Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3696391 A
Publication typeGrant
Publication dateOct 3, 1972
Filing dateSep 16, 1970
Priority dateSep 19, 1969
Publication numberUS 3696391 A, US 3696391A, US-A-3696391, US3696391 A, US3696391A
InventorsPeronneau Georges
Original AssigneeThomson Csf T Vt Sa
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
System for the display of synthesized graphic symbols
US 3696391 A
A variety of graphic symbols, to be displayed on the screen of a cathode-ray tube under the control of a computer, are synthesized from a store of basic elements which can be selectively combined into groups, the latter in turn being assembled into figures. Digital instructions regarding the nature, size, orientation and location of any selected configuration in each of these three denominations (element, group, figure) are transmitted by the computer, via a memory containing the necessary data, to an analog processor which includes a function generator and several function modifiers in the sweep circuit of the cathode-ray tube to project successively the several elements defining a group, the several groups forming a figure, and the several figures constituting the display, with individual treatment of each higher-order configuration as to overall positioning and size. A function generator capable of producing different conic sections includes two cross-connected integrating amplifiers in the signal paths for the control of the horizontal and the vertical scan. A coincidence circuit may be activated to detect the traverse of the boundaries of a selected rectangular screen area by any elemental trace for instructing the computer to suppress all parts of the display outside that area for the purpose of distinctive visualization of the framed portion.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Peronneau [45] 1972 [S4] SYSTEM FOR THE DISPLAY OF 3,444,319 5/1969 Artzt et al ..340/324 SYNTHESIZEI) GRAPHIC SYMBOLS 3,466,645 9/1969 Grunberg et a] ..340/324 [72] Inventor: Georges lt-rtmm-un, I Ccllc Suint H969 Mathews et 340/324 J Nance Primary Examiner-John W. Caldwell [73] Assignee: Thomson-CSF Visualisation Et A i t E i M h 1] M, C rti Traitement Des lnformations (T- A -K l E R V.T.), Paris, France 22 Filed: Sept. 16,1970 [57] ABSTRACT A variety of graphic symbols, to be displayed on the [1211 Appl' 7277o screen of a cathode-ray tube under the control of a computer, are synthesized from a store of basic elel l Foreign Application Priority Data ments which can be selectively combined into groups, Sept 19 1969 France ..6931945 the latter in tum being assembled hgures- Digital 6931946 instructions regarding the nature, size, orientation and Sept 1969 France location of any selected configuration in each of these [52] U S Cl "340/324 A 235/198 three denominations (element, group, figure) are [511 1;.Cr;5:11:11531113311311.J ncosr 3/14 transmittedbythecomputer.viaamemmywmaining 58 Field of Search ..340/324 A; 235/198, 197 the necessary data, to an analog Processor which cludes a function generator and several function [56] References Cited modifiers in the sweep circuit of the cathode-ray tube to project successively the several elements defining a UNITED STATES PATENTS group, the several groups forming a figure, and the several figures constituting the display, with individual i 32? treatment of each higher-order configuration as to 3476974 I l 969 Tuma 6 "'340/324 A overall positioning and size. A function generator 3520994 7/1970 McAfgeet "'340/324 A capable of producing different conic sections includes 3603964 9/197 Harrison "340/324 A two cross-connected integrating amplifiers in the 3394367 7/1968 D e 3 40/32 4 signal paths for the control of the horizontal and the 3309692 3/l967 "340/324 vertical scan. A coincidence circuit may be activated 34l728l 12/1968 Stauffer "340/324 to detect the traverse of the boundaries of a selected 1 3 2/1970 Bot. 'g "340/324 rectangular screen area by any elemental trace for instructing the computer to suppress all parts of the display outside that area for the purpose of distinctive visualization of the framed portion. I

15 Claims, 8 Drawing Figures REGISTER 3, 1o

ME SR1} I i 5 REGISTER --11 i l i fi L 15 L .1:1E 1 I 3 it 58 TnF r77 H I I i E l Liii TIG 1Y6 II I! i i 5 Tn Q X x l x 1 Q I Y e w -v-' v-' I 1 l i,.c..E 1,, 15 AME 1 c i i 5 L+I E-- JEE+ 1,, 7 l s/admin mm L 1 g I 51 $1212 I (Ll'U'I 62 61 l l L; IL';'Z@ 1 L si 1 PATENTEDncra I972 SHEET 3 BF 7 Georges Peronneau Invenfor By Karl flap Attorney PATENTEDHEIB m2 3,696,391

SHEET 0F 7 Fig.5

Georges Peronneau lnvenfort 9 q; 6 ,af Attorney PATENTEDUCI3 I972 3,696,391

SHEET 5 OF 7 Georges Peronneau Inventor:

PATENTEDum 3 1972 SHEET 6 [IF 7 Georges Peronneau lnvenfor PATENTEDUET 3 1913 SHEET 7 OF 7 dlllri! g Tl: m 1 956mm imm g :5 E A 5 23m :im I New N3 550; h aim Em w c Sw l MQQ


Georges Peronneau lnvenfor Aitomey SYSTEM FOR THE DISPLAY OF SYNTHESIZED GRAPHIC SYMBOLS The present invention relates to a system for displaying graphic symbols on the screen of a cathode-ray tube under the control of a computer.

