Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3689618 A
Publication typeGrant
Publication dateSep 5, 1972
Filing dateAug 5, 1970
Priority dateAug 5, 1970
Publication numberUS 3689618 A, US 3689618A, US-A-3689618, US3689618 A, US3689618A
InventorsChadwick George F
Original AssigneeAir Reduction
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Use of an unadvanced silicone resin binder in resistor manufacture
US 3689618 A
Abstract
A carbon composition resistor and method for manufacture thereof is disclosed, the resistor being characterized as having a body comprising a conductive particulate component, a nonconductive particulate component, and a silicone resin binder for said components, said binder being advanced and cross-linked entirely in situ in the body.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent us] I 3,689,618

Chadwick 51 Sept. 5, 1972 [54] USE OF AN UNADVANCED SILICONE [56] References Cited RESIN BINDER IN RESISTOR 2,526,059 10/1950 Zabe1eta1...- ..252l51 1 [72] Invent f 2,907,971 10/1959 Krellner ..264/104 3,056,750 10/1962 [73] Assignee: Air Reduction Company, Incor- 3,382,574 5/1968 porated, New York, NY. 3,358,064 12/1967 [22] Filed: 1970 Primary Examiner-Donald J. Arnold |2l Appl. No.: 61,399 Assistant Examiner-John H. Miller 9 Attorney-Hefan J. Klawber, H. Hume Matthews and Related US. Application Data Edmund Bopp [63] Continuation of Ser. No. 690,897, Dec. 15,

1967, abandoned, which is a continuation-in- ABSTRACT P of 410,091 A carbon composition resistor and method for manu- 3,382,574- facture thereof is disclosed, the resistor being characterized as having a body comprising a conductive par- [52] US. Cl. ..264/104, 252/511, 264/105, ticulatc component, a nonconductive particulate 264/123 264/236 264/247 ponent, and a silicone resin binder for said com- [51] Int. Cl. ..H01c 7/00 ponems said binder being advanced and mi k d [58] Field of Search ..264/104, 105, 236, 347; entirely in situ in the body ICIain IDraWingFigure L 040 TESTS 70C AMB/Af/VT -S/L [CONE BONDED CURE K IN ACCORDANCE WITH INVENTION g 0 I0 I 70 1,000 /0,000

S/L/CONE [BONDED CONVENTIONAL cu as RES/STANCE PATENTED-SEP 1912 3.689.618

4 1.040 resrs 70C AMB/ATNT -$/L /c0/v EON/JED CURE //v ACCORDANCE WITH wve/vr/cw 0 /0 190 1,000 10,000

RES/STANCE CHANGE,

SILICONE 190N050 CONVENTIONAL CURE INVENTOR GEORGE F. CHADW/CK USE OF AN UNADVANCED SILICONE RESIN BINDER IN RESISTOR MANUFACTURE BACKGROUND OF THE INVENTION This invention relates generally to composition elecl0 trical resistors of the type including a particulate conductive material such as, for example, carbon black, dispersed in a suitable binder matrix. The invention relates more specifically to a resistor of the aforementioned type in which the binder for the resistor body constitutes a polymerized silicone resin.

In US. Pat. No. 2,526,059 to H. H. Zabel, et al. there is described a method for formation of a resistor body of the general type with which the present invention is concerned. According to the teaching of this patent, the resistor body is formed by combining an advanced organo-silicone polymer binder with a conductive particulate component (and, as desired, inert fillers), and thereafter subjecting the combined composition to hot molding at relatively high temperatures. The same patent also teaches that cold molding may be utilized to form the resistor body in those instances where the binder has already been subjected to substantial advancement prior to the cold molding process.

In my prior US. Pat. No. 3,382,574 previously alluded to, I have disclosed my discovery that silicone resin-bound resistors of improved heat and load stability may be produced by a special curing cycle according to which the silicone resin binder of the molded product is subjected to a short duration high temperature cure of from about 400 to 525C for a period of from 3 to minutes. Now in accordance with the present invention, I have found that a much broader range of temperatures may be employed in curing a silicon resin-bound resistor in those instances where initial cold molding of the unadvanced resin-bound resistor body is effected; and I have moreover found that excellent products thereby result at surprisingly low cure temperatures.

In accordance with the foregoing, it may be regarded as an object of the present invention to provide a method for producing a resistor having improved electrical properties, primarily greater heat stability, better moisture resistance, and longer useful life. It is also an object of the invention to produce by the aforesaid method a resistor body which displays the qualities set forth.

