Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3682160 A
Publication typeGrant
Publication dateAug 8, 1972
Filing dateOct 16, 1969
Priority dateOct 16, 1969
Publication numberUS 3682160 A, US 3682160A, US-A-3682160, US3682160 A, US3682160A
InventorsNorio Murata
Original AssigneeMatsushita Electric Ind Co Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Physiological signal transmitter for use inside the body
US 3682160 A
Abstract
A miniature medical transmitter detects a physiological variable in a human body and transmits a signal to a receiver placed at the outside of a human body, more particularly to an orally swallawable minature transmitter for measuring pH value or any other variable in a gastro-intestinal tract. The transmitter comprises detecting means for generating a voltage relating to a physiological variable in a human body, limiting network means, a storing capacitor and oscillator means, and its operation is based on an arrangement wherein the voltage from the detecting means activates the oscillator means and, at the same time, modulates the oscillator means. Accordingly, the transmitter does not require conventional power supply means such as battery means and external energy sender means placed outside the body.
Images(5)
Previous page
Next page
Description  (OCR text may contain errors)

unueu marr- Murata [54] PHYSIOLOGICAL SIGNAL TRANSMITTER FOR USE INSIDE THE BODY Inventor:

Norio Murata, Hirakata-shi, Japan Matsushita Electric Industrial G. Ltd., Kadoma, Osaka, Japan Oct. 16, 1969 Assignee:

Filed:

Appl. No.:

US. Cl. ..l28/2 P, 331/66, 331/173, 340/248 Int. Cl. ..A6lf 5/00 Field of Search ....l28/2 R, 2.1 A, 2.1 P, 2.06 R, 128/419 R, 419 P, 2.1 R; 204/195; 325/118; 340/248 P, 253 P; 331/65, 66, 173

[56] References Cited UNITED STATES PATENTS 11/1965 Honig ..l28/2.1P l/l966 Watanabe ..128/2.1P

OTHER PUBLICATIONS Mackay et a1. Nature," Vol. 179, June 15, 1957 pp.

Nagumo et a]. IRE Transactions on Bio-Medical Electronics Vol. BME- 9, July, 1962, pp. 195- 199 Primary Examiner-William E. Kamm Attorney-Wenderoth, Lind & Ponack 57 sc'r A miniature medical transmitter detects a physiological variable in a human body and transmits a signal to a receiver placed at the outside of a human body, more particularly to an orally swallawable minature transmitter for measuring pH value or any other variable in a gastro-intestinal tract. The transmitter comprises detecting means for generating a voltage relating to a physiological variable in a human body, limiting network means, a storing capacitor and oscillator means, and its operation is based on an arrangement wherein the voltage from the detecting means ac;

til/ates the oscillator means and, at the same time, modulates the oscillator means. Accordingly, the transmitter does not require conventional power supply means such as battery means and external energy sender means placed outside the body.

17 Claims, 17 Drawing mes fl T M 1 l POSITIVE 5 9 7 i ELECTRODEWf I l I r 17 5 3 l 15 NEGATIVE I W W i ELEcTRooE f-GT 'L 8 s 4 T T l PATENTEBMIB m 3.682.160

SHEET 1 0F 5 5 5 I 7, l LQRIG 7 2 Q 1 g 7 K DETECTING 1 LIM'TING l OSCILLATO MEANS NETWORK MEANS R MEANS 6/ j 8I/ 8 6 a 4 FIG.|

DETECTI N6 3 OSCILLATOR MEANS MEANS FIGZ m 1 N) g I l I S i 1 1 TIME INVENTOR NORIO MURATA BY wmwww ATTORNEYS PMENTEmus' 1972 3.682.160

SHEET 3 OF 5 F|G.6o.

I FlG.6b

LOGIQ Fl(5.6c L061! TIME I B FlG.6e -lmm Mr W TIME INVENTOR NORIO MURATA BY /g// 6/ 4 PATENTEDMJB 8M2 3.682.160

SHEET 6F 5 DETEC'HNG UM] T|N G OSCILLATOR MEANS NETWORK MEANS MEANS I T 2 VOLTAGE 4 DEPENDENT Fl 6 3 CAPACITOR VOLTAGE DEPENDENT 5 QESISTOR 7/ 71/ 7 DETECTING 3 OSCILLATOR) MEANS MEANS l DETE NG .K 'Q Q OSCILLATOR MEANS MEANS MEANS TEMPERATURE SENSITIVE CAPACITOR PATENTEDIIUB 8 I972 SHEET S [If 5 TEMPERATURE SEN SITIVE ENTAL MEANS CAPACITOR SENSITIVE OSCILLATOR f RESISTOR 8 8 8 4 FIGJI I I3 I I TO AN ENVIROM A I CONDITION l I I 8 l DETECTING MEANS DETEC'ITNG MEANS FIG/I2 INOUETORS SENSITIVE TO A SECOND PHYSIOLOGICAL VARIABLE DETECTING MEANS FIGJ3 PHYSIOLOGICAL SIGNAL TRANSMITTER FOR USE INSIDE THE BODY BACKGROUND OF THE INVENTION This invention relates to a miniature medical transmitter for detecting a physiological variable in a human body and for transmitting a signal to a receiver placed at the outside of a human body, more particularly to an orally swallowable miniature transmitter for measuring pH value or any other variable in a gastro-intestinal tract.

