Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3695044 A
Publication typeGrant
Publication dateOct 3, 1972
Filing dateJun 2, 1969
Priority dateApr 12, 1969
Publication numberUS 3695044 A, US 3695044A, US-A-3695044, US3695044 A, US3695044A
InventorsHoshino Masahiro, Sasaki Kenkichi
Original AssigneeSasaki Kenkichi, Hoshino Masahiro
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sealing method of sealed segments of a tunnel
US 3695044 A
Abstract
The present invention relates to a method of sealing segments of a tunnel, wherein a groove is formed in the direction of breadth of at least one of opposite sides to be united, which are adjacent, between respective segments, which constitute an annular body as well as between respective annlar bodies in the direction of length of a tunnel, and in said groove are projectively fixed a hard elastic core materials and a soft elastic coating materials which cover the exposed side of said core materials., and said sealing materials are held between said adjacent materials, so that, by interposing and stitching sealing materials, said adjacent segments are united.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Hoshino et al.

[ SEALING METHOD OF SEALED SEGMENTS OF A TUNNEL [72] Inventors: Masahiro Hoshino, 19, 2-chome, Misakicho, Sumiyoshi-ku, Osaka; Kenkichi Sasaki, 3-58, 4-chome, Kamihozumi, Ibaragi, Osaka, both of Japan [22] Filed: June 2,1969

[21] Appl. No.: 829,543

[30] Foreign Application Priority Data ORourke ..6l/45 R 1 Oct. 3, 1972 1,923,007 8/1933 Proctor ..61/45 R 1,969,810 8/1934 McAlpine ..6l/45 R 3,396,543 8/ 1968 White ..6l/45 R 3,438,211 4/1969 Zywietz et a1 ..61/45 R 3,483,706 12/1969 Taradash et al ..6l/45 R FOREIGN PATENTS OR APPLICATIONS 1,145,567 3/1963 Germany ..61/45 R Primary Examiner-Dennis L. Taylor Attorney-George B. Oujevolk [57] ABSTRACT The present invention relates to a method of sealing segments of a tunnel, wherein a groove is formed in the direction of breadth of at least one of opposite sides to be united, which are adjacent, between respective segments, which constitute an annular body as well as between respective annlar bodies in the direction of length of a tunnel, and 'in said groove are projectively fixed a hard elastic core materials and a soft elastic coating materials which cover the exposed side of said core materials, and said sealing materials are held between said adjacent materials, so that, by interposing and stitching sealing materials, said adjacent segments are united.

6 Claims, 9 Drawing Figures OF SEALED SEGMENTS OF A TUNNEL to a method of sealing segments, and more particula'rly to a method of sealing adjacent segments, which is used when a tunnel is constructed by sealing work between respective segments which form part of an annular body as well as succeeding annular bodies in the direction of length of the tunnel.

When constructing a tunnel by the sealing work, several arc-shaped segments are closely united, lastly inserting a key segment between two upward segments to form an annular body, and many of such annular SEALINGMETHOD units will be closely arranged in the direction of length of the tunnel. Consequently, in respective joints of segments between arc-shaped segments, a key segment and two segments on both sides of said key segment, all of which form an annular body, sealing will be carried out by the use of sealing materials, so that a underground water and the like may not come into the tunnel.

The conventional techniques adopted as a sealing method of respective segments, however, are only to paste a rubber type sealing material on united sides of segments and, when united sides of a segments, made of concrete, are rough, it is difficult to expect complete prevention of leakage between segments. In addition, there will often be a breakage or exfoliation of sealing materials, so that a conventional method have many disadvantages.

One of the objects of the present invention is to provide a method of sealing segments which serves to make the construction work of a tunnel easy and efficient.

Another objects of the invention is to provide a method of sealing which always assures a water tight seal between segments even when the sides of the segments are rough or when there will be some irregularities in joint gaps of segments.

One of further objects of the invention is to provide sealing material which can be easily made and fixed well to the segments, and which can prevent leakage between segments.

In short, the method of sealing segments according to the present invention comprises the process of forming a groove in the direction of the sides of at least one of adjacent segments, fixing elastic sealing material in said groove to a thickness greater than the depth of said groove, and uniting said adjacent segments by causing said sealing materials between the two segments to stretch out.

The present invention and other objects and advantages thereof will be more fully understood by reference to the accompanying drawings and following detailed description, wherein:

FIG. 1 is a side view of an annular body which is a constituent unit of a tunnel, wherein the sealing method of the present invention is applied to the respective segments.

