Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3692421 A
Publication typeGrant
Publication dateSep 19, 1972
Filing dateFeb 24, 1970
Priority dateFeb 24, 1970
Publication numberUS 3692421 A, US 3692421A, US-A-3692421, US3692421 A, US3692421A
InventorsMichael Dworski
Original AssigneeMichael Dworski
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cyclonic turbine engines
US 3692421 A
Turbine engine having cyclonic effect with power and pump rotors having radial wires or serated blades providing helical passageways and having internal combustion for creating expanding gases, or steam, either acting through partitions having uniformly spaced helical jets of decreasing cross section arranged concentric with the rotors.
Previous page
Next page
Description  (OCR text may contain errors)

Elite States Dworski "atent [54] CYCLONIC TURBINE ENGINES [72] Inventor: Michael Dworski, 468 French Road,

Rochester, NY. 14618 [22] Filed: Feb. 24, 1970 211 Appl. No.: 13,557

[52] US. Cl. ..415/76, 60/3975, 416/176, 415/199 [51] Int. Cl. ..F01d 1/34, FOld 1/02, F020 3/00 [58] Field of Search ..416/231, 240, 83, 227, 230, 416/175, 176, 72, 76, 143; 415/76, 90,

[56] References Cited UNITED STATES PATENTS 2,016,831 10/1935 Havill ..415/143 2,801,792 8/1957 Lindhagen et a1. ..416/177 1,654,605 1/1928 Rood ..415/190 1,902,439 3/1933 Foss ..415/72 2,323,725 7/1943 OBrien ..415/503 2,703,904 3/1955 DeLong ..415/503 158,579 1/1875 Fairfax ..415/76 796,444 8/1905 McCollum ..415/76 1,108,831 8/1914 Corthesy ..415/90 1,793,179 2/1931 Lanterman et a1. ..415/90 [4 1 Sept. 19, 1972 2,418,829 4/1947 Gibbs ..415/76 2,998,099 8/1961 l'lollingsworth ..415/90 1,138,173 5/1915 Anderson ..415/76 1,876,599 9/1932 Blow ..60/39.16 3,018,623 l/l962 Birmann ..60/39.16 3,035,758 5/1962 Caddell ..60/39.75 3,449,589 6/ 1969 Majkrzak et a1 ..60/108 FOREIGN PATENTS OR APPLICATIONS 560,012 3/1957 Italy ..415/73 141,017 12/1919 Great Britain ..416/231 712,361 7/1954 Great Britain ..416/240 5,219 1905 Great Britain ..415/76 519,090 4/1953 Belgium ..416/240 Primary Examiner-Henry F. Raduazo Attorney-F. P. Keiper [57] ABSTRACT Turbine engine having cyclonic effect with power and pump rotors having radial wires or serated blades providing helical passageways and having internal combustion for creating expanding gases, or steam, either acting through partitions having uniformly spaced helical jets of decreasing cross section arranged concentric with the rotors.

7 Claims, 13 Drawing Figures PATENTED E 1 9 P 7 SHEET 1 OF 5 INVENTOR.



SHEET 5 UF 5 FIGHA INVENTOR AMCHAEL UNORSHI BY m MW #TTORNEY CYCLONIC TURBINE ENGINES This invention relates to cyclonic engines and more particularly to such engines having power rotors with helical passageways.

More particularly the invention is adapted to be powered by gas pressure created by internal combustion or by high pressure steam, the gas pressure being impressed upon one or more rotors having helical torque inducing passageways. In practice the rotor may comprise a hub with a plurality of closely compacted radial stiff wires through which a plurality of helical grooves are cut or otherwise formed, or it may comprise a plurality of like metal stampings having a plurality of radial slots with serated edges, helically stacked as by keying in a helical shaft key way. The

'helically grooved rotors may be employed in a single stage or series of stages of enlarging diameter, and a radial wire rotor, or rotors may be employed as combinations of radial wire and helically displaced disk rtors.

The above and other novel features of the invention will appear more fully hereinafter from the following detailed description when taken in conjunction with the accompanying drawings. It is expressly understood that the drawings are employed for purposes of illustration only and are not designed as a definition of the limits of the invention, reference being had for this purpose to the appended claims.

In the drawings, wherein like reference characters indicate like parts:

FIG. 1 is a longitudinal sectional view of a gas turbine operating on internal combustion gases, with rotor parts shown in half section and half elevation;

FIG. 2 is a longitudinal sectional view of a two stage turbine adapted for high pressure steam or other source of high pressure gas;

FIG. 3 is a transverse section taken on the line 3-3 of FIG. 2;

FIG. 4 is a transverse section taken on the line 4-4 of FIG. 2;

FIG. 5 is a developed section through several jets taken on a cylindrical cut indicated at 5-5 in FIG. 4;

FIG. 6 is a perspective view of an alternative form of jet disk with helical jet forming grooves milled into the external surface;

FIG. 7 is a fragmentary sectional view of a mounting of such disk in the bore of the expansion chamber;

FIG. 8 is a fragmentary plan view of a section of the outer surface of the milled jet disk;

FIGS. 9 and 10 are fragmentary plan views of the inlet and outlet sides of the disk showing the jet groove cross sections;

FIG. 1 l is a fragmentary plan view of a disk rotor.