The physiological variables in human body such as pH value and pressure in the stomach have been heretofore measured by using a stomach tube which is swallowed by patients. Besides being painful, the stomach tube makes it difficult to measure the pH value or pressure in the intestine. Recently, such disadvantages have been successfully improved by using radio telemetering capsules. They have provided useful information for research in the medical field. For instance, a broad review on these devices can be obtained by the following literatures.

l. Mackay: Radiotelemetering from within the Human Body.

IRE Transactions on Medical Electronics, Vol. ME-6, No. 2,pp. 100-105,June 1959.

2. Nagumo et a1.: Echo Capsule for Medical Use (A Batteryless Endoradiosonde).

IRE, Transactions on Bio-Medical Electronics, Vol. BME-9, No.3, pp. 195-199, July 1962.

3. U.S Pat. No. 3,133,537, Muth, May 19, 1964 The conventional devices for measuring a physiological variable in a human body wirelessly are activated by a battery or the like included therein or by energy supplied from the outside wirelessly. The use of battery or the like is apt to make the device larger and more complicated. A device activated by energy supplied from the outside needs an external energy sender and is usually operated in a shielded room for the operation.

Accordingly, it is an object of the invention to provide a medical transmitter which is capable of measuring a physiological variable of a human body without using a conventional battery or the like as an integral part of the medical transmitter.

It is another object of the invention to provide a medical transmitter which is capable of measuring a physiological variable of a human body without using an external energy sender placed outside the body in order to activate the medical transmitter.

These and other objects of this invention will be apparent upon consideration of following detailed description taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a block diagram illustrative of the medical transmitter for measuring a physiological variable in a human body in accordance with the present invention,

FIG. 2 is an embodiment of the medical transmitter according to FIG. 1,

FIG. 3 is a voltage waveform in the medical transmitter according to FIG. 2,

FIG. 4 is a graph showing the relationship between a voltage due to a physiological variable and various time intervals produced bythe medical transmitter according to FIG. 2,

FIG. 5 is one embodiment of a preferable circuit diagram of the medical transmitter according to the present invention,

FIG. 6 is a series of waveforms generated by the medical transmitter of FIG. 5,

FIG. 7 is a graph showing the relationship between pH and electromotiveforce (EMF) of an antimony electrode with reference to a saturated-calomel electrode, and FIGS. 8-13 illustrate modified embodiments of the medical transmitter according to the present invention.

A medical transmitter according to the present invention comprises detecting means for generating a voltage relating to a physiological variable in a human body, limiting network means, a storing capacitor and oscillator means, and its operation is based on the novel arrangement wherein the voltage from the detecting means activates the oscillator means and, at the same time, modulates the oscillator means.

Referring now to FIG. 1, the medical transmitter adapted for transmission of an electric signal corresponding to a physiological variable in a human body, in accordance with the present invention, comprises detecting means ll having two detecting terminals 5 and 6 provided with detected voltage E relating to the physiological variable; limiting network means 2 which has two input terminals 5' and 6 connected with the two detecting terminals 5 and 6 and which has two output terminals 7 and 8' provided with a limiting current, I therefrom; a storing capacitor 3 of a capacitance, C,,, which is connected at two terminals 7" and 8", with the two output terminals 7 and 8'; and oscillator means 4 which has two energizing terminals 7 and 8 connected with the two terminals 7" and 8" of the storing capacitor 3 and which contains no battery or the like. The oscillator means 4 starts to generate an oscillation in an oscillation frequency, f, when a voltage between the two energizing terminals 7 and 8 rises up to a starting voltage V and the oscillator means 1 stops the oscillation when the voltage between the two energizing terminals 7 and 8 falls down to a stopping voltage, V,,. The oscillator means 4 has a leakage current I to flow therethrough upon the cease of the oscillation and an actuating current I to flow therethrough during the oscillation, whereby the following relation holds:

1)ma.r )mtn )ma.r a)mtn a)ma.r a

p) (1) where (I ,is a maximum value of the leakage current 1 (I),,,,,, and D are a minimum value and a maximum value of the limiting current 1, respectively, and (l ,,l are a minimum value and a maximum value of the actuating current I respectively.

