US3683239A - Self-latching solenoid actuator - Google Patents

Self-latching solenoid actuator Download PDF

Info

Publication number
US3683239A
US3683239A US153939A US3683239DA US3683239A US 3683239 A US3683239 A US 3683239A US 153939 A US153939 A US 153939A US 3683239D A US3683239D A US 3683239DA US 3683239 A US3683239 A US 3683239A
Authority
US
United States
Prior art keywords
solenoid
switch
plunger
solenoid coil
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US153939A
Inventor
Oded E Sturman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3683239A publication Critical patent/US3683239A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/226Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil for bistable relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/20Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2209Polarised relays with rectilinearly movable armature

Definitions

  • the solenoid has a permanent magnet in the magnetic circuit thereof so that an actuating current in a first direction will actuate the solenoid and charge the permanent magnet, and a smaller current in the opposite direction will de-magnetiz e the permanent magnet and allow a return spring to force the plunger to the fully extended position.
  • a singlepole, double-throw switch electrically coupled to the solenoid coil is disposed adjacent the magnetic circuit and mechanically coupled to the solenoid plunger. The switch is coupled in the circuit so as to be opera tive to turn off the actuating current and the unlatching current as the plunger approaches the latched and unlatched positions respectively, and to re-connect the solenoid coil in preparation for the next operating signal.
  • This invention relates to the field of solenoid actuators and the method of actuation thereof.
  • one form of latching mechanism is comprised of a pennanent magnet forming part of the magnetic circuit of the solenoid.
  • the permanent magnet is thus subject to the magnetizing and de-magnetizing forces of the solenoid coil and provides a form of magnetic memory to retain either a high flux density, as characteristic of the actuation conditions, or a low flux density (approaching zero) characteristic of the unlatching condition.
  • a high current pulse is applied to the solenoid coil. This causes a strong magnetic field between the stationary portion of the solenoid and the solenoid plunger, with the magnetic field in the stationary portion also passing through the permanent magnet.
  • Prior art solenoids of the latching variety as hereabove described are highly efficient as compared to the non-latching solenoids since power is not required to maintain the solenoid in the actuated position after actuation has occurred.
  • the current pulses required to actuate the solenoid are not easily generated and considerable additional complexity in the associated circuitry is required in order to make the hereabove described latching solenoids operate properly.
  • the primary difficulty arises from the fact that the current pulses for latching and unlatching must be controlled (and different) in amplitude, of opposite polarity and of timed duration.
  • a switching means is disposed adjacent the solenoid stationary member and a member actuated by the plunger extends through the end of the stationary member so as to engage the switching means.
  • the switch is a single-pole, double-throw switch with the moving contact attached to one end of the coil and each of the two remaining contacts attached to each of the power supply terminals.
  • FIG. 2 is a cross-section of the solenoid actuator of the present invention taken along lines 2-2 of FIG. 1.
  • FIG. 3 is a schematic diagram showing the electrical connection of the solenoid actuator of the present invention to a source of electrical power and remote control of the actuator.
  • FIG. 4a is a schematic diagram representing the cross-section of the magnetic circuit of the solenoid actuator of the present invention, illustrating the relatively weak magnetic field in the magnetic circuit when the solenoid is in the unlatched condition.
  • FIG. 4b is a schematic diagram representing the cross-section of the magnetic circuit of the solenoid actuator of the present invention, illustrating the strong magnetic field in the magnetic circuit holding solenoid actuator in the latched position.
  • FIG. 1 a perspective view of the present invention solenoid may be seen.
  • the solenoid of this embodiment is characterized by a cylindrical body 20, a plunger rod 34 extending outward from the cylindrical body, and three wires 24, 26 and 28 extending outward generally from the top of the solenoid.
  • both ends of the solenoid coil 42 are connected to the same side of the DC power source 74. Consequently, the power drain from the power source 74 in this unlatched state is zero.
  • the field lines 82 in FIG. 4a which is a schematic representation of the magnetic circuit in the solenoid when in the fully extended position.
  • the strength of the magnetic field at this time is quite low, as shall be subsequently described in detail, being on the order of 5 to percent of the saturation values for the circuit.
  • the solenoid When the solenoid is first actuated, the high current in the solenoid winding 42 results in a high magnetizing force in the magnetic circuit. Initially, this magnetizing force is divided, part of it being required to cause a high flux density in the air gap between the plunger and the stationary portion of the solenoid and part of it, for reasons to subsequently become apparent, being required to cause the relatively high flux density in the permanent magnet. As the plunger moves toward the actuated position, the magnetizing force required to sustain the high magnetic field in the air gap reduces proportionately, so that a greater percentage of the magnetizing force is concentrated in the permanent magnet.
  • B is the flux density in the magnet

Abstract

A self-latching solenoid actuator having a low power consumption and an internal switching arrangement whereby latching and unlatching may be accomplished by such means as a simple singlepole, double-throw remote switch. The solenoid has a permanent magnet in the magnetic circuit thereof so that an actuating current in a first direction will actuate the solenoid and charge the permanent magnet, and a smaller current in the opposite direction will de-magnetize the permanent magnet and allow a return spring to force the plunger to the fully extended position. A single-pole, double-throw switch electrically coupled to the solenoid coil is disposed adjacent the magnetic circuit and mechanically coupled to the solenoid plunger. The switch is coupled in the circuit so as to be operative to turn off the actuating current and the unlatching current as the plunger approaches the latched and unlatched positions respectively, and to re-connect the solenoid coil in preparation for the next operating signal.