FIG. 11a is illustrative of a modified blade contour; and

FIG. 12 is a modified form of turbine.

Referring to FIG. 1, there is shown a turbine utilizing internal combustion to provide the motive power. There is provided a central casing having a cylindrical internal wall 22, and symmetrical about a center line A on which the exhaust port 24 is located. At each of the opposite ends of the casing 20 there is provided an end bell 26 having anti-friction bearings 28 and 30, with an intervening seal 32, the cap having a cylindrical cavity 34, and an inlet 36 to provide an air compressor housing. A shaft 38 is rotatably mounted in the end bell bearings 28 and 30. Each of the end bells 26 is provided with an annular closure plate 40 seated in an annular offset 42 in the casing end, and is secured in place by the end bell. The plate 40 has an annular sleeve 4-1 pro- 5 jecting into the combustion area, in spaced relation to shaft 38.

Within each of the end bells and keyed to the shaft 38 as at 44 is an air compressor rotor 46 comprising an annular hub 48 keyed to the shaft 38 as at 44, and from which extend a plurality of stifi straight wires 49, as closely spaced as possible at their root ends in the hub. The wires are cut away as at 50 to provide a plurality of helical paths 51, preferably uniformly spaced angularly about the hub for the reception of air induced into the end bell from the air inlet 36, the rotation of the rotor 46 compressing air in the end bell and forcing the air into the power internal combustion chamber 52 through the annular opening 54 between the sleeve 41, and shaft 38.

At each end of the combustion chamber 52 is a fuel injection inlet nozzle 60 fed by a fuel pump, not shown, and adjacent thereto, but having a guard baffle 62 is a spark plug 64 or other suitable ignition device. Keyed to the shaft 38, as at 66 is a power rotor 68 having a hub 70, from which radiates a field of stiff radial wires, 72 as closely spaced at the hub end as space will permit. The field of wires is provided with a plurality of uniformly spaced helical passages 74 extending from the ignition side of the motor to the central exhaust area 76, and the exhaust 24. The rotor construction is similar to the rotor 46 in the end bell, except that to resist corrosion, and the high temperature of the burning fuel, the rotor wires would preferably be of a titanium alloy stainless steel.

While the use of a fuel injection system is referred to, fuel such as gasoline may be mixed with the air drawn into the compressor chamber through the port 36, provided a sufficient wire gauze annular back fire preventing screen be introduced into the annular opening 54.

Referring to FIG. 2, there is shown a casing comprising stepped stages 122 and 124 of increasing diameter, an end bell 126 having an annular chamber 127 with a tangential inlet port 128 for high pressure steam or other medium under pressure. The enlarged stage 124 is provided with an end plate 130 having suitable exhaust ports as at 132. The end bell 126 is provided with a bearing plate 127, which with the end plate 130 are provided with bearings 134, 136, 138 and 140 having seals 142 and 144. Secured between the end bell and the primary stage casing 122 is a circular turret jet plate 146 having a plurality of tapering jet forming apertures 148 each disposed on a helical axis suitably oriented with respect to the tangential inlet, the jets being adapted to emit high velocity steam tangentially and helically into the primary stage 122 of the casing 120.

Keyed to the shaft 150 as at 151 is a primary stage rotor 152 in the casing 122, which may correspond to the rotor 68 in FIG. 1, comprising radial stiff wires 153 with helical slots 154. A secondary stage rotor 158 composed of a plurality of corrosion resistant like stampings 160 (See Figure 11), each having a hub por tion 162, and each having a plurality of like serated blades 164, the serations being in the form of uniform notches 166, 168 and 170, formed in their side edges and tips as shown. Each disk is provided with a keying lug 174, such that when a stack of the disks are assembled on the shaft, stacked with the lugs 1'74 keyed in a helical key way 176, the slots between the blades provide a plurality of helical passage ways through the stack. The helical passageways are disposed at an angle corresponding to that of the circumferential path of the high velocity steam or other gaseous medium discharged into the primary stage chamber from the jets 148.