I 3 l)mrl.r u)mln can accomplish a medical transmitter satisfying the relation (1) by controlling the detected voltage E and the limiting network means 2. The medical transmitter satisfying the relation (1) always operates in an intermittent oscillation. When the oscillator means 4 supplied with an energizing voltage V lower than the starting voltage V,is not oscillating, a limiting current I is larger than a leakage current 1,. Accordingly, the storing capacitor 3 continues to be charged by a current due to a difference between a limiting current I and a leakage current I until an energizing voltage V rises up to the starting voltage V, and then an oscillation takes place in the oscillator means 4.

When the oscillator means 4 supplied with an energizing voltage V higher than the stopping voltage V is oscillating, an actuating current 1,, is larger than a limiting current 1. Accordingly, the storing capacitor 3 continues to discharge a charge stored in the storing capacitor 3 at a current due to a difference between an actuating current 1., and a limiting current 1 until an energizing voltage V falls down to the stopping voltage V,, and then the oscillation ceases.

The relation, (I,,),,,,, C,,-f-( V,V,,), which is derivedfrom the relation (1) makes it possible for the oscillator means 4 to repeat many cycles of the oscillation having oscillation frequency f during a time interval when the oscillator means 4 is oscillating. Therefore, the medical transmitter according to the present invention always operates in an intermittent oscillation.

For convenience, a time interval when the oscillator means 4 is not in oscillation and a time interval when the oscillator means 4 is oscillating will be defined as a non-oscillating period t, and an oscillating period It respectively. A time interval which is the sum of the non-oscillating period t and the oscillating period will be defined as an intermittent oscillation period, T.

A non-oscillating period t and an oscillating period t are a function of the limiting current I which is a function of the detected voltage E. Therefore, the intermittent oscillation period T of the medical transmitter is also clearly a function of the detected voltage E. Accordingly, the medical transmitter according to the present invention transmits, an electric signal corresponding to a physiological variable in a human body.

In order to transmit an electric signal corresponding exactly to a physiological variable, the intermittent oscillation period T of the medical transmitter is required to be much shorter than a time interval corresponding to one cycle of the highest frequency in a physiological variable. The use of an oscillation frequency f of medium frequency or more can easily satisfy this requirement, because the highest frequency of a physiological variable is usually not more than about lOOI-Iz.

Referring to FIG. 2, in which the limiting network means 2 consists of a limiting resistor 9 having resistance R the relation l is reduced to In the medical transmitter satisfying the above relations (4) and (5), an energizing voltage V has, for example, a waveform as shown in FIG. 3. In this figure, a time interval (a) to (b) is the non-oscillating period a time interval (b) to (c) is the oscillating period 1 a time interval (a) to (c) is the intermittent oscillation period T.

Referring to FIG. 4, the non-oscillating period t, is infinite at a critical voltage E, higher than the starting voltage V,. When the leakage current 1 increases with an increase in the energizing voltage V, the critical voltage E, is equal to t 1 )mur a When E E,, the higher detected voltage E results in the higher limiting current I and accordingly, in the shorter non-oscillating period t The oscillating period is infinite at a voltage, which will be defined as transi tion voltage E When the actuating current 1,, decreases with a decrease in the energizing voltage V, the transition voltage E, is equal to When E E the lower detected voltage E results in the lower limiting current 1 and accordingly, in the shorter oscillating period Finally, the oscillating period t tends to a finite value when the detected voltage E tends to the critical voltage E,.

As a result, the intermittent oscillation period T is infinite when the detected voltage E is equal to the critical voltage E, or to the transition voltage 5,. Referring again to FIG. 4, the intermittent oscillation period T is insensitive to a slight change in the detected voltage E at a turnover voltage E,, near which a decrement in the I, caused by a slight increase in the E is equal to an increment in the t caused by the slight increase in the E. When a detected voltage E is within the range,

EZ E EI (1) the intermittent oscillation period T becomes shorter as the detected voltage E increases. When a detected voltage E is within the range,

1 (8) the intermittent oscillation period T becomes longer as the detected voltage E increases. For E E the oscillator means 4 ceases the intermittent oscillation and sustains a continuous oscillation. For E E,, no oscillation occurs. Both ranges as specified by (7) and (8) make it possible to transmit an electric signal corresponding to a physiological variable.

( ll)llllll 0m;

A medical transmitter explained with reference to FIG. l is satisfactorily accomplished by using any available and suitable transistor tuned oscillator satisfying the relations (2) and (3). When the transistor tuned oscillator is employed for the medical transmitter having a diagram shown by FIG. 2, an arrangement for E,= 0.5 volts and E 2.0 volts satisfies a combination of a higher stability of the T and a wider measurable range, and makes it possible to measure stably a detected voltage E satisfying the following relation in accordance with the present invention.