Description

United States Patent 1 3,683,239 Sturman 1 Aug. 8, 1972 [54] SELF-LATCHING SOLENOID Primary ExaminerL. T. Hix
ACTUATOR [72] Inventor: Oded E. Sturman, 18643 Kirkcolm Lane, Northridge, Calif.
[22] Filed: June 17, 1971 211 Appl. No.: 153,939
[52] US. Cl. ..317/150, 317/l54, 317/157, 335/170, 335/179, 335/234 [51] Int. Cl. ..H0lh 9/20, HOlh 47/04 [58] Field of Search ..317/150, 154, 157; 335/170, 335/179 [56] References Cited UNITED STATES PATENTS 2,635,197 4/1953 Routledge et al ..317/140 3,203,447 8/1965 Bremner et al ..335/229 3,218,523 11/1965 Benson ..335/234 3,271,707 9/1966 Koehler ..31 7/150 3,370,206 2/1968 Pearse ..317/140 3,380,006 4/1968 Donath ..317/140 Attorney-Spensley, Horn and Lubtiz [57] ABSTRACT A self-latching solenoid actuator having a low power consumption and an internal switching arrangement whereby latching and unlatching may be accomplished by such means as a simple single-pole, double-throw remote switch. The solenoid has a permanent magnet in the magnetic circuit thereof so that an actuating current in a first direction will actuate the solenoid and charge the permanent magnet, and a smaller current in the opposite direction will de-magnetiz e the permanent magnet and allow a return spring to force the plunger to the fully extended position. A singlepole, double-throw switch electrically coupled to the solenoid coil is disposed adjacent the magnetic circuit and mechanically coupled to the solenoid plunger. The switch is coupled in the circuit so as to be opera tive to turn off the actuating current and the unlatching current as the plunger approaches the latched and unlatched positions respectively, and to re-connect the solenoid coil in preparation for the next operating signal.
12 Claims, 7 Drawing Figures PATENT ED RUB 8 I97? 3 683, 239
sum 1 or 2 00150 f. STOP/144M Gee-L INVENTOR.
47- ro/PA/E s QS 1 SELF-LATCHING SOLENOID ACTUATOR BACKGROUND OF THE INVENTION 1. Field of the Invention.
This invention relates to the field of solenoid actuators and the method of actuation thereof.
2. Prior Art.
Solenoids are well-known electromechanical devices for the conversion of electrical energy into mechanical energy, and particularly into short stroke mechanical motion. These devices are used to actuate valves, clutches and the like upon the application of an electrical signal. In many applications, the efiiciency of the solenoid is of little concern since a relatively unlimited source of electrical power is readily available. By way of example, solenoids used in dishwashers for actuating valves, pumps and the like are operated directly from a 115 volt power source for so long as the solenoid is maintained in the actuated position, and power dissipation, except as it effects solenoid size to avoid overheating, is of little concern.
In other applications, the efficiency of the solenoid may be a significant consideration. By way of example, solenoids may be used in applications where the source of power is limited, such as, in applications where the solenoid is to be operated by batteries. To decrease the power dissipation by the solenoid, particularly in applications where the solenoid is to be retained in the actuated position for significant time periods, latching systems are used in conjunction with the solenoids so that the solenoids may be actuated by a relatively short term pulse to the solenoid coil and latched in the actuated position without requiring further electrical power application to the solenoid. Later, upon application of a short unlatching signal, the latching system is released and a return spring returns the solenoid plunger to the fully extended position. Thus, the solenoid is actuated and latched for an indefinitely long period by the application of only a short duration pulse of electrical energy and may be unlatched for an indefinite period by a similar unlatching pulse of electrical energy.
In the prior art, one form of latching mechanism is comprised of a pennanent magnet forming part of the magnetic circuit of the solenoid. The permanent magnet is thus subject to the magnetizing and de-magnetizing forces of the solenoid coil and provides a form of magnetic memory to retain either a high flux density, as characteristic of the actuation conditions, or a low flux density (approaching zero) characteristic of the unlatching condition. Thus, to actuate and latch the solenoid, a high current pulse is applied to the solenoid coil. This causes a strong magnetic field between the stationary portion of the solenoid and the solenoid plunger, with the magnetic field in the stationary portion also passing through the permanent magnet. The magnetic forces on the plunger attract the plunger into the fully actuated position and the magnetizing force on the permanent magnet causes the permanent magnet to be strongly charged. Thus, when the actuating current pulse is removed, the permanent magnet maintains a substantial portion of the magnetic field, thereby retaining the solenoid plunger in the actuated position. To unlatch the solenoid so that the return spring may move the solenoid plunger back to the fully extended position, a current pulse is passed through the solenoid coil in the opposite direction. This current pulse is selected to be substantially less in magnitude than the actuating and latching current pulse so that the permanent magnet is substantially de-magnetized and the field in the solenoid reduced to a very low level. In this condition, the return spring force is much greater than the magnetic force and the soldnoid plunger is returned to the fully extended position by the return spring.
Prior art solenoids of the latching variety as hereabove described are highly efficient as compared to the non-latching solenoids since power is not required to maintain the solenoid in the actuated position after actuation has occurred. However, the current pulses required to actuate the solenoid are not easily generated and considerable additional complexity in the associated circuitry is required in order to make the hereabove described latching solenoids operate properly. The primary difficulty arises from the fact that the current pulses for latching and unlatching must be controlled (and different) in amplitude, of opposite polarity and of timed duration. Consequently, timing circuitry, polarity reversing circuitry and current determining circuitry must be used with prior art latching solenoids having permanent magnet latching systems therein in order to achieve the desired result. The additional complexity of such circuitry substantially detracts from the otherwise desirable features of such latching solenoids. In this regard, it should be noted that because of the improved efficiency of a latching solenoid over a solenoid of the non-latching variety, smaller solenoids may be used for a specific application without resulting in overheating of the solenoid. Thus, such self-latching solenoids have the potential of being substantially cheaper in a given application because of a substantial reduction in size compared to the size of a non-latching solenoid for the same application. This potential cost reduction, however, is not realized in prior art actuating systems because of the complexity of the circuitry required to provide the required actuating and unlatching signals to the solenoid.
BRIEF SUMMARY OF THE INVENTION A self-latching solenoid actuator having a low power consumption and an internal switching arrangement whereby latching and unlatching may be accomplished by such means as a simple single-pole, double-throw external switch and the like. The solenoid has a permanent magnet in the magnetic circuit thereof so that upon actuation by a high current in a first direction in the solenoid coil, the plunger is pulled into the actuated position and the permanent magnet is charged, thereby magnetically retaining the plunger in the actuated position. When a smaller current is passed through the solenoid coil in the opposite direction, the magnetic field holding the solenoid in the actuated position is reduced to approximately zero so that a return spring may force the plunger to the fully extended position. A switching means is disposed adjacent the solenoid stationary member and a member actuated by the plunger extends through the end of the stationary member so as to engage the switching means. The switch is a single-pole, double-throw switch with the moving contact attached to one end of the coil and each of the two remaining contacts attached to each of the power supply terminals. By attaching the other end of the solenoid coil to the equivalent of the moving member of an external single-pole, double-throw switch and attaching the equivalent of the two stationary contacts of the exter nal switch to the power supply terminals, the solenoid may be caused to be actuated and unlatched in response to the condition of the external switch. The internal switch limits the power drain to that required for actuation and unlatching and maintains the steadystate power drain at zero. Two embodiments of the invention are disclosed.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of one embodiment of the self-latching solenoid actuator of the present invention.
FIG. 2 is a cross-section of the solenoid actuator of the present invention taken along lines 2-2 of FIG. 1.
FIG. 3 is a schematic diagram showing the electrical connection of the solenoid actuator of the present invention to a source of electrical power and remote control of the actuator.
FIG. 4a is a schematic diagram representing the cross-section of the magnetic circuit of the solenoid actuator of the present invention, illustrating the relatively weak magnetic field in the magnetic circuit when the solenoid is in the unlatched condition.
FIG. 4b is a schematic diagram representing the cross-section of the magnetic circuit of the solenoid actuator of the present invention, illustrating the strong magnetic field in the magnetic circuit holding solenoid actuator in the latched position.
FIG. 5 is a 8-H curve typical of permanent magne materials illustrating the magnetic field density and magnetizing force for various points throughout the operation of the solenoid actuator of the present invention.
FIG. 6 is a cross-section of an alternate embodiment of the solenoid actuator of the present invention.
DETAILED DESCRIPTION OF THE INVENTION First referring to FIG. 1, a perspective view of the present invention solenoid may be seen. The solenoid of this embodiment is characterized by a cylindrical body 20, a plunger rod 34 extending outward from the cylindrical body, and three wires 24, 26 and 28 extending outward generally from the top of the solenoid.
Now referring to FIG. 2, a cross-section taken along lines 2-2 of FIG. 1 may be seen. The various components of the solenoid are housed withinhousing 30 (forming cylindrical body which provides an outer protective case and may be adapted as desired for mounting of the solenoid. A plunger 32 is disposed adjacent one end of the case, with an integral plunger rod 34 projecting through an opening in the end of the case for attachment to the mechanism to be actuated by the solenoid. A soft iron inner case member 36 has an inner diameter 38 forming a loose slip fit with the outer diameter of the plunger 32, and has an integral, upward projecting cylindrical member 40 forming a portion of the magnetic circuit and providing an inner diameter for location of other components of the solenoid. Fitting within the upward projecting member 40 is a solenoid coil 42 wound on a plastic bobbin 44. A nonmagnetic spacer 46 fits within the inside diameter of plastic bobbin 44 and spaces a soft iron pole piece 48 above the inner end 50 of the plunger 32. Located above the pole piece 48 is a permanent magnet 52, the top surface of which is substantially flush with the top of the plastic bobbin 44. A soft iron upper frame member 54 fits within the upward projecting member 40 so as to complete the magnetic circuit and to retain the various components of the solenoid in cooperative disposition.
Located above the upper frame member is a nonmagnetic spacer 56, and located thereabove at the top of the outer case member 30 is a single-pole, doublethrow switch 58 having a centrally disposed actuating member 60. The switch 58, of the type often referred to as microswitches, is retained in position by cementing the switch in place in the case member 30 (as are the other parts of the solenoid).
The plunger 32 has a cylindrical depression 62 extending downward from the top face 50 of the plunger and adapted to receive the switch actuating pin 64. The switch actuating pin 64, which is a non-magnetic pin, has an enlarged head 66 at the lower end thereof fitting within cylindrical depression 62 in plunger 32, and extends upward through clearance holes in pole piece 48, magnet 52, upper frame member 54 and the spacer 56 to a position adjacent switch actuating member 60. A coil spring 68 disposed between pole piece 48 and the enlarged head 66 on switch actuating pin 64 urges the switch actuating pin and plunger 32 into the downward position shown in FIG. 2. This position shall be referred to herein as the fully extended position.