Modern computers are capable of converting stored or instantly generated input data into scan-control signals for the sweep circuits of a cathode-ray tube whose beam thereupon traces a more or less complex figure visualizing the information received. The analog voltages or currents used to deflect the beam are derived from the digital output of a calculating section which may form part of the principal computer or constitute an ancillary unit. The binary words delivered by this calculating section must be stored in a buffer memory to enable the tracing of different shapes, in response to corresponding sets of instructions from the computer, to be generated repeatedly and in rapid succession so as to create a visual impression of a unitary picture.

With increasing complexity of the symbols to be so displayed, the computer must be capable of performing a large number of calculations in a short period of time. Moreover, though in many instances these symbols consist but of a relatively small number of different basic elements varying only as to size, relative position and orientation with reference to a given co-ordinate system, the computer must individually recalculate the law of each basic element in a time-consuming severely severly taxing the available facilities.

It is, therefore, the general object of my present invention to provide a display system of the character set forth which avoids the aforestated disadvantages and greatly accelerates the visual synthesis of complex shapes, to be traced on a CRT screen, from a limited number of basic elements.

A more particular object is to provide a system of this type which can be used, if desired, for direct communication between the machine and a human operator, i.e. for the creation or modification of a display by the actuation of a keyboard, a stylus or similar manual input means.

Still more specifically, my invention aims at providing a relatively simple yet highly versatile electronic function generator and associated circuitry for shifting, rotating and homothetically modifying (enlarging or reducing) any shape representating a function of the first or the second order, i.e. straight lines and conic sections (the former, of course, representing a limiting case of the latter).

To realize the general object stated above, a system according to my invention essentially comprises an analog processor including one or more function generators for the control of a CRT beam in response to characterization and modification commands from a service memory in which the information delivered to it by the computer is stored in digital form, the computer having access to the memory for callingout any word stored therein to specify both the shape(e.g. line, ellipse, hyperbola) and the parameters (size, position, orientation) of a basic element to be traced.

According to another advantageous feature of the in vention, several such elements traced in sufiiciently rapid succession to give the impression of a higherorder configuration are modified (displaced or changed in size) as a group, in response to special group-instruction words called out from the service memory by the computer, so that only'the relative positions and orientations of the several elements within a given group need be taken into account in the individual processing of each element. The same principle can be extended to additional classes of higherorder groupings, e.g. figures formed from groups composed of elements.

In this manner, it is possible to synthesize even an involved symbol from various combinations of only a few basic elements and, in turn, to bodily modify such symbol with the aid of only a few additional instructions called out from the service memory. This characteristic can be utilized, pursuant toa further feature of the in vention, for isolating and distinctively visualizing e.g. magnifying a selected portion of an overall display. This can be done, as more fully described hereinafter, by establishing two limiting values for each of a pair of signal voltages issuing from the processor for the control of the two mutually orthogonal sweep circuits of the cathode-ray tube (conventionally referred to as horizontal and vertical, respectively) and, upon either of these signal voltages reaching one of the limiting values chosen for it, transmitting to the computer a marker pulse indicating that the element being traced on instructions from the computer touches or intersects one of the boundaries of a rectangular frame defined by these limiting values. The computer, by evaluating this information in light of the programmed position, size and shape of the element, can then give rise to special command (1 signals (not necessarily relayed through the service memory), to be stored for an indefinite number of cycles, which cause the suppression of the trace outside the selected frame area, the visible remainder of the trace being then subject to the same modifications as any original element or combination of elements regarding size and position. Thus, the operator may preselect the boundaries of that area by the setting of two potentiometers or the like and, by depressing a special cropping key of an associated keyboard may cut off all the external portions of the picture, thereafter manipulating his size, location and orientation controls to register the remaining details in a desired manner.

A function generator especially adapted to produce sweep voltages for the selective tracing of a variety of conic sections includes, in accordance with another feature of this invention, a pair of integrating amplifiers connected in a pair of parallel branches in the output of the processor, these amplifiers being provided with cross-connections for generating conjugate complex functions of time. Given a zero input voltage in one branch and a finite input voltage in the other branch, such a pair of amplifiers will generate trigonometric (sine and cosine) functions if the two cross-connections are of relatively inverted sign, i.e. if one is positive while the other is negative, and will produce hyperbolic functions (sinh and cosh) if the signs are equal. Without cross-connections, the resulting function will be linear after integration in a first amplifier stage and parabolic after similar integration in a second stage.

The above and other features of the invention will be described in detail hereinafter with reference to the ac companying drawing in which:

FIG. 1 is a block diagram of the principal components of a visualization system embodying the invention;

FIG. 2 is-a more detailed circuit diagram of some of the components shown in Fig. l

FIG. 3 is a schematic representation of a composite instruction code delivered to a service memory shown in Fig. 2;

FIG. 4 is a circuit diagram of an analog function generator included in the system;

FIG. 5 is a somewhat simplified circuit diagram of a hybrid multiplier forming part of a processor included in the system;

FIG. 6 is t a block diagram of another part of the processor;

FIG. 7 is a graph showing a selected frame area of a CRT screen for the cropping of a picture displayed by the system; and

FIG. 8 is a block diagram of a comparison circuit serving to determine the intersections of a trace with the boundaries of the frame area shown in Fig. 7.