0.5 volts E 2.0 volts 9 Referring to FIG. 5, wherein similar references designate the components similar to those of FIG. 1 and FIG. 2, a detecting means 1 comprises a positive electrode 16 and a negative electrode 17, and satisfies the relation (9). The detecting means 1 is connected, at the detecting terminals 5 and 6, to a transistor tuned oscillator 4 through the limiting resistor 9 and the storing capacitor 3. The storing capacitor 3 is connected between the two energizing terminals 7 and 8. The limiting resistor 9 is connected between the detecting terminal 5 and the energizing terminal 7.

The transistor tuned oscillator 4 is a transistor Hartley oscillator which will oscillate, if a battery is connected to the two energizing terminals 7 and 8, and it consists of an NPN transistor 10, a tuning capacitor 11 having capacitance C, tuning inductors l2 and 13 having self-inductances L and L respectively, a feedback capacitor l4 having capacitance C,, and a base biasing resistor 15 having resistance R,, The tuning capacitor 1 l and the tuning inductors l2 and 13 act as a tuning circuit which determines the oscillation frequency f of the transistor tuned oscillator 4.-

In order to make it possible to satisfy the relation (8)" and (3), an inductance ratio L /L is designed to be at least 1, which is larger than the ratio appearing in a conventional transistor Hartley oscillator.

While the transistor tuned oscillator 4 is not in oscillation, a small dc current corresponding to the leakage be charged up so that an energizing voltage V gradually rises up, because the resistance R of the limiting resistor 9 is determined to enable supplying a limiting current I much larger than the leakage current I, With the rise of the energizing voltage, the leakage current 1 may increase, and an amplification factor of the transistor 10 may also increase.

When the energizing voltage V reaches the starting voltage V,, the amplification factor of the transistor 10 grows so large that the transistor tuned oscillator 43 is made to oscillate. When once the oscillation occurs, a dc current component flowing to the transistor 10 turns into the actuating current 1,, and is much larger than the leakage current 1,, because of a non-linearity of an emittenbase characteristic of the transistor 10. Then a charge stored in the storing capacitor 3 is discharged through the transistor tuned oscillator 4, because the resistance R, of the limiting resistor 9 is determined to supply a limiting current I much smaller than the actuating current I,, The energizing voltage V gradually lowers while the actuating current 1,, is decreasing.

When the energizing voltage V falls down to the stopping voltage V,,, the amplification factor becomes so small that the transistor tuned oscillator 4 is unable to sustain the oscillation. Thus the transistor tuned oscillator 4 stops the oscillation and turns into the initial state where only a slight current corresponding to the leakage current 1 flows into the transistor tuned oscillator 4.

With such a process the medical transmitter of FIG. 5 generates the intermittent oscillation.

The operation of the medical transmitter of HG. 5 will be more apparent by referring to FlG. 6. The energizing voltage V fluctuates between V, and V, as shown in FIG. 6 (a), and the limiting current I fluctuates between (I),,,,,, and (1),, as shown in FIG. 6 (b). The current flowing to the transistor tuned oscillator 4 changes over a wide range and its waveform has two jumps at the beginning and the end oscillation as shown in FIG. 6 (c), where the ordinate is sealed in logarithm. A voltage A between the collector and the emitter of the transistor 10 changes as shown in FIG. 6 (d), and a voltage B across the tuning capacitor ill changes as shown in FIG. 6 (e).

As an example, a medical transmitter having E, of 0.5 volts and E, of 2.0 volts can be formed by using components listed in Table l and its main'performance indices actually measured are shown in Table 2. The t t and T versus the E relations of the medical transmitter are shown in FIG. 4.

It should be understood that a transistor tuned oscillator defined herein is not limited to the Hartley oscillator, but any other transistor tuned oscillator such as a Colpitts or other tuned-collector oscillator is essentially satisfactory.

The transistor tuned oscillator 4 shown in F IG. 5 has a tuning capacitor 11 intentionally inserted therein. However, it is also possible to utilize a tuning circuit having no tuning capacitor inserted therein. For example, one may use a tuning circuit consisting of the tuning inductors l2 and 13, a stray capacitance in the tuning inductors l2 and ll3 and others, and an electrode to electrode capacitance of the transistor T0.