The various parts of the solenoid are assembled by merely slipping them in the proper order into the top of case member 30 and cementing various of the parts to the case member so as to retain the assembly in position. The two leads for solenoid coil 42 may be brought out through appropriate openings in the side of member 40 and case member 30, or, as is done in the preferred embodiment, may be brought upward through appropriately placed grooves in pole piece 54 and cooperative holes in spacer 56 to positions adjacent switch 58. This last specified manner of bringing out the two solenoid coil leads is preferred because it disposes the leads adjacent the switch and, as shall be subsequently seen, one of such leads is connected to one of the switch terminals.
Having described the structure of the solenoid of the present invention, the electrical connection of the solenoid and operation thereof shall now be described with the aid of FIG. 3. One end 41 of the solenoid coil 42 is connected to the moving contact 70 of switch 58 in the solenoid (generally indicated by the dashed enclosure 72 of FIG. 3). The other end of the solenoid winding is brought out of the solenoid on line 24 and the two switch contacts for switch 58 are brought out on lines 26 and 28. Thus, the solenoid of the present invention has three electrical connections thereto, rather than simply two electrical connections characteristic of the prior art devices. Leads 26 and 28 are connected to each side of a DC power source74 and lead 24 is connected to the moving contact 76 of a single-pole, double-throw switch, generally indicated by the numeral 78. One contact of the switch is connected to the power source 74 and the other contact is connected through a resistor 80 to the other side of the power source. It is to be understood that the singlepole, double-throw switch 78 is schematic only, and in any specific application of the present invention might be comprised of a mechanical switch, an electronic switch or like devices. With switch 78 in the position shown in FIG. 3, the solenoid plunger will be in the fully extended position, as shown in FIG. 2, and microswitch 58 will also be in the position shown in FIG. 3. Thus, both ends of the solenoid coil 42 are connected to the same side of the DC power source 74. Consequently, the power drain from the power source 74 in this unlatched state is zero. In this condition, there will be a small magnetic field in the solenoid, generally indicated by the field lines 82 in FIG. 4a (which is a schematic representation of the magnetic circuit in the solenoid when in the fully extended position). The strength of the magnetic field at this time is quite low, as shall be subsequently described in detail, being on the order of 5 to percent of the saturation values for the circuit. Since the magnetic force exerted on the end 50 of plunger 32 by the magnetic field between the plunger and the pole member 48 is proportional to the square of the field strength, the magnetic force exerted on the plunger is on the order of 1 percent of the maximum force achievable. The return spring 68, on the other hand, which is under substantial preload, has a force approximately equal to one-half the maximum force of the solenoid, and, therefore, plunger 32 is encouraged to remain in the position shown by the return spring.
When switch 78 is first switched to the position shown in phantom in FIG. 3, line 24 is connected to the positive side of the power source 74 while the other end of coil 42 is connected through line 28 to the negative side of the power source. Consequently, the full voltage of power source 74 is connected to the solenoid coil 42 and a high magnetizing current is caused to flow in the coil. This creates a high magnetizing force in the magnetic circuit, causing a high flux density both through permanent magnet 52 and through the air gap between pole piece 48 and plunger 32. In general, it is desirable for the current in coil 42 to result in a sufi'rcient magnetizing force to nearly saturate the soft iron in the magnetic circuit and to substantially fully magnetize the permanent magnet 52. Under this condition, the solenoid force will be approximately twice the return spring force and the solenoid plunger will move to the position shown in FIG. 4b and as shown in phantom in FIG. 2. This position shall be referred to herein as the fully actuated or latched position for the solenoid. As the plunger approaches the position shown, the switch actuating member 64 (FIG. 1) operates the switch 58, causing the switch to change to the position shown in phantom in FIG. 3. When the switch 58 changes to this position, the current in coil 42 falls to zero, since both ends of the coil are again attached to the same terminal of the power source 74 (in this case the positive terminal). However, since the permanent magnet 52 was substantially fully magnetized by the sharp pulse of current to the solenoid coil, and since the current pulse terminated only as the air gap in the magnetic path approached a very small value, there is little demagnetizing force present to cause a demagnetization of the permanent magnet. Therefore, the field remains at a very high level as indicated by the field lines 84 in FIG. 4b, the magnetic force remains substantially equal to twice the return spring force, and the plunger is latched in the position shown in FIG. 4b. Thus, the solenoid has been actuated, caused to latch in the actuated position, and has been disconnected from further power drain merely upon a single external switching signal.
The solenoid is changed from the latched condition shown in FIG. 4 to the unlatched and fully extended position as shown in FIGS. 2 and 4a by moving external switch 78 from the position shown in phantom back to the original position. Since microswitch 58 initially remains in the position shown in phantom in FIG. 3, opposite ends of the coil 42 are again connected to opposite poles of the power source 74. However, in this case line 24 is connected to the negative side of the power source and the other end of coil 42 is connected to the positive side of the power source through line 26. Thus, the polarity of the electrical connection to the solenoid coil 42 is reversed over that which initially caused the high field strength 84 as shown in FIG. 4b. Consequently, the current flowing through the solenoid coil 42 causes a substantial de-magnetizing force on the permanent magnet 52. If this current were not limited, the net efiect would be to demagnetize and re-magnetize permanent magnet 52 with the opposite polarity, and since magnetic force is proportional to the square of the field, a reversal of field polarity would result in no change in the magnetic force. However, the de-magnetizing current is limited by resistor 80 so that the permanent magnet 52 is not re-magnetized with the opposite polarity as that shown 4b. FIG. 4b. Instead, resistor 80 is chosen so that the de-magnetizing force created by the current flowing in coil 42 is substantially equal to the de-magnetizing force required to reduce the field in the magnetic circuit, and particularly in the permanent magnet, to a value substantially equal to zero. Thus, the magnetic force from the solenoid falls to substantially zero and the return spring returns the solenoid plunger to the position shown in FIG. 4a. As the plunger returns, the switch actuating member 64 allows switch 58 to switch back to its original position as shown in FIG. 3, thus terminating the de-magnetizing current pulse and again connecting both ends of solenoid coil 42 to the same side of power source 74, namely, the negative terminal.
When the tie-magnetizing current is switched off as hereinabove described, the permanent magnet will cause a small percentage of the maximum magnetic field to return to the magnetic circuit. However, the extent to which the magnetic field increases when the demagnetizing current is switched off may be controlled by the proper design of the solenoid and, in general, will not be adequate to prevent the desired unlatching of the solenoid.
The design considerations for the design of a solenoid of the present invention having the greatest latching force and the greatest unlatching ability may be described with the aid of FIG. 5. This figure is a typical de-magnetization curve for a permanent magnet material, the curve shown being generally representative of the grain oriented alnico V materials. It is to be understood, however, that other permanent magnet materials may also be used with the solenoids of the present invention by appropriate design of the solenoid magnetic circuit, though alnico V is used in the preferred embodiment because of its high energy product, its high saturation flux density and its moderate magnetizing and de-magnetizing force requirements. In FIG. 5, the ordinate is the flux density B and the abscissa is the de-magnetizing force I-I. When the solenoid is first actuated, the high current in the solenoid winding 42 results in a high magnetizing force in the magnetic circuit. Initially, this magnetizing force is divided, part of it being required to cause a high flux density in the air gap between the plunger and the stationary portion of the solenoid and part of it, for reasons to subsequently become apparent, being required to cause the relatively high flux density in the permanent magnet. As the plunger moves toward the actuated position, the magnetizing force required to sustain the high magnetic field in the air gap reduces proportionately, so that a greater percentage of the magnetizing force is concentrated in the permanent magnet. In order to insure that the permanent magnet is well magnetized without requiring an excessive magnetizing current in the solenoid coil, it is desirable to design the various components of the solenoid so that the switch 58 will turn off the magnetizing current as hereinabove described only as the plunger approaches the latched position. This assures that only a small percentage of the magnetizing force is required to maintain the flux density in the air gap and most of the magnetizing force is impressed on the permanent magnet. This provides the most efficient use of the available magnetizing force which, for a given solenoid design, is a measure of the power dissipation in the solenoid coil. Under these conditions, the permanent magnet will have the flux density and be subject to the magnetizing force indicated by point 86 in FIG. 5.
Typically, the flux density at saturation, that is, at point 86, is somewhat less than the saturation flux density for the soft iron components in the solenoid. Thus, since the magnetic force is proportional to the square of the flux density times the area over which the flux density is distributed, the solenoid force at saturation of the permanent magnet may be increased if the flux between the plunger and the fixed portion of the solenoid is distributed over a smaller area than the flux through the permanent magnet. In general, the plunger iron should saturate at substantially the same total field strength as the permanent magnet. Thus, it may be noted in FIG. 2 that the area of surface 50 of the plunger 32 is substantially smaller than the cross-section of magnet 52, the ratio of these areas being dependent upon the permanent magnet material chosen for magnet 52.
When switch 58 actuates so as to turn off the magnetizing current, the operating point of the permanent magnet will move along line 88 to point 90, determined by the intersection of line 88 and line 92. Line 92 is, in essence, a measure of the air gap in the magnet circuit at the instant that the magnetizing current is terminated and may be approximated by the equation B HAglm/A l,
where B is the flux density in the magnet;
where H is the magnetizing (dc-magnetizing) force in the permanent magnet;
where Ag is the cross-sectional area of the air gap between the plunger and the stationary portion of the solenoid (e.g., the cross-sectional area of the plunger face);
where lm is the length of the magnet as measured in the direction of the field through the magnet;
where A is the cross-sectional area of the magnet measured perpendicular to the field; and
where 1,, is the length of the air gap between the plunger face and the stationary portion of the solenoid.
Thus, it may be seen that when the actuating current is switched off the flux density in the solenoid will drop somewhat depending in part upon the air gap length I, at that time. If the air gap is small, the flux density will remain relatively high and similarly the solenoid force will remain relatively high. The plunger will continue moving to the latched position as a result of the high flux density maintained by the permanent magnet, and at the latched position, since the air gaps in the magnetic circuit are then small, the flux density will approach the value at point 94.
From the above description, it is apparent that the solenoid force is lowest during actuation at the instant that the actuating current is switched off, and this force may be caused to be as high as possible by designing the solenoid so that the actuating current does not switch off until the air gap between the plunger and pole piece 48 is approaching zero.
