Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3680633 A
Publication typeGrant
Publication dateAug 1, 1972
Filing dateDec 28, 1970
Priority dateDec 28, 1970
Publication numberUS 3680633 A, US 3680633A, US-A-3680633, US3680633 A, US3680633A
InventorsBennett John D
Original AssigneeSun Oil Co Delaware
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Situ combustion initiation process
US 3680633 A
Abstract
The initiation of in situ combustion in formations penetrated by a wellbore is accomplished by extracting a portion of the air stream being injected into the formation, removing oxygen from the extracted air portion, and adding the oxygen to the air stream being injected into the formation.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [151 3,680,633

Bennett [4 Aug. 1, 1972 [54] SITU COMBUSTION INITIATION 3,055,422 9/1962 Schleicher et al. ..166/260 PROCESS 3,072,186 l/ 1963 Parker 166/260 [72] Inventor: John D. Bennett, Denton, Tex. Primary Ex aminer j a m es Leppink [73] Assignee: Sun Oil Company (Delaware), Dal- Attorney-George L. Church, Donald R. Johnson,

' las, Tex. Wilmer E. McCorquodale, Jr. and John E. Holder [22} Filed: Dec. 28, 1970 [57] ABSTRACT [211 App! 101388 The initiation of in situ combustion in formations penetrated by a wellbore is accomplished by extract [52] U.S. Cl ..l66/256, 166/75 ing a portion of the air stream being injected into the [51] Int. Cl ..E2lb 43/24, E21b 33/03 formation, removing oxygen from the extracted air [58] Field of Search ..l66/75, 256, 260, 257 portion, and adding the oxygen to the air stream being injected into the formation. [56] References Cited 1 l C l Dnwing Figure UNITED STATES PATENTS 2,588,296 3/1952 Russell ..l66/75 V COLD NITROGEN GAS EXPANSION l f- ZO/ VALVE col-D LIQUEFIER r N AIR 2 24 I 2 32 V 30 co a H2O gym 2(| |ou|o) EXCHANGER 3 fiu l4 I2 I AIR 3 AIR COMPRESSOR s4 PAIENTEOwc 11912 COLD NITROGEN GAS 4 5 H m 2 l. 4 N 8 I m 0 2 2 2 L 4 4 m w m. m m y f R l 6 n.VIBILI F l U E E 2 0 mm F 2 llE H M. lliytt U I Q 4 A 8 U 2 2 O 3 m w 0 6 3 w A l C u 2 w 2 R 0| 8 A 2 6 N N o E 8 4 V NM 9 3 W W v fi f E f m m R w m A H H R X 0 E S a mm M M 0 m C AIR 1N/Ji IL INVENTOR JOHN D. BENNETT A TTORNEY SITU COMBUSTION INITIATION PROCESS BACKGROUND OF THE INVENTION This invention relates to a method for initiating in situ combustion. In situ combustion is a process which involves burning hydrocarbon fluids contained in a formation. This process is employed for several purposes. The primary purpose of in situ combustion is to stimulate the recovery of hydrocarbon fluids. Another purpose of in situ combustion is to consolidate the formation adjacent the wellbore so that particles of the formation do not clog the well or damage well equipment.

Ordinarily in situ combustion involves several steps. Usually air is injected into the formation through an injection well. The injection pressure is maintained at a level to cause air to flow through the formation from the injection well to one or more producing wells, and it is injected at a sufficient rate to support a combustion reaction of a fraction of the oil in the formation. In order to initiate the combustion reaction in most oil bearing formations, it is necessary to inject heat along with the air. The heat is carried bythe air into the reservoir. where it contacts the formation fluids. By flowing a sufficient volume of hot air into the reservoir, the

1 crude oil in the vicinity of the injection well is heated to its ignition temperature and commences to burn. As the flame front of the ignited formation fluids moves away from the injection well, the heat and pressure created aids movement of unburned hydrocarbon fluids to production wells. The process just described is the most common process of reservoir stimulation by in situ combustion.

In a process of sand consolidation, the in situ combustion process usually operates quite difl'erently. In such a process, air is usually injected in wells adjacent the well having a sand consolidation problem, and heat is provided in the well having such a problem. Upon achieving the ignition of formation fluids, the flame front will move outwardly from the wellbore having the sand consolidation problem toward the source of air injected in the adjacent wells. This burning of reservoir fluids is continued until the area to be consolidated has been traversed. This process is ordinarily termed a reverse burn in situ combustion process. A characteristic of such a reverse burn is that a residue of coke is left on the particles making up the formation. This coke residue effectively bonds together the elements of the formation, thereby eliminating the deficiency in formation consolidation.