FIG. 2 is a partially enlarged oblique view showing the united condition of a plurality of segments of FIG. 1

' FIG. 3 is a section taken along line 3-3 of FIG. 2.

- FIG. 7 is a longitudinal section showing the united condition of the key segment and its adjacent segments on both sides.

FIG. 8 is a longitudinal section showing a condition in FIG. 7 before the key segment is inserted between adjacent segments on both sides.

FIG. 9 is a longitudinal section which shows a modified embodiment of the invention and which corresponds to FIG. 8.

As shown in FIG. 1 and 2, the tunnel l is made of annular bodies 5 which are formed with a plurality of normal segments 2, bent in conformity with the diameter of the tunnel 1 and which are united, the key segments 4, which is lastly inserted in the top section of the tunnel has adjacent segments 3 on both sides to hold it between them. The annular bodies 5 are successively assembled cylindrically in a close condition. When the annular bodies 5 are united, both sides of the respective segments are caused to-slightly slip off each other, so that the joint of said segments will never be in single file. All segments 2, 3 and 4 are made of reinforced concrete and upon their respective inner sides are provided a suitable number of dents 6. The adjacent segments are all united by means of bolts and nuts 7, while a groove 8, both sides of which are inclined so as to separate wider outwardly, is provided at in the face where adjacent segments meet together and in the direction of length of the oppositely united outward sides of all segments 2, 3 and 4 constituting the tunnel 1. In said groove 8 are inserted elastic sealing materials 9 which project outwardly and fixed by means of an adhesive. In FIG. 3 and 4 are shown the united condition of normal segments 2 joined up an annular body 5. At the inside position of a radial wall 2a of both segments is opened a bolt hold 10, and into a groove 8 situated outside the segment are fixed the elastic materials by means of an adhesive. Said elastic materials are composed of hard elastic core materials 11 and soft elastic coating materials 12 cylindrically. The section of said elastic core materials is trapezidal. Its breadth is narrower than the groove 8 and a part of the coating materials 12 covers both side sections of the groove 8, while the coating materials 12 inclusive of a part of said core materials 11 project outside the wall 2a in a condition prior to their being united mutually. (See FIG; 4) When both segments 2 are strongly united by means of the bolt and nut 7, said core materials of the sealing materials 9 will be pressed to spread out in the direction of breadth of the groove 8 and at the same time the coating materials 12 are pressed from both sides to stretch out and become sealing materials 13. Further, its inside and outside stretched tips 130, protrude inside and outside both segments 2 to completely cover the joints between the solid segments 2. (See FIG. 3)

In FIGS. 5 and 6 are shown the uniting of between the segments 2 of annular body 5. The same conditions are likewise seen in the case of other segments 3 and 4. 0n the side where the annular body 5 of segments 2 are mutually united, a vertical wall 2b with a bolt hole 10 is formed. The sealing between two adjacent annular bodies 5 is carried out by binding them by the use of a jack for a sealing purpose, and the elastic sealing materials 9 of the segments 2 on the side to be pressed by the jack will be only a hard elatic body 14, whose cross section is trapezoidal. It is so formed as to have a groove 8, while the coating materials 16 has a gently curved surface and covers the exposed surface of the elastic materials 9.

In FIGS. 7 and 8 are shown the sealed condition of the key segment 4 and adjacent segments 3 on both sides to hold it between them. The key segments 4 has two inclined walls 40 which are narrowed outward, while the segments 3 which hold the key segment 4 between them are provided with inclined wall 3a, which has an inclined side that agrees with the inclined wall 4a only on the side which contacts the key segment 3. In the walls 4a and 3a there are bolt holes 10. The

, shape and the structure of elastic sealing materials fixed into the grooves 8 of the walls 4a and 3a are the same as the ones on the right side of FIG. 6, and it will be easily understood that the elastic sealing materials 9 will be pressed between the segments and become stretched out and the stretched tip 13a covering inside and outside the joint of segments will be formed in the same way as described heretofore.