When the external switch 78 is switched to the unlatching position, a de-magnetizing current is caused to flow in the solenoid coil. This current is limited by resistor 80 so as to cause a de-magnetizing force approximately equal to that indicated at point 96, which in turn causes the magnetic field in the solenoid to go substantially to zero. In this condition, as hereinbefore described, the return spring 68 urges the plunger 32 toward the fully extended position, and as the plunger approaches the fully extended position causes switch 58 to turn off the de-magnetizing current. When this occurs the flux density in the magnetic circuit will increase to the value existing at point 98, determined by the intersection of line (having a slope approximately equal to the slope of line 88 at point 94 and representing a physical characteristic of the permanent magnet material) and line 102 determined by the same equation as line 92 but having a much shallower slope because of the greatly increased air gap at this time. The flux density at point 98 will result in a small magnetic force opposing the return spring force, thereby reducing the net force urging the plunger to the unlatched position. This force, however, being proportional to the square of the field strength, will be relatively small and may be caused to be a minimum by assuring in the design of the solenoid that the de-magnetizing current causes the flux density in the solenoid to approach zero (e.g., to have a small plus or minus value) and by assuring that the de-magnetizing current remains until the plunger is near the fully extended position, that is, until the air gap l, is near its maximum value. Thus, it may be seen from the above description of the latching and unlatching of the solenoid actuator of the present invention that it is desirable, though not absolutely necessary, that the switch 58 be caused to have a certain amount of mechanical hysteresis as is typical of switches of a suitable type that are commercially available, or, in the alternative, a small time lag so that it will not switch during the travel of the solenoid plunger in either direction until the plunger is near 9 or at the end of that travel. Such action of the switch assures maximum latching and minimum unlatching forces for a solenoid of a given size.
When the latching current is again applied to the solenoid coil and the magnetizing force increases, the operating point for the magnet will move from point 98 along line 104 to point 86, again substantially saturating the permanent magnet and the solenoid iron, at least in the vicinity of the plunger face.
Now referring to FIG. 6 an alternate embodiment of the present invention solenoid may be seen. In this embodiment, the design of the solenoid is very similar to that of the embodiment illustrated in FIGS. 1 and 2. In particular, the elements of the solenoid, identified by numbers followed by the letter a, are similar in design and function to the elements identified by the same numbers and described with respect to FIG. 2, and, therefore, a detailed description of the design and function of most of these parts will not be herein repeated. It should be noted, however, that in this design the plunger 32 and plunger rod 34 are not integral, but
instead comprise an assembly of two pieces. Similarly, the soft iron inner case member 36a and the upward projecting cylindrical member 40a are not integral members, but again are an assembly of two separate pieces. The upper frame member 540 has a slot, generally indicated by the numberal 120, in which one of the leads of the solenoid coil 42a is disposed. The other solenoid lead is brought out through a slot in the upward projecting cylindrical member 40a and a hole in the housing 30a as lead 24a. Lead 26a passes through a second hole in housing 30a and is electrically attached to the electrically conductive housing so as to provide electrical contact through the various other conductive parts of the solenoid, and particularly through coil spring 68a and actuating pin 64a. An electrically insulative element 122 provides a support for conductive contact surface 124, connected to lead 28a through a third hole in the housing 30a, and also provides a support for a leaf switch member 126. Thus, with the solenoid in the fully extended position, as shown in FIG. 6, the solenoid coil 42a is electrically connected to leads 24a and 28a, but upon actuation of the solenoid the switch actuating pin 64a makes electrical contact with the leaf switch member 126, and simultaneously elastically deflects the switch member so that it no longer makes electrical connection with contact surface 124. Consequently, the solenoid coil 42 is then connected between leads 24a and leads 26a, thereby providing for the operation and switching of the solenoid coil connections as hereinbefore described, particularly with respect to FIG. 3.
Other embodiments, and in particular, other arrangements for the solenoid actuated switching of the solenoid lead connections, will be obvious to those skilled in the art. By way of specific example, the principles of the present invention may be applied to rotary solenoids, using either a cam actuated switch, such as switch 58, or a rotary switch well-known in the art of mechanical switching devices. Similarly, while the schematic representation of FIG. 3 suggests the operation of the solenoid of the present invention directly from an electrical source 74, such as a battery, other sources of electrical power may readily be used with the present invention, such as a capacitor storage system comprising a battery connected through a resistor to a capacitor so that the solenoid is latched and unlatched by the discharge of the capacitor, thereby providing a higher instantaneous current level than would be possible with a small battery, yet resulting in a very low total energy withdrawal from the battery. Thus, while the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Iclaim:
1. A solenoid actuator having a stationary member and a moving member adapted for motion between first and second orientations with respect to said stationary member, a solenoid coil having first and second leads, a permanent magnet, and a switch, said stationary member and said moving member forming a magnetic circuit with said permanent magnet in said circuit, said solenoid coil being disposed with respect to said magnetic circuit so as to cause a magnetizing force in said circuit in response to a current therethrough, said stationary member and said moving member being adapted to magnetically urge said moving member toward said first orientation with respect to said stationary member in response to the establishment of a magnetic field in said magnetic circuit, said switch being electrically coupled to said first solenoid coil lead and adapted to switch electrical coupling with said first solenoid coil lead between first and second actuator leads in response to motion between said stationary member and said moving member.
2. The solenoid actuator of claim 1 wherein said switch has mechanical hysteresis so that said switch will not switch electrical coupling with said first solenoid lead between said first and second actuator leads until said solenoid plunger is at least approaching the end of its travel between said first and second orientations.
3. The solenoid actuator of claim 1 wherein said switch exhibits a time lag between said motion between said stationary member and said moving member, and its switching of said first solenoid coil lead between first and second actuator leads.
4. The solenoid actuator of claim 1 further comprising a return spring, said return spring being disposed between said stationary member and said moving member so as to yieldably urge said moving member from said first orientation to said second orientation with respect to said stationary member.
5. The solenoid actuator of claim 2 further comprised of a source of direct current having first and second terminals, a current limiting means and a remote switching means schematically representable as a single pole, double-throw switch having a moving contact switchable between first and second fixed contacts, said second solenoid coil lead being coupled to said moving contact of said remote switch, said first and second actuator leads being coupled to first and second terminals of said source of direct current, respectively, said first fixed contact of said remote switch being coupled to said first terminal of said source of direct current and said second fixed contact of said remote switch being coupled through said current limiting means, to said second terminal of said source of direct current.
6. A solenoid actuator comprising a stationary member, a plunger, a permanent magnet, a solenoid coil and a switch means, said plunger and said stationary member forming a magnetic circuit having a minimum air gap when said plunger is in the actuated position and a maximum air gap when in the fully extended position, said permanent magnet being disposed so as to form a portion of said magnetic circuit and to be subject to magnetizing forces in said magnetic circuit, said solenoid coil being disposed so as to cause a magnetizing force on said magnetic circuit 99 when current is passed through said coil, said switch means having first and second terminals and being cooperatively disposed with respect to said plunger and electrically coupled to a first end of said solenoid coil so as to be operative to switch the coupling of said first end of said solenoid coil from said first terminal to said second terminal as said plunger moves toward said actuated position and from said second terminal to said first terminal as said plunger moves toward said fully extended position.
7. The solenoid actuator of claim 6 further comprising a return spring, said return spring being disposed between said plunger and said stationary member and being operative to return said plunger to the fully extended position when the magnetic field in said magnetic circuit is substantially less than the magnetic field required to saturate said magnetic circuit.
8. The solenoid actuator of claim 6 wherein said switch means comprises first and second fixed contacts connected to said first and second terminals and a moving contact connected to said first end of said solenoid coil moveable between said first and second fixed contacts.
9. A solenoid actuator comprising:
a generally cylindrical housing;
a magnetic plunger within said housing having an upwardly disposed plunger face defined by a first outer diameter and an inner diameter and adapted for vertical motion between an extended position and an actuated position;
a plunger rod of a second diameter substantially less than said first outer diameter connected to said plunger and extending through a clearance hole in the bottom of said housing;
a cylindrical magnetic member disposed around said plunger, having a loose fit with said first outer diamter, and extending upward therefrom;
a solenoid coil having first and second leads, located within and concentric to said upward extending portion of said magnetic member;
a magnetic pole piece, having a clearance hole concentric therewith, disposed within said solenoid coil and spaced above the upper end of said plunger when said plunger is in said extended position;
a permanent magnet having a clearance hole concentric therewith disposed within said solenoid coil and immediately above said pole piece;
a magnetic top plate having a clearance hole concentric therewith disposed immediately above said solenoid coil and said permanent magnet, and extending radially outward to a position adjacent said upward extending portion of said cylindrical a etic m r; a SW] c actuating pm disposed within said clearance holes in said pole piece, said magnet and said top plate, and having an enlarged head extending into said inner diameter of said plunger;
a coil spring disposed between said pole piece and said enlarged head on said actuating pin and yieldably urging said actuating pin and said plunger toward said extended position; and
a single-pole, double-throw switch mounted above said top'plate and adapted for actuation by said actuating pin, said switch being connected to said first solenoid coil lead and adapted to switch electrical coupling with said first solenoid coil lead between first and second actuator leads in response to motion of said plunger.
10. The solenoid actuator of claim 9 wherein said switch has mechanical hysteresis so that said switch will not switch electrical coupling with said first solenoid coil lead between first and second actuator leads until said plunger is at least approaching the end of its travel at said extended position and said actuated position.
11. The solenoid actuator of claim 9 wherein said switch exhibits a time lag between motion of said plunger and the switching of electrical coupling with said first solenoid coil between first and second actuator leads.
12. The solenoid actuator of claim 9 further comprised of a source of direct current having first and second terminals, a current limiting means and a remote switching means schematically representable as a single pole, double-throw switch having a moving contact switchable between first and second fixed contacts, said second solenoid coil lead being coupled to said moving contact of said remote switch, said first and second actuator leads being coupled to first and second terminals of said source of direct current, respectively, said first fixed contact of said remote switch being coupled to said first terminal of said source of direct current and said second fixed contact of said remote switch being coupled, through a current limiting means, to said second terminal of said source of direct current.