The most common methods of initiating in situ combustion in the formation is to apply heat by using downhole heaters. These heaters usually consist of downhole electrical heaters, gas burners, and catalytic reactors. Even with a high injection rate of a heated gas in the formation, several days are often necessary before combustion is initiated. Several days are needed in order to supply a sufficient amount of heat to initiate an oxygen-hydrocarbon burn in theformation. Because of the substantial cost of wellbore heating services, it is desirable to initiate in situ combustion as quickly as possible. Another reason for the lengthy time required for initiating the in situ combustion relates to a temperature limitation. In order to prevent well damage due to excessive heat, heater temperatures should be maintained below approximately 800 F. It is therefore an object of the present invention to provide an improved method of initiating in situ combustion.

SUMMARY OF THE INVENTION With these and other objects in view, thepresent invention includes injecting air into the formation, which together with hydrocarbon fluids contained in the formation comprises a fuel mixture. Oxygen is added to the air stream being injected into the .formation to make a more combustible fuelmixture. This oxygen is supplied by extracting a portion of the air being supplied to'the wellbore, liquefying such air, vaporizing the nitrogen, and'subsequently injecting theremaining oxygen into the air stream enteringtheformation.

BRIEF DESCRIPTION OF TI-IEDRAWINGS FIG. 1 is a cross section of a wellbore with a heater contained therein anda schematic illustration of an oxygen enriching system connected therewith.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the-FIGURE, a wellbore I0 is shown penetrating a formation 50.'The wellbore =10 comprises casing 40 extending from the surface 54 through the formation 50. Located within .casing 40 and extending from the surface to a point adjacent and above the formation 50 is tubing 42. At the lower end of tubing 42 is seating nipple 46 which is an annularflange for seating wellbore tools. Suspended in tubing 42 by line 52 is heater 48. Line 52 may be an armored electrical cable if the heater-48 is electrical or an armored thermocouple cable if the heater is catalytic, or a combination of the two. Heater-48 is suspended in the tubing by resting on seating nipple 46.

Wellhead 44 atop wellbore '10 has an airline 66 connected thereto through valve 38. Air compressor 14 having air inlet 12 is connected with air line 66 for providing air to the wellbore through the annular space between casing 40 and tubing'42. An air tap 16 located in air line 66 allows a portion of air leaving air compressor 14 to enter heat exchangerl8. The heat exchanger 18 may consist of two helical conduit coils 56 and 58, immersed in a heat transfer fluid occupying the chamber housing the helical coils 56 and 58. Located in series with heat exchanger 18 by line 19 is expansion valve 20. The expansion valve 20 comprises a valve which allows for quick expansion of a gas flowed through the valve. Connected with expansion valve 20 by line 21 is liquefier 22. Liquefler 22 may comprise a series of compressors and expansion valves located in area 24 of such liquefier 22.

Liquids removal tap 32 is located on the lower side of liquefier 22, and may be float controlled. In such a system, a float may be connected to a gravity seated valveso that as the liquid level rises, it raises the float and connected valve to drain certain liquidsfrom the liquefier 22. The liquefier may be one of the well known types such as the Hampson-LindeiRegenerative Process or the Claude System of liquefying air both of which are described on Pages 4-58, 59, of MARKS MECHANICAL ENGINEERS HANDBOOK, Sixth Edition. Both of these liquefaction processes utilize successive steps of compression and expansion.

Area 26 of liquefier 22 contains a gas port 28 located on its upper side for removal of gaseous material. Such gas port is a one way pressure operated valve. Located on the lower end of area 26 is liquid tap 30. Such liquid tap 30 may also be float valve operated in the same manner as liquid removal tap 32. The gas port 28 is connected to helical coil 56 of heat exchanger 18 by line 29. Helical coil 56 extends through the heat exchanger 18 and connects with exit port 34. Liquid tap 30 which also may be float valve operated as are liquids removal tap 32 and liquid tap 30 is located at the lower end of liquefier section 26 and connects with gasifier 60 through line 31. Gasifier 60 comprises a chamber whichis constructed to provide for a controlled elevation in temperature. It may be a heavily insulated chamber having a liquid circulating therein in enclosed pipes whose temperature may be accurately controlled by an air conditioning system. Heat for such a system may be derived from the compressor or cold maybe derived from gases being vaporized in area 26.