In FIG. 9 is shown'a modified, example of the sealing method of the joint between the key segment 4 and its adjacent segments 3 holding the key segment. In the inclined wall 4a of the key segment 4, no groove is formed, but only the inclined wall 30 of the segments holding the key segment between them is provided with the groove 8, into which are fixed the sealing materials 9 composed of the hard elastic materials 14, 19, while in addition to said sealing materials 9, pasty materials 17 are thinly fixed downward and inward of said sealing materials 9 in such a way as to be thicker upward and thinner downward. In a like manner are fixed said pasty materials 17 from the upper end of the inclined wall 3a of the key segment 3 to the nearly middle height of said wall 3a. When the key segment 4 and its adjacent'segments 3 on both sides are sealed, the elastic materials 9 will be in the same condition as shown in FIG; 7.

The hard elastic core materials 11, 15 and the hard elastic materials 14-18- which constitute the above mentioned elastic materials 9 as well as the soft elastic coating materials 12 and 16 are all made of the rubber materials, such as for instance: natural rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, polychloroprene rubber, acrylic ester-acrylonitrile rubber soprene rubber isobutylene-isopropylene rubber, ethylenepropylene terpolymer, epichlorohydrin rubber, propyleneoxide- The hard elastic core materials 11 and 15 and hard elastic body l4, 18 have the shore A'hardness of about 10 80. They are suited for the purpose, if they have a dynamic recovery of more than about 50 percent. Their blending examples are as follows:

Natural rubber l weight parts Zinc white weight parts Sulphur 8 weight parts Stearic acid 2 weight parts Dixie clay 50 weight parts Thennal black l0 weight parts Dibenzole disulfide 1 weight parts The hard elastic body and the hard elastic core material obtained by blending the above-mentioned components and vulcanizing at 160 for 30 minutes have shore A hardness 50, tension 240 kg/cm, maximum elongation percentage 650 percent and dynamic recovery 95 percent.

Blending Example 2.

Butyl rubber 30 weight pans Chlorinated Butyl rubber 40 weight parts Stearic acid l weight pans Zinc white weight parts Paraffin 3 weight parts Thermal blank I00 weight parts Reacted phenol resin 13 weight pans Zinc chloride 3 weight parts Process oil 60 weight parts The hard elastic is body obtained by blending the above-mentioned components and vulcanizing at 160 for 30 minutes have shore A hardness tension kg/cm, maximum elongation percentage 1,000 percent and dynamic recovery about 90 percent.

The soft elastic coating materials 12 and 16, which have shore A hardness less than percent, are suited for the purpose, and it is desirable that they become very thin, if pressed down, but they will have a proper dynamic recovery after said pressure is removed, and that they will be hardened in the course of time, while they stick fast to the surface of segments and blend well with the hard elastic core materials 11, 15 or the hard elastic body l4, 18 to be united in a body. Desirable blending examples are as follows:

Blending Example I.

Butyl rubber 80 weight parts Reclaimed butyl rubber weight parts Soft clay I00 weight parts Thermal black weight parts Polybutene l00 weight parts Blending Example 2.

Butyl rubber weight parts Chlorinated butyl rubber 40 weight parts Polyethylene 25 weight parts Polybutene weight parts Reacted Phenol resin l0 weight parts Zinc chloride 3 weight parts Sofl clay 50 weight parts Thermal black l0 weight parts The soft elastic coating materials have been obtained, which have shore A hardness'5, tension 0.4 kg/cm and maximum elongation percentage 2,000 percent by blending the above-mentioned components and vulcanizing at 160 and, if they are pressed down with 100 kg/cm jack pressure, they have produced a deformation which is the same as the aforesaid blending example 1.

The sealing materials 9, which have been made cylindrical by uniting the core materials 11, with the coating materials 12 or 16, are pasted to the segments with an adhesive when assembling when a heat soluble adhesive is first applied to the bottom section of the sealing material 9 and then heated to melt it to paste the following adhesives will be used: polypropylene, epoxide resin, polyamide resin, ethylene vinyl acetate copolymer, acrylate resin, butyral resin, ethylene acrylate copolymers and cumarone-indene resin etc.

For the second bonding means, which are not used, if an adhesive has already been applied to the bottom side of the sealing material 9, or when said sealing material 9 already have adhesive property, but are used, when their adherent surface is covered by a parting paper which will be peeled off, when starting work, and they are pressed together to adhere to each other, following adhesives are used; natural rubber, polyacrylate resin, polyisobutylene, butyl rubber and polyvinyl butyl ether etc.