Claims (12)

1. A solenoid actuator having a stationary member and a moving member adapted for motion between first and second orientations with respect to said stationary member, a solenoid coil having first and second leads, a permanent magnet, and a switch, said stationary member and said moving member forming a magnetic circuit with said permanent magnet in said circuit, said solenoid coil being disposed with respect to said magnetic circuit so as to cause a magnetizing force in said circuit in response to a current therethrough, said stationary member and said moving member being adapted to magnetically urge said moving member toward said first orientation with respect to said stationary member in response to the establishment of a magnetic field in said magnetic circuit, said switch being electrically coupled to said first solenoid coil lead and adapted to switch electrical coupling with said first solenoid coil lead between first and second actuator leads in response to motion between said stationary member and said moving member.
2. The solenoid actuator of claim 1 wherein said switch has mechanical hysteresis so that said switch will not switch electrical coupling with said first solenoid lead between said first and second actuator leads until said solenoid plunger is at least approaching the end of its travel between said first and second orientations.
3. The solenoid actuator of claim 1 wherein said switch exhibits a time lag between said motion between said stationary member and said moving member, and its switching of said first solenoid coil lead between first and second actuator leads.
4. The solenoid actuator of claim 1 further comprising a return spring, said return spring being disposed between said stationary member and said moving member so as to yieldably urge said moving member from said first orientation to said second orientation with respect to said stationary member.
5. The solenoid actuator of claim 2 further comprised of a source of direct current having first and second terminals, a current limiting means and a remote switching means schematically representable as a single pole, double-throw switch having a moving contact switchable between first and second fixed contacts, said second solenoid coil lead being coupled to said moving contact of said remote switch, said first and second actuator leads being coupled to first and second terminals of said source of direct current, respectively, said first fixed contact of said remote switch being coupled to said first terminal of said source of direct current and said second fixed contact of said remote switch being coupled through said current limiting means, to said second terminal of said source of direct current.
6. A solenoid actuator comprising a stationary member, a plunger, a pErmanent magnet, a solenoid coil and a switch means, said plunger and said stationary member forming a magnetic circuit having a minimum air gap when said plunger is in the actuated position and a maximum air gap when in the fully extended position, said permanent magnet being disposed so as to form a portion of said magnetic circuit and to be subject to magnetizing forces in said magnetic circuit, said solenoid coil being disposed so as to cause a magnetizing force on said magnetic circuit 99 when current is passed through said coil, said switch means having first and second terminals and being cooperatively disposed with respect to said plunger and electrically coupled to a first end of said solenoid coil so as to be operative to switch the coupling of said first end of said solenoid coil from said first terminal to said second terminal as said plunger moves toward said actuated position and from said second terminal to said first terminal as said plunger moves toward said fully extended position.
7. The solenoid actuator of claim 6 further comprising a return spring, said return spring being disposed between said plunger and said stationary member and being operative to return said plunger to the fully extended position when the magnetic field in said magnetic circuit is substantially less than the magnetic field required to saturate said magnetic circuit.
8. The solenoid actuator of claim 6 wherein said switch means comprises first and second fixed contacts connected to said first and second terminals and a moving contact connected to said first end of said solenoid coil moveable between said first and second fixed contacts.
9. A solenoid actuator comprising: a generally cylindrical housing; a magnetic plunger within said housing having an upwardly disposed plunger face defined by a first outer diameter and an inner diameter and adapted for vertical motion between an extended position and an actuated position; a plunger rod of a second diameter substantially less than said first outer diameter connected to said plunger and extending through a clearance hole in the bottom of said housing; a cylindrical magnetic member disposed around said plunger, having a loose fit with said first outer diamter, and extending upward therefrom; a solenoid coil having first and second leads, located within and concentric to said upward extending portion of said magnetic member; a magnetic pole piece, having a clearance hole concentric therewith, disposed within said solenoid coil and spaced above the upper end of said plunger when said plunger is in said extended position; a permanent magnet having a clearance hole concentric therewith disposed within said solenoid coil and immediately above said pole piece; a magnetic top plate having a clearance hole concentric therewith disposed immediately above said solenoid coil and said permanent magnet, and extending radially outward to a position adjacent said upward extending portion of said cylindrical magnetic member; a switch actuating pin disposed within said clearance holes in said pole piece, said magnet and said top plate, and having an enlarged head extending into said inner diameter of said plunger; a coil spring disposed between said pole piece and said enlarged head on said actuating pin and yieldably urging said actuating pin and said plunger toward said extended position; and a single-pole, double-throw switch mounted above said top plate and adapted for actuation by said actuating pin, said switch being connected to said first solenoid coil lead and adapted to switch electrical coupling with said first solenoid coil lead between first and second actuator leads in response to motion of said plunger.
10. The solenoid actuator of claim 9 wherein said switch has mechanical hysteresis so that said switch will not switch electrical coupling with said first solenoid coil lead between first and second actuator leads until said plunger is at least approaching the end of its tRavel at said extended position and said actuated position.
11. The solenoid actuator of claim 9 wherein said switch exhibits a time lag between motion of said plunger and the switching of electrical coupling with said first solenoid coil between first and second actuator leads.
12. The solenoid actuator of claim 9 further comprised of a source of direct current having first and second terminals, a current limiting means and a remote switching means schematically representable as a single pole, double-throw switch having a moving contact switchable between first and second fixed contacts, said second solenoid coil lead being coupled to said moving contact of said remote switch, said first and second actuator leads being coupled to first and second terminals of said source of direct current, respectively, said first fixed contact of said remote switch being coupled to said first terminal of said source of direct current and said second fixed contact of said remote switch being coupled, through a current limiting means, to said second terminal of said source of direct current.
US153939A 1971-06-17 1971-06-17 Self-latching solenoid actuator Expired - Lifetime US3683239A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15393971A 1971-06-17 1971-06-17