SUMMARY OF INVENTION Now in accordance with the present invention, I'have found that resistors displaying unusually excellent properties of heat stability, moisture resistance, and life expectancy, may be prepared by cold-molding a composition including a dispersed conductive phase, an unadvanced silicone binder, and as appropriate, inert fillers, and only thereafter subjecting the cold-molded resistor body to the heat curing which effects polymerization of the binder. Because much linear polymerization and essentially all cross-linking occurring in the binder takes place in situ, which is to say in the fully formed resistor body, unusually fine uniformity results through the cured body of the resistor, in consequence of which, the highly desired electrical properties sought in such products are enabled. Although any reactive silicone can be utilized, the preferred embodiment of the invention uses a condensable type rather than an unsaturated type. Resistors made according to this invention may be of any convenient shape, such as rods, cubes, etc. and any desired termination may be employed such as pressed metallic ends or molded-in wire leads.

BRIEF DESCRIPTION OF THE DRAWING DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The mixture used for preparing resistors in .accordance with this invention basically includes a silicone resin binder and a filler. To this basic mix are added quantities of electrically conductive material in amounts which depend upon the desired resistance of the end product.

Neglecting such solvents as may be used to facilitate the mixing, the basic mix includes the following ranges of proportions (all percentages stated herein being by weight):

Silicone resin Filler, such as pulverized silica,

mica, wollastonite, asbestos fibers, chopped fiber glass, or a mixture of these and other materials.

To this basic mix is preferably added from one-tenth to 10 percent of calcined carbon black or graphite as the electrically-conductive material. Carbon or graphite in amounts greater than 10 percent may be added to the mix to decrease the resistance of the resulting resistor if desired. The carbon or graphite can be included in the original blending of ingredients of the basic mix to produce what may be considered a homogeneous mix; or the carbon or graphite can be added later to the already-mixed basic mix to produce what may be considered a heterogeneous mixture. Better results are obtained by using carbon black calcined at 1,000C or even higher temperatures.

In constructing the typical leadless or lead-type resistors such as are shown in FIGS. 2 to 4 of my prior US. Pat. No. 3,382,574, it will of course be usual practice to provide an insulating shell for the conductive mix referred to. The basic mix alluded to may be utilized for this shell, that is to say that a composition resembling the resistor core-but minus the conductive component-may form the insulating sleeve for the core. A typical formulation for such a shell might thus include 20.0 percent silicone resin, 78.4 percent 5- micron silica sand, 0.8 percent black iron oxide, and 0.8 percent red iron oxide, the latter two ingredients being added merely to provide desired pigmentation.

It is often desirable to include percent of asbestos fines in the filler, this percentage being taken as a portion of the basic mix; similarly, 10 percent of glass fibers or of mixtures of asbestos fines and glass fibers yield especially good results. The glass fibers and asbestos result in a materially stronger resistor without harm to the thermalstability and moisture resistance. It was thus found that by including 10 percent asbestos fines in place of some of the silica powder, an almost two-fold increase in the fiber strength of the mix resulted.

The silicone resin utilized in the invention is preferably a heat-condensable resin, and excellent results have been obtained by incorporating both alkyl aryl and alkyl silicones simultaneously into the resistor, or by utilizing either resin alone. Among those resins giving especially good results are the silicones sold by the General Electric Company under trade designations 81888, SR-80, SR-21 l, and SR-350. Other suitable resins include the General Electric products SR-220 and the Dow Corning products 5061, 5581, and 2105A. The preferred compositional range for the resins utilized in the invention is between 18 and 22 percent by weight of the basic mix, when silica flour is the principal filler.