TABLE 1 limiting resistor, 9 (R 100 kfl storing capacitor, 3 (C,,) 0.22 p.F transistor, 10 2SC829 tuning capacitor, 11 (C) 2 pF inductance ratio (L /L,) l6 0 value of the tuning coil feedback capacitor, 14 (C,,) 560 pF base biasing resistor, 15 (R,,) 50 kfl oscillation frequency (f) 2 MHz TABLE 2 starting voltage, V, 0.467 V stopping voltage, V, 0.194 V maximum value of the (I,),,,,,,. 0.3 #A leakage current,

minimum value of the (I,,),,,,,, 22 p.A actuating current, maximum value of the (I,,),,,,,,. 480 A actuating current, critical voltage, E, 0.499 V transition voltage, E, 2.35 V turnover voltage, E, 2.08 V

The employment of a pH sensor of the aforesaid detecting means 1 in any of FIGS. 1, 2 and 5 achieves a medical transmitter adapted for transmission of an electrical signal corresponding to a pH value in a gastro-intestinal tract. When the transmitter explained with reference to FIG. is used for measurement of the pH value, the pH sensor for use in the detecting means 1 is preferably provided with a detected voltage within a range between 0.5 and 2.0 volts.

The pH sensor usually comprises two electrodes, i.e. one is a pH sensitive electrode and the other is a reference electrode as is well-known. The operable pH sensor as the detecting means 1 shown in FIG. 5 comprises, as a pH sensitive electrode, a member selected from the group consisting of an antimony electrode, a

' molybdenum electrode, a tungsten electrode, a germanium electrode and a silicon electrode, and as a reference electrode, a member selected from the group consisting of a zinc electrode, a manganese electrode, a mangesium electrode, and a zinc-magnesium alloy electrode. The medical transmitter using this pH sensor has a rather high sensitivity for high pH values and therefore is suitable for measurement of the pH value in intestines.

On the other hand, a pH sensor suitable for measurement in the stomach comprises, as a pH sensitive electrode, a member selected from the group consisting of a antimony electrode, a molybdenum electrode, a tungsten electrode, a germanium electrode and a silicon electrode, and as a reference electrode, a member selected from the group consisting of a vanadium pentoxide electrode, a nickel sesquioxide electrode, a manganese dioxide electrode and a lead dioxide electrode. The medical transmitter using such a pH sensor is characterized by a rather high sensitivity for low pH values.

Among those operable pH sensors, a combination of an antimony electrode and a zinc electrodev has the most stable relation between the pH value and the detected voltage.

Referring to FIG. 7, an antimony electrode generates an electromotive force of about 0. l 5 volts and of about -0.45volts in a solution having pH2 and a solution having pH8, respectively. The electromotive force referred to herein is measured as a reference to that of a saturated caromel electrode. The electromotive force of the antimony electrode varies by about 0.05 volts per unit pH in the range of pH2 to pI-I8 which covers pH values in the gastro-intestinal tract.

On the other hand, the electromotive force of the zinc electrode shows little change with pH and is about 1.1 volts in the range of ph2 to pH8.

Accordingly, a pH sensor consisting of the antimony electrode and the zinc electrode generates detected voltages E of 0.95 volts and 0.65 volts at pH2 and pI-I8, respectively. The detected voltage E varies by about 0.05 volts per unit pH in the pH range to 2 to 8.

A reference electrode consisting of an element selected from the group of a zinc electrode, a magnesium electrode, a manganese electrode and a zinc-magnesium alloy electrode has a negative voltage with respect to the pH sensitive electrode mentioned above. Therefore, a reference electrode consisting of such a metal electrode should be connected to the terminal 6 when the transistor 10 is NPN type, and should be connected to the terminal 5 when the transistor 10 is PNP type.

On the contrary, a reference electrode consisting of an element selected from the group of a vanadium pentoxide electrode, a nickel sesquioxide electrode, a manganese dioxide electrode and a lead dioxide electrode has a positive voltage with respect to the pH sensitive electrode mentioned above. Therefore, a reference electrode consisting of such a metal oxide electrode should be connected to the terminal 5 when the transistor 10 is NPN type, and should be connected to the terminal 6 when the transistor 10 is PNP type.

The electric signal from the medical transmitter is picked up by an antenna and is amplified by a conventional high frequency amplifier. The amplified signal is then, for instance, converted to an analog voltage corresponding to the intermittent oscillation period T and finally is indicated on. a meter or recorded on a chart. As a result, a physiological variable in a human body can be measured wirelessly.

In general, the storing capacitor 3 can employ any element adapted to store an electric charge. Thus, for example, a voltage dependent capacitor as well as a voltage independent capacitor can also be utilized for the storing capacitor 3. Referring to FIG. 8, the storing capacitor is a voltage dependent capacitor 3, and the voltage dependent capacitor can improve linearity in the charging characteristic. Accordingly, stability of the intermittent oscillation period T can be improved, especially the stability at a region of the detected voltage E near the critical voltage 5,.

The limiting network means 2 can also comprise voltage dependent elements. Referring to FIG. 9, the limiting network means is a voltage dependent resistor 9', and the use of the voltage dependent resistor makes it possible to control a relationship between a physiological variable and an intermittent oscillation period T.