Publications (1)

Publication Number Publication Date
US3683239A true US3683239A (en) 1972-08-08

Family

ID=22549336

Family Applications (1)

Application Number Title Priority Date Filing Date
US153939A Expired - Lifetime US3683239A (en) 1971-06-17 1971-06-17 Self-latching solenoid actuator

Country Status (1)

Country Link
US (1) US3683239A (en)

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798581A (en) * 1971-11-02 1974-03-19 Philips Corp Electro-mechanically switched permanent magnet holding device
US3984795A (en) * 1976-02-09 1976-10-05 I-T-E Imperial Corporation Magnetic latch construction
US3989066A (en) * 1971-12-30 1976-11-02 Clifton J. Burwell by said Oded E. Sturman and said Benjamin Grill Fluid control system
US3995243A (en) * 1974-10-17 1976-11-30 North American Philips Corporation Fault detection indicator
US4000481A (en) * 1976-02-09 1976-12-28 I-T-E Imperial Corporation Magnetic latch with shunt path barrel
US4063299A (en) * 1975-10-24 1977-12-13 Eagle Electric Mfg. Co. Inc. Magnetically latched ground fault circuit interrupter
WO1981001796A1 (en) * 1979-12-28 1981-07-09 W Enk Method and system for aircraft fire protection
US4383234A (en) * 1981-10-14 1983-05-10 The Singer Company Magnetic latch valve
US4423484A (en) * 1981-03-30 1983-12-27 Hamilton William H Irrigation control system
EP0111016A1 (en) * 1981-10-14 1984-06-20 Oded E. Sturman Integrated latching actuators
US4482018A (en) * 1981-11-25 1984-11-13 William A. Enk Fire protection system for aircraft
US4566542A (en) * 1981-11-25 1986-01-28 William A. Enk Fire protection system for aircraft
US4577143A (en) * 1983-10-08 1986-03-18 Robert Bosch Gmbh Method and apparatus to convert an electrical value into a mechanical position by using an electromagnetic element subject to hysteresis
US4683452A (en) * 1986-06-30 1987-07-28 Regdon Solenoid, Inc. Bi-stable electromagnetic actuator
US4737750A (en) * 1986-12-22 1988-04-12 Hamilton Standard Controls, Inc. Bistable electrical contactor arrangement
EP0268804A1 (en) * 1986-10-28 1988-06-01 Siemens Aktiengesellschaft Electrical switch disposition
US4754362A (en) * 1986-03-07 1988-06-28 Eaton Corporation Magnetically latching and current sensitive automatically unlatching switch assembly
US4766433A (en) * 1984-07-06 1988-08-23 Codercard, Inc. Optical card-key data connector
US4797820A (en) * 1986-07-28 1989-01-10 Ansan Industries Limited Programmable flow control valve unit with clock, program, automatic, manual, and repeat modes
US4801910A (en) * 1988-02-10 1989-01-31 Siemens Energy And Automation, Inc. Magnetic actuating mechanism
US4876521A (en) * 1987-08-25 1989-10-24 Siemens Energy & Automation, Inc. Tripping coil with flux shifting coil and booster coil
WO1990005374A1 (en) * 1988-11-09 1990-05-17 Ped Limited Improvements in electromagnetic devices
US4984123A (en) * 1989-07-17 1991-01-08 Potter & Brumfield, Inc. Latching switching device having current responsive release
EP0579110A1 (en) * 1992-07-16 1994-01-19 Molex Incorporated Switched receptacle circuit
US5364252A (en) * 1992-08-26 1994-11-15 General Motors Corporation Gas injector with retractable nozzle for assist of plastics injection molding
US5407131A (en) * 1994-01-25 1995-04-18 Caterpillar Inc. Fuel injection control valve
US5422556A (en) * 1990-09-27 1995-06-06 Siemens Aktiengesellschaft Process for reducing hysteresis effects, and an electromechanical transducer in which hysteresis effects are reduced in this way
US5421521A (en) * 1993-12-23 1995-06-06 Caterpillar Inc. Fuel injection nozzle having a force-balanced check
US5449119A (en) * 1994-05-25 1995-09-12 Caterpillar Inc. Magnetically adjustable valve adapted for a fuel injector
US5474234A (en) * 1994-03-22 1995-12-12 Caterpillar Inc. Electrically controlled fluid control valve of a fuel injector system
US5479901A (en) * 1994-06-27 1996-01-02 Caterpillar Inc. Electro-hydraulic spool control valve assembly adapted for a fuel injector
US5488340A (en) * 1994-05-20 1996-01-30 Caterpillar Inc. Hard magnetic valve actuator adapted for a fuel injector
US5494220A (en) * 1994-08-08 1996-02-27 Caterpillar Inc. Fuel injector assembly with pressure-equalized valve seat
US5494219A (en) * 1994-06-02 1996-02-27 Caterpillar Inc. Fuel injection control valve with dual solenoids
US5584466A (en) * 1993-10-21 1996-12-17 Smc Corporation Self-holding type solenoid valves
US5597118A (en) * 1995-05-26 1997-01-28 Caterpillar Inc. Direct-operated spool valve for a fuel injector
US5598871A (en) * 1994-04-05 1997-02-04 Sturman Industries Static and dynamic pressure balance double flow three-way control valve
US5605289A (en) * 1994-12-02 1997-02-25 Caterpillar Inc. Fuel injector with spring-biased control valve
US5628293A (en) * 1994-05-13 1997-05-13 Caterpillar Inc. Electronically-controlled fluid injector system having pre-injection pressurizable fluid storage chamber and direct-operated check
US5640987A (en) * 1994-04-05 1997-06-24 Sturman; Oded E. Digital two, three, and four way solenoid control valves
US5641148A (en) * 1996-01-11 1997-06-24 Sturman Industries Solenoid operated pressure balanced valve
US5673669A (en) * 1994-07-29 1997-10-07 Caterpillar Inc. Hydraulically-actuated fluid injector having pre-injection pressurizable fluid storage chamber and direct-operated check
US5687693A (en) * 1994-07-29 1997-11-18 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5697342A (en) * 1994-07-29 1997-12-16 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5720318A (en) * 1995-05-26 1998-02-24 Caterpillar Inc. Solenoid actuated miniservo spool valve
US5720261A (en) * 1994-12-01 1998-02-24 Oded E. Sturman Valve controller systems and methods and fuel injection systems utilizing the same
US5758626A (en) * 1995-10-05 1998-06-02 Caterpillar Inc. Magnetically adjustable valve adapted for a fuel injector
WO1998040898A2 (en) * 1997-03-08 1998-09-17 Blp Components Limited Two pole contactor
US5826562A (en) * 1994-07-29 1998-10-27 Caterpillar Inc. Piston and barrell assembly with stepped top and hydraulically-actuated fuel injector utilizing same
WO1999004616A1 (en) 1997-07-25 1999-02-04 Sturman Bg, Llc Solar powered programmable valve and methods of operation thereof
US5936500A (en) * 1997-06-18 1999-08-10 Eaton Corporation Bi-stable self-adjusting actuator mechanism
US5982605A (en) * 1998-03-05 1999-11-09 The United States Of America As Represented By The Secretary Of The Navy Solenoid driver circuit for use with digital magnetic latching solenoids
US6005763A (en) * 1998-02-20 1999-12-21 Sturman Industries, Inc. Pulsed-energy controllers and methods of operation thereof
US6035895A (en) * 1998-01-26 2000-03-14 Sturman Bg, Llc Three-way latching fluid valve
US6046900A (en) * 1998-03-05 2000-04-04 The United States Of America As Represented By The Secretary Of The Navy Solenoid driver circuit for use with digital magnetic latching valves
US6068288A (en) * 1998-03-26 2000-05-30 Sturman/Tlx Llc Dynamic control valve system adapted for inflatable restraint systems for vehicles
US6082332A (en) * 1994-07-29 2000-07-04 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US6085991A (en) * 1998-05-14 2000-07-11 Sturman; Oded E. Intensified fuel injector having a lateral drain passage
WO2000042836A1 (en) 1999-01-25 2000-07-27 Sturman Bg, Llc Programmable electronic valve control system and methods of operation thereof
US6109284A (en) * 1999-02-26 2000-08-29 Sturman Industries, Inc. Magnetically-latchable fluid control valve system
WO2000054295A1 (en) * 1999-03-09 2000-09-14 E.I.B. S.A. Bistable magnetic drive for a switch
US6129115A (en) * 1999-07-02 2000-10-10 Mac Valves, Inc. Self-latching solenoid valve assembly
US6148778A (en) * 1995-05-17 2000-11-21 Sturman Industries, Inc. Air-fuel module adapted for an internal combustion engine
US6161770A (en) * 1994-06-06 2000-12-19 Sturman; Oded E. Hydraulically driven springless fuel injector
US6234202B1 (en) 1998-02-09 2001-05-22 Sturman Bg, Llc Balanced fluid control valve
US6246561B1 (en) * 1998-07-31 2001-06-12 Magnetic Revolutions Limited, L.L.C Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same
US6257499B1 (en) 1994-06-06 2001-07-10 Oded E. Sturman High speed fuel injector
US6354185B1 (en) 1999-06-17 2002-03-12 Sturman Industries, Inc. Flow manager module
US6424511B1 (en) * 2000-01-12 2002-07-23 Purisys, Inc. Automotive battery disconnect device
US6425375B1 (en) 1998-12-11 2002-07-30 Caterpillar Inc. Piston and barrel assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US20020118057A1 (en) * 1999-08-31 2002-08-29 Leonard Forbes Integrated circuit and method for minimizing clock skews
US6481689B2 (en) 1998-02-09 2002-11-19 Sturman Bg, Llc Balanced fluid control valve
US6483688B1 (en) 2000-07-12 2002-11-19 Mac Valves, Inc. Control circuit for solenoid valve assembly
US6575137B2 (en) 1994-07-29 2003-06-10 Caterpillar Inc Piston and barrel assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US6646529B1 (en) * 1999-06-24 2003-11-11 Abb Patent Gmbh Electromagnetic release
US6677842B1 (en) * 1999-09-29 2004-01-13 Tyco Electronics Logistics Ag Load disconnecting switch especially for use in motor vehicles
US6722628B1 (en) 2003-02-06 2004-04-20 Sturman Industries, Inc. Miniature poppet valve assembly
FR2847380A1 (en) * 2002-11-15 2004-05-21 Mitsubishi Electric Corp ACTUATOR, METHOD FOR THE PRODUCTION THEREOF AND CIRCUIT BREAKER EQUIPPED WITH THE ACTUATOR.
US20040103866A1 (en) * 2001-08-24 2004-06-03 Shafer Scott F. Linear control valve for controlling a fuel injector and engine compression release brake actuator and engine using same
US6763789B1 (en) * 2003-04-01 2004-07-20 Ford Global Technologies, Llc Electromagnetic actuator with permanent magnet
US20040149947A1 (en) * 2003-02-01 2004-08-05 Benjamin Grill Manually-opened and latchable with only residual magnetism, two-way two-position fluid control valve assembly and methods of operation
US6788177B1 (en) * 2003-03-05 2004-09-07 Delphi Technologies, Inc. Commonized actuator for normally open and normally closed modes
US6791442B1 (en) 2003-11-21 2004-09-14 Trombetta, Llc Magnetic latching solenoid
US6856221B1 (en) * 2003-03-07 2005-02-15 Raymond E. Zehrung Reversible solenoid
US20050183480A1 (en) * 2002-08-19 2005-08-25 Hingston Neil R. Electric lock
US20060044095A1 (en) * 2004-08-27 2006-03-02 Tricore Corporation Solenoid with improved spring-back spindle set
US20060219513A1 (en) * 2005-03-30 2006-10-05 Organek Gregory J Residual magnetic devices and methods
US20060219499A1 (en) * 2005-03-30 2006-10-05 Organek Gregory J Residual magnetic devices and methods
US20060219497A1 (en) * 2005-03-30 2006-10-05 Organek Gregory J Residual magnetic devices and methods
US20060219498A1 (en) * 2005-03-30 2006-10-05 Organek Gregory J Residual magnetic devices and methods
US20060219496A1 (en) * 2005-03-30 2006-10-05 Dimig Steven J Residual magnetic devices and methods
US20060225985A1 (en) * 2005-03-30 2006-10-12 Dimig Steven J Residual magnetic devices and methods
US20060226939A1 (en) * 2005-03-30 2006-10-12 Dimig Steven J Residual magnetic devices and methods
US20060226941A1 (en) * 2005-03-30 2006-10-12 Dimig Steven J Residual magnetic devices and methods
US20060227488A1 (en) * 2005-03-30 2006-10-12 Dimig Steven J Residual magnetic devices and methods
US20060237959A1 (en) * 2005-03-30 2006-10-26 Dimig Steven J Residual magnetic devices and methods
US20060238284A1 (en) * 2005-03-30 2006-10-26 Dimig Steven J Residual magnetic devices and methods
US20060238285A1 (en) * 2005-03-30 2006-10-26 Dimig Steven J Residual magnetic devices and methods
US20070245982A1 (en) * 2006-04-20 2007-10-25 Sturman Digital Systems, Llc Low emission high performance engines, multiple cylinder engines and operating methods
US20080264393A1 (en) * 2007-04-30 2008-10-30 Sturman Digital Systems, Llc Methods of Operating Low Emission High Performance Compression Ignition Engines
US20090183699A1 (en) * 2008-01-18 2009-07-23 Sturman Digital Systems, Llc Compression Ignition Engines and Methods
US20100277265A1 (en) * 2005-11-21 2010-11-04 Sturman Digital Systems, Llc Pressure Balanced Spool Poppet Valves with Printed Actuator Coils
US7954472B1 (en) 2007-10-24 2011-06-07 Sturman Digital Systems, Llc High performance, low emission engines, multiple cylinder engines and operating methods
US20120004737A1 (en) * 2005-06-10 2012-01-05 The Ohio Willow Wood Company Prosthetic device utilizing electric vacuum pump
US20120211684A1 (en) * 2011-02-17 2012-08-23 Minimax Gmbh & Co. Kg Release Device
US8596230B2 (en) 2009-10-12 2013-12-03 Sturman Digital Systems, Llc Hydraulic internal combustion engines
US8887690B1 (en) 2010-07-12 2014-11-18 Sturman Digital Systems, Llc Ammonia fueled mobile and stationary systems and methods
US9033309B2 (en) 2008-10-29 2015-05-19 Sauer Danfoss Aps Valve actuator
WO2015080755A3 (en) * 2012-03-09 2015-11-12 Gummin Mark A Solenoid actuators using embedded printed circuit coils
US9206738B2 (en) 2011-06-20 2015-12-08 Sturman Digital Systems, Llc Free piston engines with single hydraulic piston actuator and methods
US9368266B2 (en) 2014-07-18 2016-06-14 Trumpet Holdings, Inc. Electric solenoid structure having elastomeric biasing member
US9464569B2 (en) 2011-07-29 2016-10-11 Sturman Digital Systems, Llc Digital hydraulic opposed free piston engines and methods
WO2017031115A1 (en) * 2015-08-17 2017-02-23 James Howard System, method, and device for wireless control of a vehicle's power supply
US9837197B2 (en) * 2014-10-31 2017-12-05 Johnson Electric S.A. Linear actuator
EP3281905A3 (en) * 2016-07-19 2018-08-08 Wittur Holding GmbH Operating means for an elevator braking device
US10221896B2 (en) 2015-03-10 2019-03-05 Borgwarner Inc. Powertrain rotational disconnect assembly
US11304829B2 (en) * 2017-02-01 2022-04-19 Ottobock Se & Co Kgaa Electromagnetic locking element for a joint orthosis or a joint prosthesis
US20220333412A1 (en) * 2019-12-12 2022-10-20 Vitesco Technologies GmbH Emergency access device for a vehicle opening panel with electrical ejector comprising a percussion mode
US11536388B2 (en) 2020-08-10 2022-12-27 Norgren Gt Development Llc Magnetic latching valve and method of control
US11598442B2 (en) 2019-05-29 2023-03-07 Denso International America, Inc. Current dependent bi-directional force solenoid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635197A (en) * 1950-05-24 1953-04-14 British Tabulating Mach Co Ltd Electrical apparatus
US3203447A (en) * 1963-10-09 1965-08-31 Skinner Prec Ind Inc Magnetically operated valve
US3218523A (en) * 1963-07-29 1965-11-16 Benson Hector Eugene Electromagnetic device having a permanent magnet armature
US3271707A (en) * 1963-11-15 1966-09-06 Chauvin Arnoux Et Cie Soc Electromagnetic relay of the bistable type
US3370206A (en) * 1965-05-26 1968-02-20 Allen Bradley Co Relay flip-flop
US3380006A (en) * 1964-08-11 1968-04-23 Fifth Dimension Inc Logic circuits

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635197A (en) * 1950-05-24 1953-04-14 British Tabulating Mach Co Ltd Electrical apparatus
US3218523A (en) * 1963-07-29 1965-11-16 Benson Hector Eugene Electromagnetic device having a permanent magnet armature
US3203447A (en) * 1963-10-09 1965-08-31 Skinner Prec Ind Inc Magnetically operated valve
US3271707A (en) * 1963-11-15 1966-09-06 Chauvin Arnoux Et Cie Soc Electromagnetic relay of the bistable type
US3380006A (en) * 1964-08-11 1968-04-23 Fifth Dimension Inc Logic circuits
US3370206A (en) * 1965-05-26 1968-02-20 Allen Bradley Co Relay flip-flop

