b to the interior of the compartment 9. The tube 10 is coaxially surrounded by 'a tube 11, also unitary with'a hollow body 5, and defining a passage 11a of greater cross section than the passage 10a. Consequently a liquid coolant (generally liquid nitrogen) passes through the narrow bore 10a and expands in the chamber 9 with the formed gases emerging via the passage 11:: for recycling or release. The coaxial tubes wand 11 or the tube 6 may constitute a handle or may be mounted in a handle to facilitate manipulation of the device by the surgeon. The tube 6, whose bore 60 opens into an orifice 6b at the apex of the concavity 8b, is connected to a suction pump 6c as described with reference to the embodiment of FIGS. 1 and 2. The device of FIG. 3, of course, operates identically to the device of FIGS. 1 and 2 I claim:

1. A method of cold-treating soft material, comprising the 7 steps of juxtaposing with a body of cell tissue, a rigid thermally conductive metal shell concave in the direction of said cell tissue; evacuating'said shell to draw a portion of said cell tissue said method further comprising the step of withdrawing said shell from said body while maintaining suction in said concavity subsequent to the transfer of cold to said portion of said material.

3. An instrument for cryogenic surgery upon mammalian cell tissue, comprising:

an'elongated handle;

a rigid metal cup mounted on an end of said handle and having a concavity adapted to be applied to said tissue, said cup being formed .with a pair of spaced-apart walls def'ming an interwall compartment and including an inner wall and an outer wall;

conduit means connected to said cup and communicating with said concavity;

a suction pump connected to said conduit means for evacuating said concavity and drawing said tissue against the inner wall.

a first tube and a second tube extending along said handle and communicating with said compartment; and

a source of cooling fluid at a temperature sufficiently low to I

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US796114 *Jun 14, 1905Aug 1, 1905Herschel E CurreyElectrotherapeutic apparatus.
US872688 *Dec 30, 1903Dec 3, 1907Edward S SaighmanElectrical and thermal cupping device.
US1011606 *Mar 5, 1910Dec 12, 1911Jacob A FultonAppliance for subjecting portions of the human system to heat or cold.
US1991784 *Jul 28, 1932Feb 19, 1935Attendu Andre CRefrigerant applicator
US3298371 *Feb 11, 1965Jan 17, 1967Arnold S J LeeFreezing probe for the treatment of tissue, especially in neurosurgery
US3425419 *Jul 2, 1965Feb 4, 1969Angelo Actis DatoMethod of lowering and raising the temperature of the human body
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3794039 *Oct 26, 1970Feb 26, 1974Linde AgApparatus for cryosurgery
US3862627 *Aug 16, 1973Jan 28, 1975Hans Sr Wendel JSuction electrode
US3926006 *Apr 9, 1973Dec 16, 1975Cap Con International IncMethod and apparatus of freezing a plug in a pipe for pressure testing
US3934589 *May 24, 1974Jan 27, 1976Dragerwerk AktiengesellschaftSurgical instrument for sterilizing women by ligature of tubes
US4072152 *Feb 23, 1976Feb 7, 1978Linehan John HOrthopedic cryosurgical apparatus
US4082096 *Feb 9, 1977Apr 4, 1978Benson Jerrel WCryosurgical system
US4135497 *Mar 18, 1977Jan 23, 1979E-Z-Em Company, Inc.Apparatus for detecting temperature variations over selected regions of living tissue, and method thereof
US4327733 *Jan 28, 1981May 4, 1982Governing Council Of The University Of TorontoCryoenucleation tool
US4440167 *Dec 4, 1981Apr 3, 1984Kabushikikaisha YoshidaAnesthetizer for dental treatment
US5034006 *Feb 28, 1990Jul 23, 1991Takeda Chemical Industries, Ltd.Suction equipment for medical operation
US5271234 *Dec 18, 1992Dec 21, 1993David L. CarterApparatus for and method of removing tile from a floor
US5433717 *Mar 23, 1993Jul 18, 1995The Regents Of The University Of CaliforniaMagnetic resonance imaging assisted cryosurgery
US5706810 *Jun 2, 1995Jan 13, 1998The Regents Of The University Of CaliforniaMagnetic resonance imaging assisted cryosurgery
US6148619 *Aug 17, 1999Nov 21, 2000Evans; Daniel J.Method and apparatus for non-invasively freezing a content of a pipe
US6482226Aug 30, 2000Nov 19, 2002Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6491039Mar 31, 2000Dec 10, 2002Innercool Therapies, Inc.Medical procedure
US6558412Apr 12, 2001May 6, 2003Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6602276Mar 1, 2001Aug 5, 2003Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6685732Aug 17, 2001Feb 3, 2004Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6755850May 29, 2002Jun 29, 2004Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6786218Dec 7, 2001Sep 7, 2004Innercool Therapies, Inc.Medical procedure
US6905494Feb 28, 2002Jun 14, 2005Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7001378Mar 1, 2002Feb 21, 2006Innercool Therapies, Inc.Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7063718Mar 5, 2003Jun 20, 2006Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US7288089Jun 13, 2005Oct 30, 2007Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7291144Jan 3, 2002Nov 6, 2007Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7371254Sep 3, 2004May 13, 2008Innercool Therapies, Inc.Medical procedure
US7449018Jan 7, 2004Nov 11, 2008Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US7842029Dec 27, 2004Nov 30, 2010AestheraApparatus and method having a cooling material and reduced pressure to treat biological external tissue
US7857781May 16, 2005Dec 28, 2010Zoll Circulation, Inc.Indwelling heat exchange catheter and method of using same
US7951183May 13, 2008May 31, 2011Innercool Therapies, Inc.Medical procedure
US8043283Nov 6, 2007Oct 25, 2011Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US8043351Oct 30, 2007Oct 25, 2011Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US8157794Oct 30, 2007Apr 17, 2012Innercool Therapies, Inc.Method and device for performing cooling-or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US8163000Nov 13, 2007Apr 24, 2012Innercool Therapies, Inc.Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US8545497Sep 22, 2006Oct 1, 2013University College Cork—National University of Ireland, CorkApparatus for use in the prophylaxis or treatment of tissue
US8571648May 6, 2005Oct 29, 2013AestheraApparatus and method to apply substances to tissue
USRE30446 *Mar 16, 1979Dec 16, 1980E-Z-Em Company, Inc.Apparatus for detecting temperature variations over selected regions of living tissue, and method thereof
WO2004074454A2Feb 20, 2004Sep 2, 2004Robert J BinderMethods and compositions for the treatment of cancer and infectious disease using alpha (2) macroglobulin-antigenic molecule complexes
WO2005092433A1 *Mar 24, 2005Oct 6, 2005Christopher CollinsApparatus for prophylaxis or treatment of tissue
WO2005112815A1 *Apr 29, 2005Dec 1, 2005AestheraApparatus having a cooling material and reduced pressure to treat biological external tissue
WO2006122136A2 *May 8, 2006Nov 16, 2006AestheraApparatus and method to apply substances to tissue
Classifications
U.S. Classification606/21, 604/20, 606/23, 62/293
International ClassificationA61B17/30, A61B18/00, A61B18/02
Cooperative ClassificationA61B2017/306, A61B18/02
European ClassificationA61B18/02