In Fig. l I have shown a main computer 1 exchanging information with an ancillary computer 3, the latter cooperating with a service memory 4 storing data for a digital control unitS. This controller, which also has input connections from a marker 8 and a keyboard 9, coacts with an analog processor comprising two sections 6, 7. Section 6 establishes the fundamental shape of a basic element to be traced by the beam .of a

cathode-ray tube 2 whose horizontal and vertical sweep circuits receive respective input voltages from section 7 which specifies the variable parameters defining the position of the trace with reference to the sweep axes. The size of the trace, included among several variables transmitted in digital form to the analog processor 6, 7 from the control unit 5, is communicated to generator section 6 via a channel 60 also carrying the signals which determine the algorithm of such shape (e.g. linear, elliptical or hyperbolic). Another channel 70, whose individual leads are partly illustrated in Fig. 2 described below, conveys the positioning signals to several subsections of section 7 shown in Fig. 2 at 7E (for the basic elements), 7G (for the groups) and 7F (for the figures).

Thus, a typical code word delivered in binary form from ancillary computer 3 to memory 4 may be divided into three partsas illustrated in Fig. 3, i.e. a classification part E denoting the i" element of the i" group ofthe k" figure, a characterization part N identifying the geometrical shape, and a modification part LT giving original size (L) as well as transformation (T) including commands fortranslational and/or rotational displacement with reference to the origin as well as possible enlargement orreduction.

Calculating unit 3, which generates the code word of Fig. 3, may be physically separated from the main computer l and could, in fact, be linked to it (or to some other source of binary data) via a transmission line or radio channel.

The construction of units 5- 7 will now be described in greater detail with reference to Fig. 2.

Fig. 2 shows an input register 10 and an output register 11 associated with memory 4, together with a transfer register 12 in unit 5 receiving the instructions called out from the memory and distributing them through a gating network 13 pursuant to the directions The output of memory 4, as emitted by gating network 13, is channeled over a multiplicity of leads collectively designated 50 delivering the binary information L, N (Fig. 3) to correspondingly designated registers via respective leads 5], 52 and to elemental, group and figure transformation registers T,E T,,E, T G T G, T,F T,,F by way of leads 53- 58. Registers L, N and T T,,E are duplicated at (L)v (N)v,(T .v (T,,E)v to provide for the storage of a new set of elemental instructions while digital commands for the tracing of a previously selected element are transmitted to analog processor 6, 7 by way of corresponding output leads 61, 62, 73, 74. The output leads of registers T G T G and T F T F, also carrying digital commands, have been designated 78.

Unit 5 further comprises three address registers AE (element), AG (group) and AF (figure), the first of these being again duplicated at (AE) for dealing with consecutively called-out elements. These address registers receive their information from input register 10 over leads collectively designated St and feed it back to calculator 3 and also, via a signal path SR, to register 10 for conditioning same to switch to the next group or figure after all the constituents of such higher-order grouping have been processed; lead SR does not serve the register AB.

The several registers shown in Fig. 2 may be conventionally provided with. ferrite cores or the like for the storage of the individual bits of each message or word received. Registers 10 and 11 may be included in the associated memory 4. This memory may also store various commands for controlling the intensity of the beam of tube 2 (Fig. l) and performing other ancillary functions, under the control of computer 3 and/or an associated programmer not shown, in a manner only peripherally relevant to the present improvement.

All the data relating to a given display, received from computer 3, may be stored in register 10 for an indefinite period to facilitate repetitive reproduction of the same image at rates fast enough to create the impression of a persistent image. This image may be subject to modification with the aid of, for example, the manually operable units 8, 9 of Fig. l as more fully described hereinafter. Unit 8 may comprise a conventional tracker ball or any other means for marking a selected part of the display in order to make the computer 3 receptive to new information (e.g. fed in via keyboard 9) concerning thispart. Reference may be made in this connection to two copending US. Pat. applications filed by me jointly with others; i.e. Ser. No. 692,026, dated 20Jan. 1967 and Ser. No. 20,369 dated 17 Mar. 1970. The first of these two applications, now Pat. No. 3,559,182, disclosed an electronic stylus or pointer with photoelectric means for picking up the luminous spot of a CRT beam on the screen of the tube to give a signal at the precise instant when that beam traverses a selected location; the second application describes the generation of voltages corresponding to the cotordinates of a selected point by an electric transducer responsive to mechanical pressure locally ap plied to the screen.

I shall now describe the operation of the system to the extent that it is performed automatically, without the intervention of a local operator, under the control of calculator 3 receiving its digital input from main computer 1 (Fig. 1) either directly or after storage on a tape or the like.

Thus, at the instant when the programmer signals the beginning of a display cycle, memory 4 may contain in its register a number of code words F T indicating one or more transformationsto which each figure of the display is to be individually subjected; a number of code words G T, specifying the transformations to be undergone by any group G, of any figure F and a number of composite code words of the type shown in Fig. 3, relating to all the elements E, of each group G, of any figure F Advantageously, this memory is programmed to read out first the instructions F,T F T T pertaining to the first figure; when all these instructions are decoded by gating network 13 and routed to the proper buffer registers T,F T,,F in the figures set, register 10 generates an identification signal on multiple St to enter in register AF the address (here l) of the figure being processed. Register AF via multiple SR reports this address to register 10 while gating network 13, upon decoding a switchover command issuing from memory 4 at that point, energizes a lead Sa to cause a shift within register 10 from figure processing to group processing with readout of the instructions GuT G1,T,,,,.,etc. relating to the first group of the first figure. It should be noted that all instructions concerning a particular configuration (element, group or figure) are transferred in parallel from memory 4 via buffer registers l1, 12 to network 13.