Referring to FIGS. 3-5 there is shown in greater detail the tangential inlet 128, and the helical jet port 148 having enlarged openings 170 at their inlet ends, gradually reducing in cross section as at 172 at their outlet ends. A suitable ratio of reduced cross section from inlet 170 to the outlet 172 may be in the order of 5 to 1. It will be seen that with the tangential jet velocity, the rotor 152 will be subjected to the steam velocity and will be caused to accelerate, and rotate at a high speed, dependent upon the jet velocity. Further the steam in issuing into the second stage will undergo expansion and administer torque to the rotor 160 as it escapes to the exhaust end 180 of the chamber through the helical slots 1S4 bounded by the serated edges and the stepped offsets resulting from the disks being forwardly offset slightly with respect to each other from the inlet side to the outlet side of the rotor.

In order to simplify the construction of the helical tangential jets, the turret jet plate may take the form shown in FIG. 6, wherein the periphery of the plate is provided with helical reducing cross section grooves which may be readily milled economically. As shown the plate 200 has a plurality of helical grooves 202 of converging cross section from inlet ends 204 to the outlet ends 206. Such disk has a shaft aperture 208, and is adapted to be bolted as at 210 to the central annulus 125 of the end bell. The exterior surface 211 of the plate 200 has a close fit with the interior cylindrical surface 212 of the stage 222, and if desired, radial bolts 224 may secure the plate in position, such radial bolts extending through the thickened flange 226 of the stage 222, and threaded into apertures 230 disposed between adjacent jet slots or grooves 202. In practice the jet slots may have an inlet depth of one-fourth to three-eighths inch on a 3 inch radius, and a circumferential opening of threefourths of an inch or more, with the slot tapering down on a helix to a discharge opening about one-fourth inch deep and one-fourth inch wide as measured along the circumference.

If desired a compressor such as indicated in the modification of FIG. 1 may be employed in place of the steam inlet chamber, and jet plate, and ignition and injection means provided ahead of the rotor in stage 1 of FIG. 2, or first and second stages as in FIG. 2 may take place of the single stage indicated on either side of the exhaust in FIG. 1. It will be understood that while equalized thrust on the shaft is a feature of the form shown in FIG. 1, such feature may be eliminated if simplification is required, which may be had by eliminating the compressor and power rotor or rotors, and ignition and injection means on one side of the center line, A- A.

It will readily be seen that the disks from which the disk rotor is formed may all be cut economically from a single die, designed to cut disks of the largest diameter to be used. Where smaller diameter disks and shallower grooves are required, a circular die of the correct diameter can be employed economically to trim the disks to such diameter as desired.

If desired, the serated blades 164 of the stampings forming the rotor 158 may have rounded sinusoidal edge formations, for example as indicated at 266, 268, and 270 in the typical blade or finger 264 shown in FIG. 11a.

In the modification of FIG. 12, fuel is introduced after air compression, but prior to delivery of the combustible mixture to the combustion chamber. As shown, there is provided a cylindrical casing 220 having an end bell 322, and an annular plate member 324 clamped therebetween by bolts 326. The casing 220 and member 224 define a combustion chamber 228.

Journalled as at 231 and 232 in the end bell, is a shaft 234, having a helically grooved air compressing rotor 236 closely surrounded by the internal cylindrical wall 238 of the end bell. The rotor 236 is provided with a plurality of helical grooves 240, having a semicircular cross section or an equivalent. Immediately adjacent the rotor 236 is an air and fuel compressing and delivery rotor 242 of lesser diameter, and closely fitting within the cylindrical bore 223 of the sleeve portion 225 of plate member 324. The rotor 242 is provided with a plurality of helical grooves 244 of semi-circular cross section or the equivalent. There is thus provided a first and second stage of air compressing with fuel introduced between the stages. The shaft 234 extends into the combustion chamber and is shown as provided with a power rotor 68 of the type having radial wires and helical grooves, although the disk type may be employed. A suitable ignition device in the form of a plug 64 is provided.

The end bell chamber is provided with a suitable air inlet 310, and immediately adjacent the plate member 324, there is provided a fuel inlet 212. The mixed fuel is then advanced into the combustion chamber by the impeller effect of the grooves 242 in the rotor 244. To enhance the cyclonic effect, a disk 200 such as shown in FIG. 9 or 146 as in FIG. 2 may be disposed in the chamber 228 spaced from and between the end of the sleeve 225 and rotor 68, the disk being secured to the casing wall in any suitable manner.

In the internal combustion forms of the invention, starting is effected by rotating the shaft, injecting fuel in a proper mixture, and effecting ignition, whereupon the expansion of the burning gases provides a cyclonic effect driving the power rotor 62, whereupon acceleration to high speeds is attained. By introducing air under pressure into the inlet 36 of FIG. 1 or 310 of FIG. 12, starting rotation may be induced by initial fluid pressure acting on the rotor 51, or 238 so that by thereafter introducing fuel and effecting ignition, combustion and expansion takes place in the combustion chamber applying the cyclonic action to the power rotor to accelerate the rotor up to full power speed.