The essence of the present inventive process resides in utilizing such techniques that essentially no advancement of the silicone resin binders occurs prior to such time as the completely molded resistor is subjected to the heat curing which effects gross polymerization and cross-linking of the binder. In the analagous parlance of phenolic resin technology, this mode of operation is thus equivalent to maintaining the resins prior to completion of molding below the so-called B stage of polymerization, that is to say below the stage of polymerization at which the resinous products are no longer soluble in such organic solvents as acetone. During the initial process steps of mixing and roll-milling, the absence of such silicone advancement is assured by merely eliminating the use of temperatures which could effect advancement, a proscription which is generally contrary to teachings of the prior art. The following examples are illustrative of the mixing and milling techniques:

EXAMPLE I In this example, which is illustrative of dry processing via a roll mill alone, a core mix comprising by weight 22.0 percent silicone resin, 6.0 percent carbon black, calcined, and 72.0 percent silica sand, was prepared. The silicone resin utilized was the SR-35O resin of General Electric, a type which is essentially solid at room temperature, and which in fact comprises about 98 percent solids and 2 percent acetone. The rolls on the roll mill were heated to approximately 46C to soften the silicone resin. The mill was then turned on and all the resin was added. The resin immediately formed a continuous sheet around the more rapidly moving roll. Carbon black and silica flour were then added, in that order. After approximately 1 to 2 minutes the mix appeared homogeneous. Milling was continued for approximately 7 minutes, at which time Faster Roll 46C Slower Roll 46C Faster Roll 88C Slower Roll 7 C 88C 5-10 minutes Initial Temperature Final Temperature Sheet Temperature Time EXAMPLE II In this example, which is illustrative of wet processingvia a sigma blade mixer plus a roll mill, a core mix similar to that described in connection with Example I was utilized. Initially, the jacket of the sigma blade mixer (Day) was heated to 82C. Acetone and the silicone resin were then added, and blended 15 minutes to dissolve the resin. The other components were then added and mixed 30 minutes, with the lid on, after which the lid was removed, acetone exhausted, and the mix run to dryness. About 30 to 45 minutes was required to desolvate the mix. The resulting dry, powdery composition was then roll-milled in the manner that has been described in connection with Example I.

Following the mixing and milling steps set forth in the preceding examples, the resulting compositions are prepared for cold molding by hammer-milling and screening the mixtures:

EXAMPLE III A cooled sheet prepared in accordance with Examples I or II (50 mils thick) was broken into smaller pieces and hammer-milled to give a free flowing powder, which was then screened to a -40 to +325 mesh particle size for molding.

It should be carefully observed that thus far in the practice of the present invention only temperatures have been utilized which are below those at which advancement of the silicone binder occurs. That the binder does not in fact advance to B staging has been conclusively demonstrated, by experiments of the following type:

EXAMPLE IV A core mix was formulated containing approximately 25 percent silicone resin, 6 percent calcined carbon black, and 69 percent silica filler. A suitable solvent was added, the mix was wet processed in a sigma blade mixer, and desolvated to dryness at 82C. The mix was divided into two parts and further processed on a warm roll mill. Part A was roll milled 5 minutes to a final sheet temperature of 82C. Part B was roll milled 10 minutes to a final sheet temperature of 88C. Both parts were hammer-milled and screened to a -40/+325 mesh particle size. Aliquots of each were then extracted with acetone at room temperature by tumbling four hours in sealed containers. Filtration to retain the fillers and desolvation of the filtrate to recrystallize the dissolved resin gave the following results:

I Part A Part B Wt. of filler recovered on filter 96 I00 Wt. of resin recovered in filtrate 98 96 M.P. range of recovered resin 6367C 6367C Initial M.P. range of resin before processing column, cold mold temperatures are utilized prior to curing.

As may be observed from the next column of Table I, (that depicting the cure treatment) the present invention, in general, utilizes a considerably lower range of temperatures than has previously been considered desirable in this technology, for curing of silicone binders. Temperatures are thus seen from this TABLE I R.T.C

Mold 65" C., +105 0. Ace. 1,000 hr. Resin Temp. Cure R NI percent percent moist loud life 3. OK 17.3 +7.4 SR80. Co1d 23min at250 0. (IR) :8 jg g 20. 1 15. 8 +4. 1

9189 18. 8 +6. SR-SO ..do 35 min. at 200 C. (oven) 8;: g. +4.6

9 SR-80 .do 35 min. at 200 C. (ven)- 40.5K

23 min. at 250 C. (IR) 1.5K SR-350 d0. 23 min. at 250 C. (IR) 1.7

23 min. at 250 C. R) 589 22..) +11. 8 4. 2 +2. 0.8 plus 72 hrs. at 180 C. (oven) 60 min. at 200 C 9. 2K 21. 7 +5.6 +3.1 +3.1

466K +9.6 11.0 +2.0 +3.6 2. 4K -10. 4 6. 1 7. 1 3.0 1.9K -17.6 11.1

1.8K 19.6 z 11.2 d0 4min.at 375 C 2.2K -25.2 12.7 d0.. 12 min. at 375 C 1. 7K 18.1 9. 1

1 At 500 hours.

and the entire resistor is molded at 8-10 T.S.I. for seconds. Throughout such molding process the maximum die temperature utilized is about C, so as previously indicated, no advancement of the binder occurs. Preferably, the leads referred to will be provided at their end portions with a lead dope coating consisting of approximately 37.5 percent silicone resin and 62.5 percent graphite mixed with enough toluene to give proper flow. Subsequent to cold molding, the formed resistors are ejected, and are ready for curing.