In a manner analogous to that described above with reference to the processing of figures, the completion of the loading of any register or combination or register in group set T,G T,,G causes entry of the address of this group in register AG with feedback to register 10. In response to another switchover command, network 13 again energizes the lead Sa to initiate a shift to element treatment with readout of the corresponding instructions. The N part of the code word shown in Fig. 3 is merely a progressively increasing numerical value that steps the element section of memory 10 essentially a binary counter, to call forth the several elements of the group in a predetermined sequence from a roster stored in a section of memory 4. Thus, for example, N=l may signify a straight line, N==2may be a circle, N=3 may designate a parabola, whereas two multiplicities of values of N may be assigned to ellipses and hyperbolas with different axial ratios.

Again, the identity of each element read out is stored on address register AE as soon as registers L, N, T E T,,E have been loaded. During the time slot immediately following the one in which the first element was read out (the number of such time slots in a display cycle or frame varying according to the complexity of the picture); the second element of the first group of the first figure is called forth;'to make room for the corresponding information, the data heretofore stored in registers T E T,,E, N, L and AE are transferred at this point to the respective companion'registers (T,E)v, T,,E)v, (N)v, (L)vand (AE)v for the control of processor stages 6 and 7E as well as the reporting to calculator 3 of the identity of the element being traced. This duplication of registers, therefore, considerably accelerates the translation of coded instructions into a visual display.

When the entire roster of elemental shapes has been scanned in the synthesis of the first group of the first figure, network 13 responds ,to another (reverse) switchover command to instruct register 10 to shift back to group selection but to read out the data pertaining to the group immediately following the group just processed, i.e. the one whose address (here 2) is greater by lthan the address now stored in' register AG. That second group is then treated in the same manner as the group preceding it, and the completed processing of all the groups of the first figure gives rise to another reverse switchover command for restarting the same sequence of operations on the groups and elements of the next figure, i.e. the second one of the display as determined from the address stored in register AF. When all the figures have been thus displayed, the system starts a new frame by shifting back to the first figure.

If an operator wishes to alter or replace any element of the display, he may identify it to the computer by his marker 8 with the aid of the information available to calculator 3 from address registers AF AG and (AE)v. To change the geometric law of the trace, for example, he may depress a modification key and one or more alphanumerical keys on keyboard 9 (Fig. 1) so as to substitute another N" value for the original one, that new value being then read out by the register 10 in its proper numerical place but with the same position-indicating parameters to make it appear at the location previously occupied by the former shape. The modified data then remain stored in register 10 until a new modification occurs or the entire display is canceled.

Processor section 6 may include, ahead of a function generator proper, a digital/analog converter operating on the binary codes transmitted via the multiple represented by lead 61. Multiple 62 may control a variety of switches as described hereinafter with reference to Fig. 4. Modification sections 7E, 76, 7F may include hybrid multipliers, advantageously of the type described below in connection with Fig. 5, to form the product between the analog values (i.e. voltages) issuing from section 6 and the digital magnitudes transmitted by way of leads 73 78.

The sweep x Xc and y, appearing in the outputs of the two signal channels X and Y of Fig. 2 are fed to the horizontal and vertical scanning circuits, respectively, of cathode-ray tube 2 (Fig. 1). Though the final magnitudes of these output voltages are determined by the cascaded modifiers 7E, 7G and 7F following the processor section 6, their law of variation (within a time slot allotted to the tracing of a graphic element) is established by the function generator or generators in that section which could be selectively switched in and out under the control of register N(v) and multiple 62. In accordance with an important feature of the invention, however, it is preferable to use for this purpose a single amplifier unit adapted to generate all the functions discussed above, i.e. straight lines and conic sections. Such a universal function generator, shown in Fig. 4, has two parallel branches designed to convert a pair of fixed input voltages v, and v, into the desired output voltages x and y Voltages v, and v,, are the analog equivalents of the digitized values transmitted from register (L)v over multiple 61 (Fig. 2).

The x branch of the function generator comprises an operational amplifier A, of the feedback-stabilized type,a first integrating amplifier l with a differentiating feedback circuit including a capacitor C, and a resistor R;,, and a similarly designed second integrating amplifier I amplifier A feeds amplifier I through an electronic switch 21 and is connected to the output of the latter through a feedback loop including a resistor R' Another electronic switch 25 enables selective energization of the second-stage integrator I from either the first integrating stage I or amplifier A All the switches shown in Fig. 4 are controlled by commands transmitted via multiple 62 (Fig.2).

The y" branch of the function generator of Fig.4 is identical with the x branch and comprises an operational amplifier A two integrating amplifiers T I a feedback capacitor C,,, resistors R,,, R,,, and switches 22, 26..The two branches are connected by a first path, extending from the output of amplifier I through a multiplier M and a resistor R to the input of amplifier I and a second path, analogously extending from the 1 output of amplifier I through a multiplier M and a resistor R to the input of amplifier I The two crossconnecting circuits may be broken with the aid of switches 23, 24. Multipliers M and M which are advantageously of the hybrid type described'hereinafter, receive respective factors K, and Kg from unit 5 via lead 62 (Fig. 2).