It will be seen that in each form of the inventions a rotor provides compression of the inlet air forcing the same into the combustion chamber, where ignition is effected. While in FIG. 1, fuel is injected directly into the combustion chamber, in FIG. 12 the fuel is introduced between the initial compression state. The compressing effect of the rotor 240, delivers the combustible mixture into the combustion chamber with cyclonic effect that is enhanced by combustion, the cyclonic effect being multiplied, and being similar to that in the form shown in Fig. 2 where steam is tangen tially received in the end bell and delivered through the helical jets into the expansion chamber in a cyclonic manner.

While several forms of the invention have been illustrated and described, it is to be understood that the invention is not limited thereto. As various changes in the construction and arrangement may be made without departing from the spirit of the invention, as will be apparent to those skilled in the art, reference will be had to the appended claims for a definition of the limits of the invention.

I claim:

1. A turbine engine comprising:

a. a casing forming a cylindrical chamber having an inlet for a gaseous medium under high pressure;

b. a shaft coaxially journalled within said chamber;

c. a power rotor formed from a plurality of relatively thin, identically shaped disks, each having radial slots and a central opening with a keying lug, and arranged in superposed relation;

d. a helical keyway cut in said shaft to receive said keying lugs, whereby said radial slots form helical passageways along said rotor; and

e. an exhaust for discharging said gaseous medium form said chamber after passing from said inlet and in coacting relation with said rotor.

2. A turbine engine according to claim 1 wherein the disk slot radial edges and tip ends are of a serated saw tooth configuration.

3. A turbine engine according to claim 1 wherein the radially slotted disks form a series of intervening blades, the side edges and tips of which have serated edges.

4. A construction as set forth in claim 3 wherein the serated edges are of saw tooth configuration.

5. A construction as set forth in claim 3, wherein the serated edges are of sinusoidal configuration.

6. A turbine engine according to claim 1 and further comprising a stationary plate interposed in said casing between said inlet and said power rotor, and having helical passageways for directing said gaseous medium in a helical path toward said power rotor.

7. A turbine engine according to claim 1 wherein said cylindrical chamber is provided with an enlarged diameter second stage section disposed on the opposite side of said power rotor from said inlet, and a second power rotor keyed to said shaft disposed within said second stage section, having helical passageways therein, and of larger diameter than said first rotor.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US158579 *Jan 12, 1875 Joseph s
US796444 *Feb 20, 1905Aug 8, 1905John Wycliffe Lowes ForsterFluid-turbine.
US1108831 *Apr 29, 1912Aug 25, 1914Jules Hippolyte CorthesyTurbine.
US1138173 *Oct 4, 1913May 4, 1915Universal Turbine CompanyTurbine.
US1654605 *May 18, 1925Jan 3, 1928Rood John LymanTurbine
US1793179 *Jun 17, 1927Feb 17, 1931Lanterman FrankElastic-fluid turbine
US1876599 *Oct 25, 1928Sep 13, 1932 Combustion engine
US1902439 *Dec 30, 1930Mar 21, 1933Arthur H BarringtonFlying worm steam motor
US2016831 *Oct 30, 1930Oct 8, 1935Eclipse Aviat CorpFluid pump
US2323725 *Mar 20, 1942Jul 6, 1943John J O'brienGrinding tool
US2418829 *Sep 30, 1943Apr 15, 1947William Gibbs CharlesRotary motor
US2703904 *Mar 8, 1952Mar 15, 1955Mary E De LongAir driven rotating brush for vacuum cleaners
US2801792 *Sep 13, 1950Aug 6, 1957Svenska Rotor Maskiner AbCooling of machine structures
US2998099 *Nov 20, 1957Aug 29, 1961Hollingsworth R LeeGas impeller and conditioning apparatus
US3018623 *Nov 4, 1960Jan 30, 1962Birmann RudolphExplosion gas turbines
US3035758 *Jun 16, 1959May 22, 1962Alfred M CaddellMaximum leverage turbine with compound drive buckets
US3449589 *Jun 13, 1966Jun 10, 1969IttPower supply system
BE519090A * Title not available
GB141017A * Title not available
GB712361A * Title not available
GB190505219A * Title not available
IT560012A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3844113 *Nov 2, 1972Oct 29, 1974H LockwoodFriction impulse gas turbine
US5425617 *Mar 9, 1994Jun 20, 1995Teran; Antonio A.Constant static pressure runner in an axial flow turbine
US6691517 *Apr 15, 2002Feb 17, 2004Richard V. MurphyCompound rotary internal combustion engine
EP0023784A1 *Jul 17, 1980Feb 11, 1981airsweep LimitedPower-driven centrifugal air blower
U.S. Classification415/76, 60/805, 415/199.5, 416/229.00A, 416/176
International ClassificationF04D23/00
Cooperative ClassificationF04D23/00
European ClassificationF04D23/00