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798581A (en) * 1971-11-02 1974-03-19 Philips Corp Electro-mechanically switched permanent magnet holding device
US3989066A (en) * 1971-12-30 1976-11-02 Clifton J. Burwell by said Oded E. Sturman and said Benjamin Grill Fluid control system
US3995243A (en) * 1974-10-17 1976-11-30 North American Philips Corporation Fault detection indicator
US4063299A (en) * 1975-10-24 1977-12-13 Eagle Electric Mfg. Co. Inc. Magnetically latched ground fault circuit interrupter
US3984795A (en) * 1976-02-09 1976-10-05 I-T-E Imperial Corporation Magnetic latch construction
US4000481A (en) * 1976-02-09 1976-12-28 I-T-E Imperial Corporation Magnetic latch with shunt path barrel
WO1981001796A1 (en) * 1979-12-28 1981-07-09 W Enk Method and system for aircraft fire protection
US4351394A (en) * 1979-12-28 1982-09-28 Enk William A Method and system for aircraft fire protection
US4423484A (en) * 1981-03-30 1983-12-27 Hamilton William H Irrigation control system
EP0111016A1 (en) * 1981-10-14 1984-06-20 Oded E. Sturman Integrated latching actuators
US4383234A (en) * 1981-10-14 1983-05-10 The Singer Company Magnetic latch valve
US4482018A (en) * 1981-11-25 1984-11-13 William A. Enk Fire protection system for aircraft
US4566542A (en) * 1981-11-25 1986-01-28 William A. Enk Fire protection system for aircraft
US4577143A (en) * 1983-10-08 1986-03-18 Robert Bosch Gmbh Method and apparatus to convert an electrical value into a mechanical position by using an electromagnetic element subject to hysteresis
US4766433A (en) * 1984-07-06 1988-08-23 Codercard, Inc. Optical card-key data connector
US4754362A (en) * 1986-03-07 1988-06-28 Eaton Corporation Magnetically latching and current sensitive automatically unlatching switch assembly
US4683452A (en) * 1986-06-30 1987-07-28 Regdon Solenoid, Inc. Bi-stable electromagnetic actuator
US4797820A (en) * 1986-07-28 1989-01-10 Ansan Industries Limited Programmable flow control valve unit with clock, program, automatic, manual, and repeat modes
EP0268804A1 (en) * 1986-10-28 1988-06-01 Siemens Aktiengesellschaft Electrical switch disposition
US4737750A (en) * 1986-12-22 1988-04-12 Hamilton Standard Controls, Inc. Bistable electrical contactor arrangement
US4876521A (en) * 1987-08-25 1989-10-24 Siemens Energy & Automation, Inc. Tripping coil with flux shifting coil and booster coil
US4801910A (en) * 1988-02-10 1989-01-31 Siemens Energy And Automation, Inc. Magnetic actuating mechanism
GB2246908A (en) * 1988-11-09 1992-02-12 Ped Ltd Improvements in electromagnetic devices
WO1990005374A1 (en) * 1988-11-09 1990-05-17 Ped Limited Improvements in electromagnetic devices
US4984123A (en) * 1989-07-17 1991-01-08 Potter & Brumfield, Inc. Latching switching device having current responsive release
US5422556A (en) * 1990-09-27 1995-06-06 Siemens Aktiengesellschaft Process for reducing hysteresis effects, and an electromechanical transducer in which hysteresis effects are reduced in this way
US5345360A (en) * 1992-02-18 1994-09-06 Molex Incorporated Switched receptacle circuit
EP0579110A1 (en) * 1992-07-16 1994-01-19 Molex Incorporated Switched receptacle circuit
US5364252A (en) * 1992-08-26 1994-11-15 General Motors Corporation Gas injector with retractable nozzle for assist of plastics injection molding
US5584466A (en) * 1993-10-21 1996-12-17 Smc Corporation Self-holding type solenoid valves
US5421521A (en) * 1993-12-23 1995-06-06 Caterpillar Inc. Fuel injection nozzle having a force-balanced check
US5407131A (en) * 1994-01-25 1995-04-18 Caterpillar Inc. Fuel injection control valve
US5474234A (en) * 1994-03-22 1995-12-12 Caterpillar Inc. Electrically controlled fluid control valve of a fuel injector system
US5640987A (en) * 1994-04-05 1997-06-24 Sturman; Oded E. Digital two, three, and four way solenoid control valves
US5598871A (en) * 1994-04-05 1997-02-04 Sturman Industries Static and dynamic pressure balance double flow three-way control valve
US5628293A (en) * 1994-05-13 1997-05-13 Caterpillar Inc. Electronically-controlled fluid injector system having pre-injection pressurizable fluid storage chamber and direct-operated check
US5488340A (en) * 1994-05-20 1996-01-30 Caterpillar Inc. Hard magnetic valve actuator adapted for a fuel injector
US5752308A (en) * 1994-05-20 1998-05-19 Caterpillar Inc. Method of forming a hard magnetic valve actuator
US5449119A (en) * 1994-05-25 1995-09-12 Caterpillar Inc. Magnetically adjustable valve adapted for a fuel injector
US5494219A (en) * 1994-06-02 1996-02-27 Caterpillar Inc. Fuel injection control valve with dual solenoids
US6161770A (en) * 1994-06-06 2000-12-19 Sturman; Oded E. Hydraulically driven springless fuel injector
US6257499B1 (en) 1994-06-06 2001-07-10 Oded E. Sturman High speed fuel injector
US5479901A (en) * 1994-06-27 1996-01-02 Caterpillar Inc. Electro-hydraulic spool control valve assembly adapted for a fuel injector
US5826562A (en) * 1994-07-29 1998-10-27 Caterpillar Inc. Piston and barrell assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US5673669A (en) * 1994-07-29 1997-10-07 Caterpillar Inc. Hydraulically-actuated fluid injector having pre-injection pressurizable fluid storage chamber and direct-operated check
US5687693A (en) * 1994-07-29 1997-11-18 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5697342A (en) * 1994-07-29 1997-12-16 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5738075A (en) * 1994-07-29 1998-04-14 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US6082332A (en) * 1994-07-29 2000-07-04 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US6575137B2 (en) 1994-07-29 2003-06-10 Caterpillar Inc Piston and barrel assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US6065450A (en) * 1994-07-29 2000-05-23 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5494220A (en) * 1994-08-08 1996-02-27 Caterpillar Inc. Fuel injector assembly with pressure-equalized valve seat
US5720261A (en) * 1994-12-01 1998-02-24 Oded E. Sturman Valve controller systems and methods and fuel injection systems utilizing the same
US5605289A (en) * 1994-12-02 1997-02-25 Caterpillar Inc. Fuel injector with spring-biased control valve
US6148778A (en) * 1995-05-17 2000-11-21 Sturman Industries, Inc. Air-fuel module adapted for an internal combustion engine
US6173685B1 (en) 1995-05-17 2001-01-16 Oded E. Sturman Air-fuel module adapted for an internal combustion engine
US5720318A (en) * 1995-05-26 1998-02-24 Caterpillar Inc. Solenoid actuated miniservo spool valve
US5597118A (en) * 1995-05-26 1997-01-28 Caterpillar Inc. Direct-operated spool valve for a fuel injector
US5758626A (en) * 1995-10-05 1998-06-02 Caterpillar Inc. Magnetically adjustable valve adapted for a fuel injector
US5641148A (en) * 1996-01-11 1997-06-24 Sturman Industries Solenoid operated pressure balanced valve
WO1998040898A2 (en) * 1997-03-08 1998-09-17 Blp Components Limited Two pole contactor
WO1998040898A3 (en) * 1997-03-08 1998-12-03 Blp Components Ltd Two pole contactor
US5936500A (en) * 1997-06-18 1999-08-10 Eaton Corporation Bi-stable self-adjusting actuator mechanism
US5960813A (en) * 1997-07-25 1999-10-05 Sturman; Oded E. Solar powered programmable valve and methods of operation thereof
WO1999004616A1 (en) 1997-07-25 1999-02-04 Sturman Bg, Llc Solar powered programmable valve and methods of operation thereof
US6035895A (en) * 1998-01-26 2000-03-14 Sturman Bg, Llc Three-way latching fluid valve
US6481689B2 (en) 1998-02-09 2002-11-19 Sturman Bg, Llc Balanced fluid control valve
US6234202B1 (en) 1998-02-09 2001-05-22 Sturman Bg, Llc Balanced fluid control valve
US6005763A (en) * 1998-02-20 1999-12-21 Sturman Industries, Inc. Pulsed-energy controllers and methods of operation thereof
US6046900A (en) * 1998-03-05 2000-04-04 The United States Of America As Represented By The Secretary Of The Navy Solenoid driver circuit for use with digital magnetic latching valves
US5982605A (en) * 1998-03-05 1999-11-09 The United States Of America As Represented By The Secretary Of The Navy Solenoid driver circuit for use with digital magnetic latching solenoids
US6231077B1 (en) 1998-03-26 2001-05-15 Sturman/Tlx Llc Dynamic control valve system adapted for inflatable restraint systems for vehicles
US6068288A (en) * 1998-03-26 2000-05-30 Sturman/Tlx Llc Dynamic control valve system adapted for inflatable restraint systems for vehicles
US6085991A (en) * 1998-05-14 2000-07-11 Sturman; Oded E. Intensified fuel injector having a lateral drain passage
US6246561B1 (en) * 1998-07-31 2001-06-12 Magnetic Revolutions Limited, L.L.C Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same
US6425375B1 (en) 1998-12-11 2002-07-30 Caterpillar Inc. Piston and barrel assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US6257264B1 (en) 1999-01-25 2001-07-10 Sturman Bg, Llc Programmable electronic valve control system and methods of operation thereof
WO2000042836A1 (en) 1999-01-25 2000-07-27 Sturman Bg, Llc Programmable electronic valve control system and methods of operation thereof
US6109284A (en) * 1999-02-26 2000-08-29 Sturman Industries, Inc. Magnetically-latchable fluid control valve system
WO2000054295A1 (en) * 1999-03-09 2000-09-14 E.I.B. S.A. Bistable magnetic drive for a switch
US7843293B1 (en) 1999-03-09 2010-11-30 E.I.B.S.A. Bistable magnetic drive for a switch
US6354185B1 (en) 1999-06-17 2002-03-12 Sturman Industries, Inc. Flow manager module
US6646529B1 (en) * 1999-06-24 2003-11-11 Abb Patent Gmbh Electromagnetic release
US6129115A (en) * 1999-07-02 2000-10-10 Mac Valves, Inc. Self-latching solenoid valve assembly
US20020118057A1 (en) * 1999-08-31 2002-08-29 Leonard Forbes Integrated circuit and method for minimizing clock skews
US6677842B1 (en) * 1999-09-29 2004-01-13 Tyco Electronics Logistics Ag Load disconnecting switch especially for use in motor vehicles
US6424511B1 (en) * 2000-01-12 2002-07-23 Purisys, Inc. Automotive battery disconnect device
US6483688B1 (en) 2000-07-12 2002-11-19 Mac Valves, Inc. Control circuit for solenoid valve assembly
US20040103866A1 (en) * 2001-08-24 2004-06-03 Shafer Scott F. Linear control valve for controlling a fuel injector and engine compression release brake actuator and engine using same
US7066141B2 (en) 2001-08-24 2006-06-27 Caterpillar Inc. Linear control valve for controlling a fuel injector and engine compression release brake actuator and engine using same
US20050183480A1 (en) * 2002-08-19 2005-08-25 Hingston Neil R. Electric lock
FR2847380A1 (en) * 2002-11-15 2004-05-21 Mitsubishi Electric Corp ACTUATOR, METHOD FOR THE PRODUCTION THEREOF AND CIRCUIT BREAKER EQUIPPED WITH THE ACTUATOR.
US6933827B2 (en) 2002-11-15 2005-08-23 Mitsubishi Denki Kabushiki Kaisha Actuator, method of manufacturing the actuator and circuit breaker provided with the actuator
US20040149947A1 (en) * 2003-02-01 2004-08-05 Benjamin Grill Manually-opened and latchable with only residual magnetism, two-way two-position fluid control valve assembly and methods of operation
US6820856B2 (en) 2003-02-01 2004-11-23 Sturman Bg, Llc Manually-opened and latchable with only residual magnetism, two-way two-position fluid control valve assembly and methods of operation
US6722628B1 (en) 2003-02-06 2004-04-20 Sturman Industries, Inc. Miniature poppet valve assembly
US6788177B1 (en) * 2003-03-05 2004-09-07 Delphi Technologies, Inc. Commonized actuator for normally open and normally closed modes
US6856221B1 (en) * 2003-03-07 2005-02-15 Raymond E. Zehrung Reversible solenoid
US7003993B1 (en) 2003-03-07 2006-02-28 Zehrung Raymond E Electrified cylindrical lock
US7007527B1 (en) 2003-03-07 2006-03-07 Zehrung Raymond E Electrified cylindrical lock
US6763789B1 (en) * 2003-04-01 2004-07-20 Ford Global Technologies, Llc Electromagnetic actuator with permanent magnet
US6791442B1 (en) 2003-11-21 2004-09-14 Trombetta, Llc Magnetic latching solenoid
US20060044095A1 (en) * 2004-08-27 2006-03-02 Tricore Corporation Solenoid with improved spring-back spindle set
US20060227488A1 (en) * 2005-03-30 2006-10-12 Dimig Steven J Residual magnetic devices and methods
US8149557B2 (en) 2005-03-30 2012-04-03 Strattec Security Corporation Residual magnetic devices and methods
US20060219498A1 (en) * 2005-03-30 2006-10-05 Organek Gregory J Residual magnetic devices and methods
US20060219496A1 (en) * 2005-03-30 2006-10-05 Dimig Steven J Residual magnetic devices and methods
US20060225985A1 (en) * 2005-03-30 2006-10-12 Dimig Steven J Residual magnetic devices and methods
US20060226939A1 (en) * 2005-03-30 2006-10-12 Dimig Steven J Residual magnetic devices and methods
US20060226941A1 (en) * 2005-03-30 2006-10-12 Dimig Steven J Residual magnetic devices and methods
US20060219499A1 (en) * 2005-03-30 2006-10-05 Organek Gregory J Residual magnetic devices and methods
US20060237959A1 (en) * 2005-03-30 2006-10-26 Dimig Steven J Residual magnetic devices and methods
US20060238284A1 (en) * 2005-03-30 2006-10-26 Dimig Steven J Residual magnetic devices and methods
US20060238285A1 (en) * 2005-03-30 2006-10-26 Dimig Steven J Residual magnetic devices and methods
US10290411B2 (en) 2005-03-30 2019-05-14 Strattec Security Corporation Residual magnetic devices and methods
US7401483B2 (en) 2005-03-30 2008-07-22 Strattec Security Corporation Residual magnetic devices and methods for an ignition actuation blockage device
US8403124B2 (en) 2005-03-30 2013-03-26 Strattec Security Corporation Residual magnetic devices and methods
US20060219497A1 (en) * 2005-03-30 2006-10-05 Organek Gregory J Residual magnetic devices and methods
US7969705B2 (en) 2005-03-30 2011-06-28 Strattec Security Corporation Residual magnetic devices and methods
US20060219513A1 (en) * 2005-03-30 2006-10-05 Organek Gregory J Residual magnetic devices and methods
US20120004737A1 (en) * 2005-06-10 2012-01-05 The Ohio Willow Wood Company Prosthetic device utilizing electric vacuum pump
US9333098B2 (en) * 2005-06-10 2016-05-10 The Ohio Willow Wood Company Prosthetic device utilizing electric vacuum pump
US8629745B2 (en) 2005-11-21 2014-01-14 Sturman Digital Systems, Llc Pressure balanced spool poppet valves with printed actuator coils
US20100277265A1 (en) * 2005-11-21 2010-11-04 Sturman Digital Systems, Llc Pressure Balanced Spool Poppet Valves with Printed Actuator Coils
US7793638B2 (en) 2006-04-20 2010-09-14 Sturman Digital Systems, Llc Low emission high performance engines, multiple cylinder engines and operating methods
US20070245982A1 (en) * 2006-04-20 2007-10-25 Sturman Digital Systems, Llc Low emission high performance engines, multiple cylinder engines and operating methods
US20080264393A1 (en) * 2007-04-30 2008-10-30 Sturman Digital Systems, Llc Methods of Operating Low Emission High Performance Compression Ignition Engines
US7954472B1 (en) 2007-10-24 2011-06-07 Sturman Digital Systems, Llc High performance, low emission engines, multiple cylinder engines and operating methods
US7958864B2 (en) * 2008-01-18 2011-06-14 Sturman Digital Systems, Llc Compression ignition engines and methods
US20090183699A1 (en) * 2008-01-18 2009-07-23 Sturman Digital Systems, Llc Compression Ignition Engines and Methods
US9033309B2 (en) 2008-10-29 2015-05-19 Sauer Danfoss Aps Valve actuator
US8596230B2 (en) 2009-10-12 2013-12-03 Sturman Digital Systems, Llc Hydraulic internal combustion engines
US8887690B1 (en) 2010-07-12 2014-11-18 Sturman Digital Systems, Llc Ammonia fueled mobile and stationary systems and methods
US20120211684A1 (en) * 2011-02-17 2012-08-23 Minimax Gmbh & Co. Kg Release Device
US9259601B2 (en) * 2011-02-17 2016-02-16 Minimax Gmbh & Co. Kg Release device
US9206738B2 (en) 2011-06-20 2015-12-08 Sturman Digital Systems, Llc Free piston engines with single hydraulic piston actuator and methods
US9464569B2 (en) 2011-07-29 2016-10-11 Sturman Digital Systems, Llc Digital hydraulic opposed free piston engines and methods
WO2015080755A3 (en) * 2012-03-09 2015-11-12 Gummin Mark A Solenoid actuators using embedded printed circuit coils
US9368266B2 (en) 2014-07-18 2016-06-14 Trumpet Holdings, Inc. Electric solenoid structure having elastomeric biasing member
US9837197B2 (en) * 2014-10-31 2017-12-05 Johnson Electric S.A. Linear actuator
US9991039B2 (en) * 2014-10-31 2018-06-05 Johnson Electric S.A. Linear actuators
US10221896B2 (en) 2015-03-10 2019-03-05 Borgwarner Inc. Powertrain rotational disconnect assembly
WO2017031115A1 (en) * 2015-08-17 2017-02-23 James Howard System, method, and device for wireless control of a vehicle's power supply
US9931932B2 (en) 2015-08-17 2018-04-03 James Howard System, method, and device for wireless control of a vehicle's power supply
EP3281905A3 (en) * 2016-07-19 2018-08-08 Wittur Holding GmbH Operating means for an elevator braking device
US11304829B2 (en) * 2017-02-01 2022-04-19 Ottobock Se & Co Kgaa Electromagnetic locking element for a joint orthosis or a joint prosthesis
US11598442B2 (en) 2019-05-29 2023-03-07 Denso International America, Inc. Current dependent bi-directional force solenoid
US20220333412A1 (en) * 2019-12-12 2022-10-20 Vitesco Technologies GmbH Emergency access device for a vehicle opening panel with electrical ejector comprising a percussion mode
US11773630B2 (en) * 2019-12-12 2023-10-03 Vitesco Technologies GmbH Emergency access device for a vehicle opening panel with electrical ejector comprising a percussion mode
US11536388B2 (en) 2020-08-10 2022-12-27 Norgren Gt Development Llc Magnetic latching valve and method of control