Switches 21, 22 open and close periodically, in response to clock pulses from a timer feeding the lead 50 of Fig. 2, to allow for the establishment of the selected starting conditions in the outputs of amplifiers A and A, before the function generator is made operational for the remainder of the corresponding time slot. Generally, the following choices are possible:

(a) Generation of straight line. Switches 25 and 26 are reversed to cut out the first integrating stages I and 1 the output voltages of stages I and are linear functions of time t given by put voltage x, has the value given above whereas voltage v,, follows the law a v =p,,t q,t r,

where, again, the parameters p,,, q and r, are independently determined.

(c) Generation of hyperbolic segment. The time the circuit breakers 23, 24 are closed and the switches 25, 26 are in their illustrated normal position. A sinh (or cosh) function appearing in the output of either integrator I I returns to its input as the conjugate of that function while a like conjugate is added thereto over the cross-connection from the companion stage. So long as the amplifiers do not become overloaded within the allotted time slot, the system in this and the preceding cases may be regarded as stable (i.e. nonoscillatory).

(d) Generation of ellipse or segment thereof. The stable systemof the preceding paragraph is modified by relatively inverting the signs of the cross-fed voltages. For this purpose, a sign inverter 27 has been diagrammatically illustrated in Fig. 4 together with a switch 28 adapted to insert it in the circuit leading from amplifier I to amplifier 1 This causes oscillations at a frequency determined by the fixed circuit parameters and by the selected input voltages, v v, as well as magnification factors K K The immediate output voltages of integrator stages I 1 are conjugate trigonometric functions (sine and cosine or vice versa) of wt (mbeing the pulsatance of the oscillation) of equal amplitudes, thus defining a circle as a special case of an ellipse.

Further multipliers (not shown) in the outputs of integrating amplifiers 1 and I, may then individually modify these amplitudes in order to provide an ellipse of desired axial ratio; in the same manner the hyperbolic function referred to in the preceding paragraph may be altered.

The postulated generation of circular and hyperbolic traces under the conditions described above may be verified by the following considerations:

If amplifiers I and I have identical forward gains and feedback factors of absolute magnitudes a and B, respectively, and if (with inverter 27 disconnected by switch 28) the input voltages v v of stages 1, I are considered to satisfy the relationships v A sinh Z2 and v, A cosh 2:, then amplifier 1,, has an output v A/z a cosh zt whereas amplifier 1 supplies an output voltage v A/z a sinh zt. Input voltage v must equal the sum of its own feedback voltage, applied through condenser C and the cross-fed voltage K v from the output of multiplier M Similarly, input voltage must equal the sum of its own feedback voltage from condenser C,, and the cross-feed voltage K v from multiplier M,. We therefore obtain the relationships A sinh zt =A a ,6 sinh zt-l-A/z(K2) a sinh zt 1 and A A cosh zt =A a B cosh zt +A/z(K1) a cosh zt 2 whence z=K a/(l aB)=K a/(l aB) 3. so that the system is in equilibrium if K I K K and z=Ka/(l aB). 4.

At t 0,i.e. upon closure of switches 21 and 22, v must be zero if the sinh function is to develop in the x I branch. The initial magnitude A of voltage v,,,, then represents the half-axis of an equilateral hyperbola. The double integration in stages I and I preserves the sinh function in the output x so that, in the absence of subsequent shifting or rotation, thevertex of the hyperbola comes to lie on the vertical axis of the screen.

Let us now assume that the input voltages of amplifiers I and I satisfy the relationships v A a sin wt and v,,,, A a cos mt. The corresponding output voltages then have the form v (A)/(w)a cos wt and v (A)/(w) a sin wt, respectively.

The foregoing equations now become Asin wt=Aa Bsin mt+(A/m) (K )asin wt 1'.


A cos wt= Aa B cos wt -A/m (K,) a cos wt whence w=K a/( 1 a3) Knit/(1 41B) 3'. so that the system is in equilibrium if K K or K K, K K with The insertion of inverter 27 (or an equivalent modification of multiplier M, therefore creates the requisite conditions for such oscillatory operation.

As before, the amplitudes of the two conjugate functions in the outputs of the two-stage integrators will be the same so that the trace, if not modified in the signal paths beyond stages I and 1 will be a circle. The sine function develops in the branch having the starting voltage 0 applied to it, the magnitude A of the other input voltage representing the radius of the circle.

It is desirable to make the peripheral tracing speed independent of radius, in order to simply the task of the computer in measuring a desired length of arc. Since, in a circle, this tracing speed equals the radius times the angular velocity to, K,since the latter varies directly with the multiplication factor K this constancy can be achieved by making the amplitude A inversely proportional to K so that the finite input voltage, e.g. v,, is increased with decreasing multiplication factors and vice versa. Since the second integration at I again in troduces the magnitude of w and therefore of K into the denominator of the voltage function v v generated by the system of Fig. 4, the final radius still depends on the choice of K. Similar considerations apply to the tracing of ellipses and hyperbolae. On the CRT screen itself, of course, the tracing speed will depend on the chosen parameters, yet the computer need only take into consideration the magnifications or reductions, if any, occurring beyond stages i I Other exponential functions may be established, for example, by operating the system of Fig. 4 with equal starting voltages v v, and with inverter 27 disconnected, there being no finite values of t for which the cosh and sinh functions are identical.