In the operation of the apparatus previously described, air is extracted from the atmosphere through air inlet l2 whereupon it is compressed in air compressor 14. Theair exiting air compressor 14 flows through air line 66 which connects with wellhead 44. A substantial portion of the air stream leaving air.compressor 14 flows through air tap 16. Such flow is caused by a lower pressure in the initial portion of the system connected with air tap 16. A sufficient amount of air is extracted at air tap l6 so that a portion of the compressed air can be utilized to operate the air liquefaction equipment located downstream from air tap 16. This extracted air portion then flows through the heat exchanger 18, where the air is cooled by a cold nitrogen stream coming from liquefier 22 through line 29. After the air leaves heat exchanger 18 through line 19 by the force supplied by compressor 14, it passes throughexpansion valve 20 where the air is quickly expanded in order to further reduce its temperature.

The air which is now cold enters liquefier 22 where inarea 24 it is subjected to the successive steps of compressing, cooling, and expansion until the air is liquefied. The liquefier 22 is operated by utilizing the expansive powers of the extracted air portion. The

. compressed air is allowed to expand to drive pistons which supply energy for operation of the compressor in liquefier 22. During liquefaction of the air, water vapor and carbon dioxide are the first to liquefy. They may be separated from the liquefier through the float operated valve of liquids removal tap 32. The water vapor and carbon dioxide may also be allowed to solidify before separation.

The liquefied air is then pumped to area 26 of liquefier 22, whereupon its temperature is raised above the boiling point of nitrogen, but is kept below the boiling point of oxygen. The nitrogen boils from the liquid air in area 26 and exits through gas port 28. The gasified nitrogen under itsown pressure then passes through line 29 to heat exchanger 18. In the heat exchanger, the cold nitrogen is used to cool the air passing through the heat exchanger which has beenextracted from line 66. The nitrogen in passing through helical coil 56 cools the heat transfer fluid which surrounds coils 56 and 58, and such fluid in turn cools the air in helical coil 58. The nitrogen is'then exhausted. through port 34 to the atmosphere. g

The liquid oxygen remainingafter the nitrogen has been boiled off, is removed by gravity from liquid tap 30 which is a float operated valve located on the underside of area 26 of the liquefier 22. This liquid stream of oxygen then enters gasifier 60 through line 31. The gasifier allows controlled temperature elevation to permit the temperature to exceed the boiling point of oxygen. As the oxygen is boiled from the liquid in gasifier;

60, it is removed through overhead outlet 33, and proceeds through valve 68 into line 66 through oxygen inlet port 36, where it joins the main air stream entering wellbore l0.

This oxygen enriched air stream is then pumped down the annulus between casing 40 and tubing 42, whereupon it flows past heater 48 and enters formation 50 through perforations 49 in casing 40. Upon entering the formation, the oxygen enriched air starts to oxidize hydrocarbon fluids contained in the formation 50." Once sufficient oxidation has occurred, the formation fluids will commence to burn and the burning front will move away from the wellbore 10. When gas analysis from adjacent wells indicate that in situ combustion has commenced, oxygen enrichment of the air stream entering wellbore 10 may be terminated, so that the full capacity of the air compressor 14 can be utilized to provide sufficient air to support the in situ combustion.

The downhole heater 48 is not always essential in this process of initiating in situ combustion. Some reservoirs will ignite using an oxygen enriched air stream which has not been heated. Other reservoirs may require that such oxygen enriched streambe heated before in situ combustion will commence. Heaters which may be employed can be of any conventional type, i.e.,

downhole gas burners or electrical and catalytic heaters.

An advantage of the method of supplying oxygen to the formation described herein is the availability of excess compressor capacity for use in providing energy for the liquefaction of the air. A large compressor is required to supply air to'support a flame front when the front covers a large area because of its distance from the wellbore. Accordingly, since only a small amount of air is needed for initiation of in situ combustion adjacent the wellbore, there is excess compressor capaci ty available for other purposes. The above described process makes use of this capacity by using it to provide energy for liquefaction of air. It is not essential to the operation of this process to have a pure oxygen stream being injected into the air line 66. This lack of a purity requirement will result in a savings in equipment and operational costs.

While particular embodiments of the presentinvention have been shown and described, it is apparent that changes and modifications may be made without departing from this invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of this invention.