Heat curing of the cold molded resistors can be accomplished by baking in an oven, by infrared radiation,- by microwave irradiation, or via other means for supplying the energy required. Reference may be had in this connection to my copending application Ser. No. 410,091 application wherein a form of apparatus suitable for this purpose is depicted. Regardless of the particular mechanism used to provide curing energy, however, the important point to note is that essentially all advancement and cross-linking of the silicone binder takes place during this cure cycle, which is to say with the binder in situ in the completely formed resistor body. The result of such action is to yield a resistor which displays outstanding properties of electrical stability.

Table I is illustrative of the results achieved where a large group of 2-watt resistors were prepared in accordance with the cold molding method used in this invention and then subjected to appropriate heat curing cycles. The resins used in the various test are listed in the first column, all the SR notations representing product designations of the supplier, General Electric Company. In all instances, as is seen from the second table to range, generally, from about 180 to 375C with cure times of the order of 20 minutes to 2 hours. The best overall results have been achieved where curing temperatures in the range of from about 250 to 325C are utilized. It may be noted that in a number of instances cited in the table the heat cure is followed by an annealing step-most commonly 3 days at about 180-200C-which often acts to further stabilize the resistor; however, it is clear from the data presented that annealing need not be utilized.

The data presented in the remaining columns of Table I provides specific test results achieved with the resistors. The R column here thus indicates the measured resistance value of the test item in question; the NI column has reference to the noise index in decibels of the item, and is an indication of the ratio mv/V, where V is an applied standard signal and mv is the resulting spurious signal produced in the test body. The R.T.C. column refers to the resistance temperature coefficient of the resistor, the tabulation being given in the table for -55C and for +105C. The accelerated moisture test of the next column tabulates the percentage resistance change upon subjecting the test body to 3 days at C in a relative humidity environment of 95-100 percent.

The final column in Table I represents the result of subjecting resistors prepared in accordance with the invention to a standard load test. In this test an appropriate electrical load (2 watts and not over 500 volts for these 2-watt resistors, for example) is applied at 70C for 1,000 hours. The load is applied in cyclesminutes load and 30 minutes no load. The stability of the resistor is judged by comparing the resistance before and after the test. Data of the type collected in this column is also graphically plotted for a typical resistor prepared in accordance with the invention, in? the figure appended to this specification. As may be readily seen from the graph, the improvement in stability, as compared to a conventional silicone-bound resistor that is to say a resistor prepared with hot molding and/or substantial advancement of the binder prior to moldingis most impressive.

while the present invention has been particularly described in terms of specific embodiments thereof, it will be evident that in view of the present disclosure numerous modifications and variations of the invention may now be readily devised by those skilled in the art without yet departing from the, teaching herein. Accordingly, the invention is to be broadly construed, and limited only by the scope and spirit of the claims appended hereto.

I claim:

l. The method of making an electrical resistor body which comprises a. mixing l50 percent by weight unadvanced heatcondensable silicone resin binder with -50 percent by weight of particulate non-conductive filler selected from the group consisting of silica, mica, wollastonite, asbestos, glass and mixtures thereof, and 0.10 to 10 percent by weight of the total of binder and filler of electrically conductive material selected from carbon black and graphite, said mixing being carried out at a temperature at which the silicone resin in the mix remains unadvanced,

. pulverizing the mixture while maintaining the temperature below that at which advancement of the resin takes place,

. forming a shaped body by pressing the pulverized mixture in a die while maintaining the temperature below that at which advancement of the resin takes place,

. removing the shaped body from the die, and subjecting the shaped body to a temperature of 200400C for from 20 minutes to 2 hours to cure the silicone resin.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 3,689,618 Dated September 5, 1972 Inventor(s) George F. Chadwick It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below: The Abstract in the printed patent is incorrect. It should have been replaced with a "Continuation Abstract" sent to the Patent O:fice on August 5, 1970, which reads as follows;

"Electrical resistor bodies are made by mixing together an unadvanced heat-condensable silicone resin binder with a filler and a quantity of particulate electrically-conductive material, the mixing being effected with moderate heating of the mixture but without causing any significant curing of the resin, followed by cooling and pulverizing, cold molding the mixture to the desired shape, and curing the resin at a temperature of 200 to LOO C for 20 minutes to 2 hours."