In Fig. 5 I show a hybrid multiplier suitable for use in the function generator of Fig. 4 as well as in any of the modifying subsections 7E, 76, 7F of processor section 7. A ladder-type resistance network 38,-;is connected between a terminal 34 of fixed reference potential (here ground) and the input. 35 of an operational amplifier 36 having an output 39. Network 38 has two terminal sections of magnitude R separated by a multiplicity of series arms of half that magnitude, the junctions of these series arms with one another and with the two terminal sections being connected to respective shunt arms also of magnitude R Each shunt arm is connected to a pair of input terminals 32, 33, by way of respective gating elements here shown as field-effect transistors FET, FET, the gates of these transistors being tied to the output of an associated AND gate 30 with interposition of an inverter 31 in the case of transistor FET All the AND gates 30 have one terminal tied to a source of blocking potential (here positive) represented by a terminal 37. The'other input of 1 each AND gate is tied to an individual conductor of a multiple carrying a multidigit binary value M, such as the multiples illustrated as leads 73- 78 in Fig. 2. These conductors have been labeled 2 2, 2 2"" 2" according to their denominational ranks in the binary code.

Input terminal 32 is assumed to be held at a fixed potential equal to that of terminal 34 (ground) so that an input voltage applied to network 38 at any point between amplifier 36 and one of the network junctions is reduced in a predetermined ratio, consistent with the digital position of the corresponding shunt arm, when the respective AND gate 30 is nonconductive whereby field-effect transistor FET is saturated and represents a negligible resistance. An analog voltage V,. to be multiplied by the magnitude of number M appears on terminal 33 but cannot pass the companion transistor FET under these conditions, that transistor being cut off by the inversion of the AND gate output at circuit 31. Conversely, if the second input of any AND gate 30 is energized, the associated transistor FET, is blocked while the companion transistor FET is saturated so as to give passage to voltage V, With only the lowestorder conductor 2 energized, for example, the magnification factor is unity; thus, the gain of amplifier 36 should be so chosen that the potential of terminal 39 equals that of terminal 33 under these conditions. With other digital inputs energized, the output voltage at terminal 39 is then a multiple M:V of the analog input voltage V,,.

The network of Fig. 5 can be easily adapted for use A with complementary binary codes (i.e. with designation of a bit by the absence rather than presence of voltage on the correspondingly conductor 2- 2" by the simple expedient of reversing the input connections by grounding the terminal 33 and applying the potential V, to terminal 32.

Moreover, if a voltage of unity value is applied to the live terminal 33 (or 32), this system will operate as a digital/analog converter. As such it may be used, for example, in processor section 6 ahead of the function generator described with reference to Fig. 4. I As compared with conventional voltage-dividing networks using weighted resistances, the circuit arrangement of Fig. 5 offers the additional advantages of simplified manufacture (requiring only two calibrated resistance values R and R/2), operativeness with resistors of relatively low magnitudes, and a constant input resistance as seen from voltage source V...

Fig. 6 shows a'circuit, adapted to be used in any of the processor subsections 7E, 76, 7F, for selectively displacing a generated trace by translation and/or rotation. This circuit includes four multipliers 40, 41, 43, 44, each preferably of the hybrid type just described, and two conventional adders 42, 45. An analog voltage x from a preceding stage is applied to the analog inputs (32, 33 in Fig. of multipliers 40 and 44 in parallel, a companion voltage y' being similarly appliedto multiplier 41 and 43. If the trace is to be rotated through an angle 8 multipliers 40 and 44 receive at their binary inputs (M, Fig. 5) the digitized magnitudes of cos 0 while the other two multipliers similarly receive the magnitude of sin 0 Adders 42 and 45, respectively receiving the outputs of multipliers 40, 41 and multipliers 43, 44 perform the operations which represents the desiredinclination of the co-ordinate system by the angle 0 A translational shift, such as those needed to add a constant in the abovediscussed formulas for straight lines and conic sections, may be carried out with the aid of further voltages x, and y applied to additional inputs of adders 42 and 45 respectively. A simple shift occurs with 0=0 i.e. zero voltages at the binary inputs of multipliers 41 and 44 along with unit voltages at the corresponding inputs of the other two multipliers.

The circuitry of Fig. 6 allows for the original plotting of straight lines along one or the other co-ordinate axis, followed by a suitable rotation, which further simplifies the task of the calculator.

Fig. 7 illustrates part of the screen of a cathode-ray tube on which an elemental trace 100- is being displayed. By depressing special keys on the keyboard 9 of Fig. l, and by the use of some numerical keys thereof in selected combinations, the operator has chosen two pairs of constant potentials X, X Y, and Y (Fig. 8) corresponding to specific values of the deflecting voltages for the sweep circuits of the tube, thereby establishing two imaginary vertical lines V, V with abscissae x, x and horizontal lines H, H, with ordinates y, y, as measured along axes x and y The part of trace 100- within the area framed by these four lines is to be explored in detail, the remaining portions being of no interest.

Points P, P P P mark the intersections of the trace with the boundaries of the desired area. it will be seen that, in this example, trace 100 cuts the line V, once (at P,) from without, the line H, once (at P,) from within, the line H, twice (at P P and the line V not atall.