What is claimed is: I

1. In an in situ combustion process wherein air is supplied to a formation being ignited, the improvement comprising: separating a portion of the air stream being supplied to theformation; removing the oxygen from the separated air stream; and injecting the oxygen removed from the separated air stream into the air stages of compression and expansion of the air until the air is liquefied, and then boiling off the nitrogen component of the air.

3. The process of claim 2 including cooling the separated portion of the air stream by heat exchanging such separated air portion with the nitrogen boiled from the liquefied air.

4. The process of claim 1 including supplying heat to the formation being ignited.

5. In an in situ combustion initiation process where compressed air is supplied to the formation being ignited, the improvement comprising: separating a portion of the compressed air being supplied to the formation; removing the oxygen from the separated air portion; and injecting the oxygen removed from the separated air portion into the air stream being supplied to the formation.

6. The process of claim 5 wherein the oxygen is removed from the separated air portion by liquefying the air portion and boiling off the nitrogen component of the air.

7. The process of claim 5 wherein the expansive power of the compressed air portion is used to supply energy for the machinery to liquefy the air portion.

8. The process of claim 6 wherein the nitrogen boiled from the liquefied air is used to cool the separated air portion prior to liquefaction.

9. Apparatus for initiating in situ combustion in an earth formation penetrated by a wellbore compris gas conduit means connected to the wellbore for passing air into the wellbore and into the formation; means attached to the condui means for extracting a portion of the air stream from the gas conduit means; air liquefaction means connected with the extracti means; means

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2588296 *Feb 15, 1946Mar 4, 1952Aluminum Co Of AmericaGas treatment and apparatus therefor
US3055422 *Oct 16, 1958Sep 25, 1962Phillips Petroleum CoIn situ combustion process
US3072186 *Aug 11, 1958Jan 8, 1963Phillips Petroleum CoRecovery of hydrocarbons by in situ combustion
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4393936 *Sep 21, 1981Jul 19, 1983Union Oil Company Of CaliforniaMethod for the enhanced recovery of oil and natural gas
US4498537 *Dec 23, 1982Feb 12, 1985Mobil Oil CorporationProducing well stimulation method - combination of thermal and solvent
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588503Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395 *Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837 *Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6902004 *Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US7040397Apr 24, 2002May 9, 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US7086468 *Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869 *Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9399905May 4, 2015Jul 26, 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US20020029881 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20020033256 *Apr 24, 2001Mar 21, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US20020033280 *Apr 24, 2001Mar 21, 2002Schoeling Lanny GeneIn situ thermal processing of a coal formation with carbon dioxide sequestration
US20020034380 *Apr 24, 2001Mar 21, 2002Maher Kevin AlbertIn situ thermal processing of a coal formation with a selected moisture content
US20020036083 *Apr 24, 2001Mar 28, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US20020038705 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20020038706 *Apr 24, 2001Apr 4, 2002Etuan ZhangIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US20020038710 *Apr 24, 2001Apr 4, 2002Maher Kevin AlbertIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020040173 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US20020043365 *Apr 24, 2001Apr 18, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043367 *Apr 24, 2001Apr 18, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020043405 *Apr 24, 2001Apr 18, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US20020046832 *Apr 24, 2001Apr 25, 2002Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US20020046837 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US20020050356 *Apr 24, 2001May 2, 2002Vinegar Harold J.In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US20020050357 *Apr 24, 2001May 2, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020053436 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US20020057905 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020062051 *Apr 24, 2001May 23, 2002Wellington Scott L.In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020062959 *Apr 24, 2001May 30, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US20020084074 *Sep 24, 2001Jul 4, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020104654 *Apr 24, 2001Aug 8, 2002Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20030006039 *Apr 24, 2001Jan 9, 2003Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US20030019626 *Apr 24, 2001Jan 30, 2003Vinegar Harold J.In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio
US20030051872 *Apr 24, 2001Mar 20, 2003De Rouffignac Eric PierreIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US20030075318 *Apr 24, 2001Apr 24, 2003Keedy Charles RobertIn situ thermal processing of a coal formation using substantially parallel formed wellbores
US20040015023 *Apr 24, 2001Jan 22, 2004Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US20040108111 *Apr 24, 2001Jun 10, 2004Vinegar Harold J.In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20050092483 *Oct 24, 2002May 5, 2005Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20100147521 *Oct 9, 2009Jun 17, 2010Xueying XiePerforated electrical conductors for treating subsurface formations
Classifications
U.S. Classification166/256, 166/90.1
International ClassificationE21B43/16, E21B43/243
Cooperative ClassificationE21B43/243
European ClassificationE21B43/243