For the third bonding means which are used, when an adhesive of the solvent evaporation type has already been applied to the bottom side of the sealing material 9 and dried up, but again damped with a solvent before starting work so as to immediately be pasted, the following adhesives are used: vinyl acetate resin, vinyl chloride resin, butyral resin, chloroprene rubber, natural rubber, chlorinated rubber, reclaimed rubber, polyamide resin, asphalt and coal tar etc. and, like these adhesives are not used, when the sealing material 9 has adhesive properties.

. For the fourth bonding means which are used when an adhesive of the solvent evaporation type or the chemical reaction type is applied. to the bottom side of the sealing material 9 to be pasted immediately upon the sides of segments, thefollowing adhesives are used; poly vinyl acetate resin, polyvinyl chloride resin, butyral, resin, chloroprene rubber, natural rubber, chlorinated rubber, reclaimed rubber, polyamide resin, asphalt, coal-tar, epoxide resin, unsaturated polyester, cyano aclylate, vinyl monomer, silicone resin, polymethane resin, phenol resin and xylene resin etc.

The past type material 17 is made by adding organic or inorganic fillers or plasticizers to the synthetic rubber or the synthetic resin or their mixtures, such as butylrubber, polysulfide rubber, ethylene propylene rubber, epoxide resin, acrylic resin and ethylene vinyl acetate copolymer etc., so that they may be in a pasty condition. It is desirable that, in view of their being watertight more complete and lasting, they will be hardened in the course of time and they are soluble with the sealing materials 9 to become a solid body.

A desirable blending example of the paste type material is as follows;

Butyle rubber 100 Weight parts Calcium carbonate 50 weight parts Carbon 50 weight parts Poiybutene 60 weight pans White kerosene 60 weight parts Dimethyl dioctadecyl ammonium bentonite 4 weight parts Ethyl alcohol l0 weight parts If the above-mentioned components are blended, the resultant pasty matter has the viscosity of 15,000 poise and its hardening time is 1 week.

It should be noted that respective segments can be made completely watertight by' the method of the present invention, which also can be applied to segments made of cast iron, cast steel, and made from metallic plate as well as wood. In consideration of various points to be sealed, the cross-sectional shape of the elastic sealing materials is so chosen as to be most suitable for complete sealing.

What is claimed is:

l. A method of sealing two segments of a tunnel lining, said segments having inclined faces joined by a key segment which is to be held between said two segments, comprising the steps of:

a. forming a groove in the direction of the breadth of the two faces to be united; I

b. fixing an elastic sealing material in said groove to protect outwards, said sealing material having a thickness greater than the depth of said groove, said sealing material being composed of a hard elastic core material and a soft elastic coating material which covers the exposed side of said core material, a part of said elastic coating materi als being inserted into said groove so as to put said sealing material between said two faces and the faces of said key segment in order to join said faces and unite said segments; and,

. forcibly uniting the faces of said segments with the corresponding faces of said key segment, whereby said hard elastic core material is stretched in the direction of the breadth of the groove so as to substantially fill said groove and said soft elastic coating material is stretched to fill the joints between adjacent faces.

2. A method of sealing two segments of a tunnel lining, said segments having opposing inclined faces comprising the steps of: g

a. forming grooves in the direction of breadth of the faces to be united;

b. holding a key segment between said opposing faces so that said key segment can be pushed between said opposing faces;

c. fixing in said groove an elastic material to project outwards, said material having a thickness greater than the depth of said groove, said elastic material being composed of at least one hard elastic core material and at least one soft elastic coating material covering the exposed side of said core material;

d. extending the surface of said plastic coating material gently in an arc-shape to both edges of said groove, so that adjoining segments including said key segment may be united with each other when said sealing material between said segments is extended out; and,

. forcibly uniting the faces of said segments with the corresponding faces of said key segment, whereby said hard elastic core material is stretched in the direction of the breadth of the groove so as to substantially fill said groove and said soft elastic coatr 3,695,044 7 8 ing material is stretched to fill the joints between 4. A method of sealing stone-like arcuate segments adjacent faces. of a tunnel comprising the steps of: I 3. A method of sealing together stone-like segments a. forming a contoured-shaped groove in each of the of a tunnel lining having opposed longitudinal inclined opposing faces of each segment in conformity with faces, comprising the steps of: the contours of the segments;

a. forming a groove in both inclined faces in the direction of breadth of an upper part of said faces to be united;