As shown in Fig. 8', the selected potentials X X,, Y,, Y are fed to respective digital/analog converters, such as that described with reference to Fig. 5, respectively designated 101, 102, 103, 104 and working into associated comparators 201, 202, 203, 204. The first two comparators also receive the sweep voltage x, from the channel X (Fig. 2) while the two other comparators receive the companion voltage y The output. of each comparator is transmitted to a two-stage shift register 301, 302, 303, 304, this number of stages being sufficient inasmuch as no second-order curve can intersect a given line more than twice.

When the sweep voltage y *matches the analog equivalent of the limiting voltage X, or X: comparator 201" or 202 responds and trips the associated shift register 301 or 302. Similarly, a coincidence of voltage y with either limiting voltage Y, Y actuates the coml2 parator 203 or 204 to step the corresponding shift register 303 or 304. In the outputs of these shift registers there are thus generated up to eight possible signal pul- Ses 1.1 r 1.2 2.1 2.2 3.1 i 3.2 4.1 r 4,: which mark the intersections between the trace and the frame in Fig. 7. Thus, point P, gives rise to a marker pulse S,,, from register 301, points P and P trigger the register 304 to generate marker pulses S and S4,: and point P causes the emission of a marker pulse S;,,, by register 303. All these registers are, of course, automatically reset at the end of each time slot so that similar information can be obtained on other elements crossing or touching the boundaries of the frame.

In this manner, the calculator 3 receiving the marker pulses can ascertain from the contents of address registers (AE)v, AG, AF the identity of such anelement; having available all the data relating to the nature and position of that element, it may then compute the extent to which it falls within the selected frame area and give instructions to memory 4 (Fig. 2) for the suppression of the remainder in subsequent cycles. The cropped picture within that area may then be magnified (and shifted, if necessary) by the aforedescribed modification circuits without extensive recalculation.

The system of Fig. 8 is illustrativeof a variety of means enabling an operator to communicate with the computer, through the intermediary of the control unit 5, in producing or changing a display. Such communication is also possible with the aid of various marking implements, eg the photoelectric stylus of U.S. Pat. No. 3,559,182 enabling the free-hand tracing of pictures on a conventionally illuminated screen with transformation of the data into digital information by the main computer 1.

Of course, the invention is not limited to the embodiments described and shown which has been given solely by way of example.


l. A system for the visualization of graphic symbols on the screen of a cathode-ray tube provided with scanning means for controlling the position of its beam, said symbols being composed of groupings of basic elements, comprising:

memory means for storing a variety of instructions for said scanning means in digital form;

a first set of registers connected to said memory means for receiving therefrom instructions relating to said basic elements;

a second set of registers connected to said memory means for receiving therefrom instructions relating to said groupings;

an analog processor interposed between said memory means and said scanning means, .said processor including function-generating means controllable by the contents of said first set of registers'and function-modifying means in cascade with said function-generating means havinga first section operating on the output of said functiongenerating means in response to the contents of said first set of registers, said function modifying means, having-a second section operating on the output of said first section in response to the contents of said second set of registers;

first address means for successively calling forth in-- structions relating to different basic elements of a grouping from said memory means for temporary storage in said first set of registers to control said first section of said function modifying means;

second address means for successively calling forth instructions relating to different groupings from said memory means for temporary storage in said second set of registers to control said second section of said function-modifying means; and

computer means for programming said first and second address means to read out to said first set of registers the instructions relating to all the elements of one grouping identified by said second address means before shifting to the instructions relating to all the elements of the next grouping so identified.

2. A system as defined in claim 1 wherein said first set of registers are duplicated for preserving instructions relating to one element during readout of instructions relating to the next element.

3. A system as defined in claim 1 wherein said func tion-generating means include size and shape generators, said functiommodifying means including transformation generators.

4. A system as defined in claim 3 wherein said function-generating means includes other transformation generators controllable by certain of said first set of registers.

5. A system for the visualization of graphic symbols on the screen of a cathode-ray tube provided with scanning means including a pair of orthogonally related sweep circuits for controlling the position of its beam, comprising:

memory means for storing a variety of digital instructions for controlling the operation of said scanning means;

a control unit connected to said scanning means;

an analog processor interposed between said control unit and said scanning means, said processor including function-generating means responsive to certain of said instructions and function-modifying means responsive to other of said instructions, said processor having output connections to said scanning means for applying analog sweep voltages thereto according to parameters established by said function-generating and function-modifying means, said control unit receiving such instructions from said memory means and distributing same between said function-generating means and said function-modifying means;

and computer means having access to said memory means for calling out any of said instructions to said control unit;

said function-generating means including first operational amplifier means with two cascaded integrating stages in a first channel connected to generate a signal voltage for one of said sweep circuits and second operational amplifier means with two cascaded integrating stages in a second channel connected to generate a signal voltage for the other of said sweep circuits;

said function-modifying means including switchmeans for selectively establishing cross-connections from a first-stage output of either ofsaid operational amplifier means to a first-stage input of the other operational amplifier means and independently settable multiplication networks in said cross-connections for generating complex conjugate functions of time.

6. A system as defined in claim 5 wherein said switch means includes sign-inverting means in at least one of said cross-connections for the selective generation of trigonometric and hyperbolic functions.

7. A system as defined in claim 5 wherein said function-modifying means includes bypass switches for selectively cutting out the first integrating stage of either of said amplifier means.

8. A system as defined in claim 5 wherein said multiplication networks are hybrid networks with a mu]- tiplicand input for analog voltages and a multiplier input for digital signals.