Similar Documents

Publication Publication Date Title
US3683239A (en) Self-latching solenoid actuator
US3743898A (en) Latching actuators
US3755766A (en) Bistable electromagnetic actuator
US3911429A (en) Self-energized magnetic keys
US3332045A (en) Permanent magnet and electromagnetic actuator
US3814376A (en) Solenoid operated valve with magnetic latch
US3368788A (en) Magnetic latch valve
US7710226B2 (en) Latching linear solenoid
US5883557A (en) Magnetically latching solenoid apparatus
US4538129A (en) Magnetic flux-shifting actuator
US2436354A (en) Electromagnet with armature
US20060208841A1 (en) Electromagnet and actuating mechanism for switch device, using thereof
GB1182313A (en) An Electromagnetic Operating Device
WO1994023230A1 (en) Solenoid actuator
US3091725A (en) Electro-magnetic device
US5554961A (en) Energy efficient electromagnetic circuit
GB1229799A (en)
US5239277A (en) Electromagnetic solenoid actuator
GB2246663A (en) Magnetic switch for coaxial transmission lines
Lequesne Fast-acting long-stroke bistable solenoids with moving permanent magnets
EP0361638A2 (en) Microwave C-switches and S-switches
GB1207758A (en) Magnetodynamic actuator
CN201274237Y (en) Permanent magnet lock type circuit breaker operation mechanism without friction obstacle during switching on and switching off
GB1174309A (en) Bistable Electromagnetic Relays and Assemblies thereof.
US3452253A (en) Electromagnetic actuator having a pair of electromagnets with an armature movable between them