An undesirable temperature dependence of the intermittent oscillation period T, if it exists, can be compensated by use of a storing capacitor comprising a temperature sensitive capacitor and/or by use of limiting network means comprising temperature sensitive elements. Referring to FIG. 10, the storing capacitor comprises a temperature sensitive capacitor 3" capable of compensating a temperature dependence of the intermittent oscillation period of the medical transmitter. Referring to FIG. ill, the limiting network means comprises a temperature sensitive resistor 9 capable of compensating a temperature dependence of the intermittent oscillation period of the medical transmitter. In the medical transmitter as specified by Table l, for example, the intermittent oscillation period T is shortened by a temperature rise due to a change of transistor characteristics. This shift of the intermittent oscillation period T can be reduced to a negligibly small value by use of a storing capacitor or a limiting resistor characterized by a temperature coefficient of about +l0,000 ppm/C.

When the detecting means 1 has a considerable internal resistance, the internal resistance should be taken into account in the design of the limiting network means.

The medical transmitter according to the present invention can transmit another electric signal in addition to the signal resulted from the detecting means. Referring to FIG. 12, the transistor tuned oscillator 4 has a tuning capacitor 11' having a variable capacitance sensitive to an environmental condition surrounding the medical transmitter, so that the oscillation frequency varies with the environmental condition. As a result, two kinds of physiological variables may be simultaneously transmitted as the functions of the intermittent oscillation period T and the oscillation frequency f.

When the tuning capacitor 11' of FIG. 12 is a temperature sensitive capacitor, the oscillation frequency f changes proportionally with a temperature change of the environment around the medical transmitter. Thus, the medical transmitter can transmit the electric signal concerning the temperature as well as the signal resulted from the detecting means.

Referring to FIG. 13, the transistor turned oscillator 4 has a tuning inductor 12' and/or 13 having a variable inductance sensitive to a second physiological variable, so that the oscillation frequency f varies as a function of the second physiological variable.

In the medical transmitter as shown in FIG. 13, use of the tuning inductors 12' and 13 having a movable magnetic core with a pressure in the environment surrounding the medical transmitter, causes the inductances of the tuning inductors l2 and 13' to change with the pressure which is a second physiological variable. Thus, the oscillation frequency f changes in accordance with the pressure change.

It is readily apparent that a medical transmitter according to the present invention can measure a physiological variable of a human body without using a battery or the like and an external energy sender.

While certain representative embodiments and details have been shown by the purpose of illustrating the invention, it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit or scope of invention.

What is claimed is:

l. A medical transmitter adapted for transmission of an electric signal corresponding to a physiological variable in a human body, which comprises detecting means having two detecting terminals provided with a detected voltage E relating to said physiological variable; limiting network means which has two input terminals connected with said two detecting terminals and which has two output terminals provided with a limiting current I therefrom; a storing capacitor of a capacitance, C which is connected with said two output terminals; and oscillator means which has two energizing terminals connected with two terminals of said storing capacitor and energizable by an electric charge stored in said storing capacitor which functions as a power source for said oscillator means, said oscillator means for starting oscillation in an oscillation frequency f when a voltage between said two energizing terminals rises up to a starting voltage V, and for stopping said oscillation when said voltage between said two energizing terminals falls down to a stopping voltage V,,, and said oscillator means having a leakage current 1, adapted to flow therethrough upon the cessation of said oscillation and an actuating current I. to flow therethrough during oscillation, said oscillating means having the following operating characteristic:

l)mn.r )I|l||l )nm.r |l a)ma.r 0-

in P) where (1 is a maximum value of said leakage current 1,, (I),,,,,, and (1) are a minimum value and a maximum value of said limiting current 1, respectively, and (l and (I,,),,,,,, are a minimum value and a maximum value of said actuating current 1 respectively; whereby said oscillator means is intermittently oscillating with an intermittent oscillation period which is variable with a change in said detected voltage.

2. A medical transmitter defined by claim 23, wherein said limiting network means comprises a limiting resistor having resistance R 3. A medical transmitter defined by claim 2, wherein said oscillator means comprises a transistor tuned oscillator.

. 4. A medical transmitter defined by claim 3, wherein said detecting means comprises a pH sensor.

5. A medical transmitter defined by claim 4, wherein said pH sensor has a pH sensitive electrode comprising an antimony electrode, and a reference electrode comprising a zinc electrode.

6. A medical transmitter defined by claim 4, wherein said pI-I sensor has a pH sensitive electrode comprising an antimony electrode, and a reference electrode comprising a manganese electrode. 1

7. A medical transmitter as claimed in claim 4, wherein said pH sensor has a pH sensitive electrode comprising an antimony electrode, and a reference electrode .comprising a magnesium-zinc alloy electrode.