9. A system as defined in claim 8 wherein each of said hybrid networks comprises a ladder-type resistance network with a plurality of shunt branches connected in parallel to said multiplicand input and individual gates between said multiplicand input and said shunt branches having control leads connected to said multiplier input.

10. A system as defined in claim 9 wherein said shunt branches are resistors of identical magnitude and are separated by series resistors of half said magnitude bracketed between two terminal resistors of said magnitude.

l l. A system as defined in claim 5 wherein one set of said instructions relates to basic elements of a symbol to be displayed whereas another set of said instructions relates to groups of such basic elements arrayed in selected combinations, said function-modifying means including circuitry divided into a first subsection for the processing of individual elements and at least one other subsection for the processing of higher-order groupings.

12. A system as defined in claim 11 wherein said control unit comprises a first set of registers for the control of said function-generating means and said first subsection, and a second set of registers for the control of said other subsection, said first set of registers being duplicated for controlling said processor to trace an element to be visualized and for simultaneously registering information relating to a subsequent element.

13. A system as defined in claim 1 1 wherein said control unit includes respective address registers for the temporary identification of the element and the group represented by the last instructions read out from said memory means, said address registers being provided with feedback connections to said memory means for enabling same to deliver instructions for successive elements in consecutive groups in a predetermined order.

14. A system as defined in claim 5, further comprising selector means for establishing two limiting values for each signal voltage and comparison means connected to said channels and to said selector means for transmitting a marker pulse to said computer means upon coincidence of either of said signal voltages with either of the two limiting values established therefor.

15. A system as defined in claim 14 wherein said comparison means comprises two pairs of coincidence circuits and two pairs of shift registers respectively connected to said coincidence circuits for emitting a marker pulse any time a trace of said beam, produced under the control of said processor, reaches the outline of a rectangular area defined by said limiting values.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3309692 *Dec 3, 1964Mar 14, 1967Hazeltine Research IncCharacter display apparatus
US3335315 *Mar 16, 1964Aug 8, 1967Laurence MooreElectrical apparatus for animating geometric figures and relationships utilizing a cathode ray tube display
US3364382 *Jan 3, 1967Jan 16, 1968Control Image CorpAutomatic generation and display of animated figures
US3394367 *Jul 14, 1965Jul 23, 1968Bendix CorpSymbol generator
US3417281 *Nov 19, 1963Dec 17, 1968Raytheon CoCursive character generator
US3422419 *Oct 19, 1965Jan 14, 1969Bell Telephone Labor IncGeneration of graphic arts images
US3444319 *Jul 26, 1966May 13, 1969Rca CorpCharacter generator
US3466645 *Mar 1, 1965Sep 9, 1969Sperry Rand CorpDigital data crt display system
US3476974 *Jan 22, 1968Nov 4, 1969Stromberg Datagraphix IncDigital controlled elliptical display
US3497613 *Mar 25, 1966Feb 24, 1970IbmDisplay device with video signals interleaved in segments of a cyclical storage
US3520994 *Jan 12, 1967Jul 21, 1970Kaiser Aerospace & ElectronicsCombination raster and calligraphic scanning techniques for aircraft displays
US3603964 *Jan 12, 1968Sep 7, 1971Computer Image CorpMeans and method for semi-automatically sequencing the generation of components for an electronic image display
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3789200 *Jun 30, 1972Jan 29, 1974IbmCircle or arc generator for graphic display
US3816719 *Jun 19, 1973Jun 11, 1974Thomson CsfElectronic devices for the programmed tracing of patterns
US3944988 *Jul 29, 1974Mar 16, 1976Compagnie Internationale Pour L'informatique - C.I.I.Image-display system interacting with light pen
US3952297 *Aug 1, 1974Apr 20, 1976Raytheon CompanyConstant writing rate digital stroke character generator having minimal data storage requirements
US4160981 *Jun 6, 1977Jul 10, 1979Harris CorporationCRT video text layout system having horizontal scrolling
US4310840 *Aug 27, 1979Jan 12, 1982Vydec, Inc.Text-processing
US4314351 *Jan 28, 1980Feb 2, 1982Thomson-CsfCurve-generating device for visual display of symbols on a cathode-ray screen
US4646078 *Sep 6, 1984Feb 24, 1987Tektronix, Inc.Graphics display rapid pattern fill using undisplayed frame buffer memory
US8049680 *Dec 7, 2005Nov 1, 2011Carl Zeiss AgMethod for improving vision of a low-vision person and viewing aid
US20060147197 *Dec 7, 2005Jul 6, 2006Bernd SpruckMethod for improving vision of a low-vision person and viewing aid
U.S. Classification345/13, 708/849, 345/27
International ClassificationG06G7/00, G09G1/08, G06G7/26, H03M1/00, G09G1/06, G09G1/12, G06F3/023, G06F3/048, G06F3/033
Cooperative ClassificationH03M2201/4225, H03M2201/01, G06G7/26, H03M2201/3136, H03M2201/4262, H03M1/00, H03M2201/4233, H03M2201/3131, G06F3/0489, G09G1/12, H03M2201/3168, H03M2201/8156, H03M2201/4135, H03M2201/198, H03M2201/72, H03M2201/4204, H03M2201/8132, H03M2201/3115, G06F3/04845
European ClassificationG06F3/0489, G06F3/0484M, G09G1/12, H03M1/00, G06G7/26