b. disposing a key segment to be held between said united when stretching said elastic material and b. fixing in the grooves of each segment a hard elastic material nearly equal to the depth of said groove, while providing in the groove of at least one segment a soft elastic material, which covers the exopposite faces; 10 posed side of said core material and projects outc. fixing in said groove at least one hard elastic ardly from said groove, said projecting elastic material having an arcuate outer surface and a material e g P e n a ace 0 88 I0 breadth greater than th d h f id groove, stretch out so that'all said adjacent segments are while coating said elastic sealing material in the dmnd, area adjoining a lower part of the faces to be forcibly uniting the pp fafes of said 8' united with a paste type material so as to hold said menls, whereby Said l elastlc materials are key segment therebetween and further oating stretched in the direct-10h of the hl'eadth 0f the said paste type material on said key segment in the 'P so as P P W Y fill 531d grooves and direction of he upper part of said faces to be Soft elastlc material IS Stretched to the united, so that said adjoining segments may be J between Sald facs- S. A method according to claim 4 wherein the soft elastic material is provided in the grooves of each of the opposing faces of each segment.

6. A method according to claim 4 wherein adjacent segments are united so as to form a tunnel, the tunnel being completed by the combination of said segments with one key segment.

the paste type material between said faces; and,

d. forcibly uniting the faces of said segments with the corresponding faces of said key segment, whereby said 'hard elastic material is stretched in the direction of the breadth of the groove and said paste type material fills the joints between adjacent faces.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US837767 *Jun 15, 1906Dec 4, 1906Walton I AimsMoisture-proof joint.
US935376 *Mar 20, 1909Sep 28, 1909Alfred LennonAir and water tight joint for tunnels and similar structures.
US1378158 *Dec 29, 1920May 17, 1921Aldrich BaxterConcrete tunnel structure
US1889563 *Dec 16, 1930Nov 29, 1932O'rourke John FTunnel or conduit lining
US1923007 *May 28, 1931Aug 15, 1933Commercial ShearingTunnel liner
US1969810 *Oct 14, 1932Aug 14, 1934Malcolm McalpineTunnel lining
US3396543 *Mar 17, 1966Aug 13, 1968Commerical Shearing & StampingTunnel liners
US3438211 *Apr 3, 1967Apr 15, 1969Bochumer Eisen HeintzmannLining structure for subterranean passages
US3483706 *Jun 19, 1967Dec 16, 1969Commercial ShearingShaft and tunnel lining
DE1145567B *May 11, 1959Mar 21, 1963Schwarz Kg HermannAus mehreren Segmenten aufgebauter ringfoermiger Traegerkoerper fuer das Einbringen von Streckenausbauteilen in Grubenbetrieben
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3815370 *Jun 29, 1972Jun 11, 1974Spiroll Corp LtdMethod of forming spiral or helical tunnels and sections therefor
US3818710 *Dec 3, 1971Jun 25, 1974Commercial ShearingTunnel liners
US3859802 *Jun 20, 1973Jan 14, 1975Bethlehem Steel CorpGasketed watertight segmented tunnel linings
US3861154 *Jan 11, 1972Jan 21, 1975Celmac AgTunnelling
US3946567 *Feb 12, 1974Mar 30, 1976Pont-A-Mousson S.A.Voussoir for a lining, and method for constructing the lining
US4075855 *Jun 14, 1976Feb 28, 1978Wayss & Freytag AktiengesellschaftTunnel construction and tunnel tubbing
US4545701 *Aug 4, 1983Oct 8, 1985Junichi TsuzukiTunnel wall structure
US4621948 *Nov 21, 1984Nov 11, 1986Hochtief Ag Vorm. Gebruder HelfmannTunnel lining form
US4662773 *Apr 8, 1983May 5, 1987Phillip Holzman AktiengesellschaftSegmental tunnel lining consisting of reinforced concrete tubbings