8. A medical transmitter asclaimed in claim 4, wherein said pH sensor has a pH sensitive electrode comprising an antimony electrode, and a reference electrode comprising a manganese dioxide electrode.

9. A medical transmitter as claimed in claim 4, wherein said pH sensor has a pH sensitive electrode comprising an antimony electrode and a reference electrode comprising a vanadium pentoxide electrode.

10. A medical transmitter defined by claim 3, wherein said transistor tuned oscillator has a tuning capacitor having a variable capacitance sensitive to an enviromental condition surrounding said medical transmitter. v

11.- A medical transmitter defined by claim 10, wherein said tuning capacitor is a temperature sensitive capacitor.

12. A medical transmitter defined by claim 3, wherein said transistor tuned oscillator has a tuning inductor, an inductance of which is variable depending upon a second physiological.

13. A medical transmitter defined by claim 12, wherein said second physiological variable is pressure and said tuning inductor has a magnetic core movable with a change in said pressure.

14. A medical transmitter defined by claim 1, wherein said storing capacitor is a voltage dependent capacitor.

15. A medical transmitter defined by claim 1, wherein said limiting network means comprises voltage dependent elements.

16. A medical transmitter defined by claim 1, wherein said storing capacitor consists essentially of a temperature sensitive capacitor capable of compensating a temperature dependence of said intermittent oscillation period of said medical transmitter.