Column 1, line 68, "through" should be --throughout-- Column 5, line 65, "test" should be "tests" Table I, 6th line from the bottom:

"$12350 do 23 min. at 200C. should read -SR35O do 23 min. at ooc.

Also, on this patent the name of Attorney "Hefan J. Klawber' should be --Stefan J. Klauber-- 7 The name of Attorney "H. Hume Matthews" should be -H. Hume Mathews-- The name of Attorney "Edmund H. Bopp" should be --Edmund W. Bopp.

The Assignee on this patent should be AIRCO, INC., in accord ance with the assignment filed in the Patent Office December 8, 1971 Signed and sealed this 13th day of March 1973.

(SEAL) Attest:

ARD M.FLETCHER,JR. ROBERT (EOTTSCHALK fi gesting Officer Commissioner of Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2526059 *Feb 13, 1947Oct 17, 1950Allen Bradley CoFixed electrical resistor
US2907971 *Sep 30, 1955Oct 6, 1959Speer Carbon CompanyMolded zigzag resistor and method of making
US3056750 *Jan 23, 1961Oct 2, 1962Air ReductionResin bonded electrical resistors and methods of producing the same
US3358064 *Mar 24, 1964Dec 12, 1967Vitramon IncEncapsulating molding composition and method for molding the same
US3382574 *Nov 10, 1964May 14, 1968Air ReductionMethod of making an electrical resistor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3808678 *Aug 16, 1972May 7, 1974Matsushita Electric Ind Co LtdMethod of making pressure-sensitive resistor element
US4246217 *Oct 30, 1978Jan 20, 1981Acushnet CompanyConductive rubber antennas having improved physical and electrical properties
US4534889 *Feb 11, 1983Aug 13, 1985Raychem CorporationPTC Compositions and devices comprising them
US4775500 *Apr 24, 1987Oct 4, 1988Matsushita Electric Industrial Co., Ltd.Electrically conductive polymeric composite and method of making said composite
US4775778 *May 14, 1985Oct 4, 1988Raychem CorporationPTC compositions and devices comprising them
US6051642 *Sep 15, 1997Apr 18, 2000General Electric CompanySilicone composition with improved high temperature tolerance
US6395815 *Feb 11, 2000May 28, 2002General Electric CompanySilicone composition with improved high temperature tolerance
US7737082 *Aug 25, 2005Jun 15, 2010James Alan RabeSiloxane composition, agglomerate, and method of preparing
US8409424 *Dec 18, 2009Apr 2, 2013Apex Biotechnology Corp.Electrochemical test strip, electrochemical test system, and measurement method using the same
US20070249757 *Aug 25, 2005Oct 25, 2007Rabe James ASiloxane Composition, Agglomerate, and Method of Preparing
US20100089775 *Dec 18, 2009Apr 15, 2010Apex Biotechnology Corp.Electrochemical test strip, electrochemical test system, and measurement method using the same
US20110059321 *Jun 23, 2008Mar 10, 2011General Electric CompanyMethod of repairing a thermal barrier coating and repaired coating formed thereby
CN102147390A *Dec 17, 2010Aug 10, 2011五鼎生物技术股份有限公司Electrochemical test strip, electrochemical test system, and measurement method using the same
CN102147390BDec 17, 2010Jul 2, 2014五鼎生物技术股份有限公司Electrochemical test strip, electrochemical test system, and measurement method using the same
EP0038718A1 *Apr 21, 1981Oct 28, 1981RAYCHEM CORPORATION (a California corporation)Conductive polymer compositions containing fillers
Classifications
U.S. Classification264/104, 264/347, 264/236, 264/123, 264/105, 252/511
International ClassificationH01B1/24, H01C17/065, H01C17/06
Cooperative ClassificationH01C17/06586, H01B1/24
European ClassificationH01B1/24, H01C17/065B4D