US4797032 *Jan 21, 1988Jan 10, 1989Phoenix AktiengelsellschaftSealing profile
US4812084 *Dec 17, 1987Mar 14, 1989Ingenieure Mayreder, Kraus & Co. Baugeseilschaft M.b.H.Tubbing ring for lining a tunnel
US4834395 *Nov 19, 1987May 30, 1989Benford Edward JGasket seal
US4946309 *May 17, 1989Aug 7, 1990Phoenix AktiegesellschaftSealing profile
US5489164 *Sep 2, 1994Feb 6, 1996Colebrand LimitedMethod of connection
US5888023 *Jan 30, 1996Mar 30, 1999Phoenix AktiengesellschaftSeal arrangement for tubular tunnel segments
US6129485 *Mar 1, 1996Oct 10, 2000Phoenix AktiengesellschaftSeal and process for producing such seal
US6923600 *Aug 7, 2002Aug 2, 2005Suk-Dong BaeMethod of repairing and reinforcing piers using stones
US7018138 *Aug 7, 2002Mar 28, 2006Suk-Dong BaePier-repairing and reinforcing panel and method of repairing and reinforcing piers using such panels
US7819435 *Aug 17, 2005Oct 26, 2010Shonan Gosei-Jushi Seisakusho K.K.Rehabilitating pipe for repairing existing pipe and method for repairing existing pipe
US7823886 *Nov 5, 2004Nov 2, 2010Federal Mogul Sealing Systems Bretten GmbhSeal assembly
US7966786 *Sep 5, 2006Jun 28, 2011Sim-Tech Filters, Inc.Molded sectioned riser and locking cover
US8240339 *Dec 23, 2009Aug 14, 2012Shonan Gosei-Jushi Seisakusho K.K.Existing pipe rehabilitation method
US8245452Jun 11, 2010Aug 21, 2012Sim-Tech Filters, Inc.Molded sectioned riser and locking cover
US8453386Aug 8, 2012Jun 4, 2013Sim-Tech Filters, Inc.Molded sectioned riser and locking cover
US8795777 *Feb 28, 2012Aug 5, 2014Contech Engineered Solutions LLCMine shaft liner plate system and method
US8979434 *Dec 1, 2010Mar 17, 2015Bochumer Eisenhütte Heintzmann GmbH & Co. KGTubbing lining having an integrated flexible element
US9068686 *Oct 9, 2013Jun 30, 2015Shonan Gosei-Jushi Seisakusho K.K.Rehabilitation pipe and pipe rehabilitation method
US9518692 *Nov 20, 2015Dec 13, 2016Siionan Gosei-Jushi Seisakusho K.K.Pipe rehabilitation method
US20040202511 *Aug 7, 2002Oct 14, 2004Suk-Dong BaePier-repairing and reinforcing panel and method of repairing and reinforcing piers using such panels
US20050175416 *Aug 7, 2002Aug 11, 2005Suk-Dong BaeMethod of repairing and reinforcing piers using stones
US20070000184 *Sep 5, 2006Jan 4, 2007Sim-Tech Filters, Inc.Molded sectioned riser and locking cover
US20070138750 *Nov 5, 2004Jun 21, 2007Frank WarneckeSeal assembly
US20080054625 *Aug 17, 2005Mar 6, 2008Shonan Gosei-Jushi Seisakusho K.K.Rehabilitating Pipe for Repairing Pipeline Facilities and Method for Repairing Pipeline Facilities Using Rehabilitating Pipe
US20100242377 *Jun 11, 2010Sep 30, 2010Sim-Tech Filters, Inc.Molded sectioned riser and locking cover
US20100307624 *Dec 23, 2009Dec 9, 2010Takao KamiyamaExisting pipe rehabilitation method
US20110188939 *Feb 2, 2011Aug 4, 2011Sanders Darrell JMine shaft liner plate system and method
US20120213590 *Feb 28, 2012Aug 23, 2012Sanders Darrell JMine shaft liner plate system and method
US20120237300 *Dec 1, 2010Sep 20, 2012Bochumer Eisenhütte Heintzmann GmbH & Co. KGTubbing lining having an integrated flexible element
US20140097612 *Oct 9, 2013Apr 10, 2014Shonan Gosei-Jushi Seisakusho K.K.Rehabilitation pipe and pipe rehabilitation method
US20140215930 *Feb 4, 2014Aug 7, 2014Tindall CorporationTower assembly and method for assembling tower structure
US20160215472 *Apr 1, 2016Jul 28, 2016Darin R. KruseApparatus and Methods for Underground Structures and Construction Thereof
WO2011097201A3 *Feb 1, 2011Apr 12, 2012Contech Construction Products Inc.Mine shaft liner plate system and method
Classifications
U.S. Classification405/152, 277/654, 405/153, 29/450
International ClassificationE21D5/00, E21D11/08, E21D5/012
Cooperative ClassificationE21D5/012, E21D11/083
European ClassificationE21D5/012, E21D11/08C