17. A medical transmitter defined by claim 1, wherein said limiting network means comprises temperature sensitive elements capable of compensating a tion period of said medical transmitter.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3218638 *May 29, 1962Nov 16, 1965William M HonigWireless passive biological telemetry system
US3231834 *Oct 5, 1962Jan 25, 1966Nippon Electric CoTelemetering capsule for physiological measurements
Non-Patent Citations
Reference
1 *Mackay et al. Nature, Vol. 179, June 15, 1957 pp. 1,239 1,240
2 *Nagumo et al. IRE Transactions on Bio Medical Electronics Vol. BME 9, July, 1962, pp. 195 199
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3837339 *Feb 3, 1972Sep 24, 1974Whittaker CorpBlood glucose level monitoring-alarm system and method therefor
US3924251 *Mar 25, 1974Dec 2, 1975Hydril CoInput signal powered converter
US4177800 *Apr 10, 1978Dec 11, 1979Enger Carl CImplantable biotelemetry transmitter and method of using same
US5016631 *Mar 23, 1990May 21, 1991The Johns Hopkins UniversityMinimum interface biomedical monitoring system
US5415181 *Dec 1, 1993May 16, 1995The Johns Hopkins UniversityAM/FM multi-channel implantable/ingestible biomedical monitoring telemetry system
US6453199 *Mar 28, 1997Sep 17, 2002Valery Ivanovich KobozevElectrical gastro-intestinal tract stimulator
US6653842 *Jul 10, 2001Nov 25, 2003Digital Concepts Of MissouriGalvanic probes as pH and oxidation reduction potential sensors, control devices employing such probes, and related methods
US6864755Oct 5, 2001Mar 8, 2005Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern CaliforniaSwitched reactance modulated E-class oscillator design
US6889087Jun 26, 2002May 3, 2005Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern CaliforniaSwitched reactance modulated E-class oscillator design
US7001329Jul 22, 2003Feb 21, 2006Pentax CorporationCapsule endoscope guidance system, capsule endoscope holder, and capsule endoscope
US7005935Mar 19, 2004Feb 28, 2006Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern CaliforniaSwitched reactance modulated E-class oscillator
US7013178Sep 25, 2002Mar 14, 2006Medtronic, Inc.Implantable medical device communication system
US7109933Mar 7, 2005Sep 19, 2006Pentax CorporationWearable jacket having communication function, and endoscope system employing wearable jacket
US7139613Dec 11, 2003Nov 21, 2006Medtronic, Inc.Implantable medical device communication system with pulsed power biasing
US7160258Jun 26, 2001Jan 9, 2007Entrack, Inc.Capsule and method for treating or diagnosing the intestinal tract
US7245954 *Mar 25, 2004Jul 17, 2007Given Imaging Ltd.Measuring a gradient in-vivo
US7273454Oct 24, 2003Sep 25, 2007Brigham And Women's HospitalHealth monitoring system
US7286884Jan 16, 2004Oct 23, 2007Medtronic, Inc.Implantable lead including sensor
US7824347May 1, 2003Nov 2, 2010Entrack, Inc.System for marking a location for treatment within the gastrointestinal tract
US7978064 *Sep 21, 2009Jul 12, 2011Proteus Biomedical, Inc.Communication system with partial power source
US8005536Dec 22, 2003Aug 23, 2011Entrack, Inc.Capsule and method for treating or diagnosing conditions or diseases of the intestinal tract
US8103357Sep 13, 2007Jan 24, 2012Medtronic, Inc.Implantable lead including sensor
US8114021Dec 15, 2009Feb 14, 2012Proteus Biomedical, Inc.Body-associated receiver and method
US8197650 *Mar 14, 2008Jun 12, 2012Sensor Innovations, Inc.Silicon electrochemical sensors
US8258962Mar 5, 2009Sep 4, 2012Proteus Biomedical, Inc.Multi-mode communication ingestible event markers and systems, and methods of using the same
US8360976Dec 22, 2003Jan 29, 2013Entrack, Inc.Optical capsule and spectroscopic method for treating or diagnosing the intestinal tract
US8396563Jan 29, 2010Mar 12, 2013Medtronic, Inc.Clock synchronization in an implantable medical device system
US8504165Jan 22, 2013Aug 6, 2013Medtronic, Inc.Clock synchronization in an implantable medical device system
US8506779 *Sep 22, 2011Aug 13, 2013Sensor Innovations, Inc.Electrochemical sensors
US8517961Nov 1, 2010Aug 27, 2013Entrack, Inc.System for marking a location for treatment within the gastrointestinal tract
US8540632May 23, 2008Sep 24, 2013Proteus Digital Health, Inc.Low profile antenna for in body device
US8540633Aug 13, 2009Sep 24, 2013Proteus Digital Health, Inc.Identifier circuits for generating unique identifiable indicators and techniques for producing same
US8540664Mar 24, 2010Sep 24, 2013Proteus Digital Health, Inc.Probablistic pharmacokinetic and pharmacodynamic modeling
US8542123Aug 1, 2012Sep 24, 2013Proteus Digital Health, Inc.Multi-mode communication ingestible event markers and systems, and methods of using the same
US8545402Apr 27, 2010Oct 1, 2013Proteus Digital Health, Inc.Highly reliable ingestible event markers and methods for using the same
US8545436Dec 23, 2011Oct 1, 2013Proteus Digital Health, Inc.Body-associated receiver and method
US8547248Sep 1, 2006Oct 1, 2013Proteus Digital Health, Inc.Implantable zero-wire communications system
US8558563Aug 23, 2010Oct 15, 2013Proteus Digital Health, Inc.Apparatus and method for measuring biochemical parameters
US8583227Sep 23, 2011Nov 12, 2013Proteus Digital Health, Inc.Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US8597186Jan 5, 2010Dec 3, 2013Proteus Digital Health, Inc.Pharmaceutical dosages delivery system
US8663105 *Aug 8, 2009Mar 4, 2014Nxp, B.V.Ingestible devices for measuring physiological parameters
US8665035 *May 1, 2009Mar 4, 2014L-3 Communications Integrated Systems LpSystems and methods for generating pulsed output signals using a gated RF oscillator circuit
US8674825Mar 13, 2009Mar 18, 2014Proteus Digital Health, Inc.Pharma-informatics system
US8718193Nov 19, 2007May 6, 2014Proteus Digital Health, Inc.Active signal processing personal health signal receivers
US8721540Nov 18, 2010May 13, 2014Proteus Digital Health, Inc.Ingestible circuitry
US8730031Jul 11, 2011May 20, 2014Proteus Digital Health, Inc.Communication system using an implantable device
US8758584Dec 16, 2011Jun 24, 2014Sensor Innovations, Inc.Electrochemical sensors
US20080284599 *Apr 28, 2006Nov 20, 2008Proteus Biomedical, Inc.Pharma-Informatics System
US20100277248 *May 1, 2009Nov 4, 2010Mcclain Jr Ross ASystems and methods for generating pulsed output signals using a gated RF oscillator circuit
US20110105864 *Nov 18, 2010May 5, 2011Timothy RobertsonPharma-Informatics System
US20110295079 *Aug 8, 2009Dec 1, 2011Nxp B.V.Ingestible devices for measuring physiological parameters
US20120067724 *Sep 22, 2011Mar 22, 2012Kahn Carolyn RElectrochemical sensors
EP0138402A2 *Sep 17, 1984Apr 24, 1985Alfred CuschieriA method and apparatus for monitoring pH values
WO2002026115A2 *Sep 27, 2001Apr 4, 2002Healthetech IncSelf-contained monitoring device particularly useful for monitoring physiological conditions
Classifications
U.S. Classification600/302, 331/66, 331/117.00R, 340/870.31, 340/870.11, 340/870.38, 340/870.28, 331/173, 340/870.39
International ClassificationA61B5/00, A61B5/07
Cooperative ClassificationA61B5/073, A61B2018/1435, A61B5/0031, A61B5/42
European ClassificationA61B5/42, A61B5/00B9, A61B5/07B