US3696627A - Liquid cryogen transfer system - Google Patents

Liquid cryogen transfer system Download PDF

Info

Publication number
US3696627A
US3696627A US3696627DA US3696627A US 3696627 A US3696627 A US 3696627A US 3696627D A US3696627D A US 3696627DA US 3696627 A US3696627 A US 3696627A
Authority
US
United States
Prior art keywords
conduit
liquid
cryogen
transfer
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Ralph C Longsworth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Cryogenics of America Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Application granted granted Critical
Publication of US3696627A publication Critical patent/US3696627A/en
Assigned to APD CRYOGENICS INC. reassignment APD CRYOGENICS INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AIR PRODUCTS AND CHEMICALS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content

Definitions

  • Transfer lines such as this are produced in smaller diameter versions for use in transferring a liquid cryogen, e.g., helium, from a storage dewar to a remote point of use such as instruments and the like used for infrared spectrophotometry.
  • a liquid cryogen e.g., helium
  • the fluid in the annular space around the transfer conduit absorbs the energy radiated and conducted to the transfer line and evaporates as it proceeds from the supply end to the delivery end of the transfer system.
  • the shield gas conduit is then vented outwardly of the covering jacket of the transfer system.
  • the transfer system can be coupled to the source of the liquid cryogen by a special adaptor so that the normal boiling off of the cryogen in the storage vessel causes pressurization of the liquid cryogen to aid in steady state flow.
  • a needle valve at the delivery end can be used to control the flow of the liquid cryogen and a heat exchanger in combination with the needle valve can be used to provide multiposition orientation of the delivery end of the transfer system.
  • FIG. 1 is a cross sectional schematic diagram of the transfer system according to the present invention shown in operating position on a cryogenic storage vessel.
  • FIG. 2 is a section taken along line 2-2 of FIG. 1.
  • FIG. 3 is an enlarged schematic of the delivery end of the cryogenic transfer system shown in conjunction with the needle valve and heat exchanger system.
  • FIG. 1 there is shown a cryogenic transfer system 10 disposed with a cryogenic storage vessel 12 such as commonly referred to as a dewar wherein there is a quantity of cryogenic fluid 14.
  • the transfer system comprises a central transfer tube 16 that is disposed within the cryogenic fluid 14 and which actually transfers the cryogen from the dewar 12 to the remote point of use (not shown).
  • a complimentary tube 18 spaced apart from the tube 16 and held in fluid tight relation thereto.
  • the tube 18 extends for almost the entire length of the actual cryogen transfer tube 16.
  • At the delivery end 24 of the surrounding tube 18 there is a return conduit 26 which returns toward the supply end 20 of the conduit 18 and then exits outwardly of the jacket 28 through a suitable fitting 30.
  • the entire system is covered by the jacket 28 which is in vacuum tight relationship to the inner conduits.
  • the jacket 28 can be rigid but it also can be fabricated from flexible metallic coverings as are well known.
  • the flexible metallic covering is preferred especially if the entire transfer line is to be flexible which can be accomplished by using small diameter conduits for the transfer tube 16 and the shield gas tube 18 and return tube 26.
  • the end of transfer tube or conduit 16 that projects through the upper end 29 of jacket 28 contains a nozzle 31.
  • a preferred method of achieving a flexible transfer system is disclosed in US. Pat. application Ser. No. 106,167 filed Jan. 13, l971 and owned by the assignee of the present application.
  • the transfer system 10 is disposed in dewar 12 by means of a dewar adaptor 32.
  • the dewar adaptor 32 includes a housing 34 which communicates with the neck 36 of dewar l2 and is held in fluid tight relation therewith. Included within housing 34 is sealing means 38 including O-ring sealing devices 40 as are well known in the art. Included with housing 34 is a conduit 42 and a pressure release valve 46 to prevent over pressurization of the system.
  • the dewar is fitted with the adaptor 32 and the transfer system thereby enabling the vaporizing cryogen in the dewar to increase the pressure inside the dewar and force liquid into both tubes 16 and 18.
  • the nozzle 31 in conduit 16 is included to assure that the cryogen fluid in conduit 16 remains at the pressure inside dewar 12, thereby maintaining its boiling point above the boiling point of the cryogenic fluid in tube 18.
  • the cryogen enters tube 18 through nozzle 22 it drops in both temperature and pressure. The net effect of this drop in temperature and pressure is to subcool the liquid in tube 16 and thus prevent that liquid from boiling.
  • a dewar pressure of 2.5 psig liquid helium would have a boiling temperature of 4.4K.
  • the helium At essentially atmospheric pressure (inside tube 18) the helium has a boiling temperature of 4.2K.
  • the liquid flowing in the annulus defined by tubes 16 and 18 also absorbs any energy radiated or conducted to the transfer line by evaporating the liquid as it proceeds from the supply end 22 to delivery end 24 of conduit 18.
  • the liquid plus vapor is then conducted by a conduit 26 outwardly of the vacuum jacket 28 through the fitting 30.
  • a shield gas conduit Because the cryogen flowing in the annulus defined by conduits 16 and 18 intercepts all heat leaking into the transfer line it is referred to as a shield gas conduit.
  • the shield gas flow is a non-steady flow as a result of this heat input. However, if sufficient shield gas flow is present so that it is in a saturated state as it is vented through port 30 the cryogen flowing in conduit 16 will be subcooled and will be pure liquid.
  • FIG. 3 There is shown in FIG. 3 a CRYOTIP refrigerator 44 which receives the transfer system 10 by means of an adaptor 46 from which the conduit 16 and 18' project toward the end of refrigerator 44 through a suitable refrigerator body 48.
  • Conduits 16' and 18 are the delivery end counterparts of conduits 16 and 18 of FIG. 1.
  • the projecting end 45 of the transfer system terminates at a needle valve 50 which serves to control the flow of the liquid cryogen.
  • the needle valve 50 has a valve member 52 that can be adjusted by means of adjusting nut 54 at the top of the refrigerator body 48.
  • the refrigerator body 48 includes suitable heaters to raise the temperature of the venting gas as it is conducted outwardly of the system through vent 60, lead through ports 58, and vacuum connector 62 for evacuating the system.
  • a sample holder 64 which contains a suitably threaded aperture 66 and a heater 68 for warming the delivered cryogen. Between the needle valve 50 and the specimen holder 64 there is a heat exchanger 70.
  • heat exchanger 70 serves to transfer the heat from the sample holder to the cryogenic fluid. Because the cryogenic fluid is forced through the exchanger the tip can operate in any orientation. The heat transfer is counter flow, thus it is possible to have the liquid enter from the needle valve and be warmed to a high temperature as it flows through the heat exchanger. For example, if liquid helium is being used, it flows from the needle valve 52 as a saturated liquid at 42 Kelvin and can then be warmed to 300 Kelvin as it flows through the heat exchanger.
  • the refrigerator 44 contains the necessary ports 71 for venting the warmed cryogenic fluid from the entire system through vent 60.
  • the refrigerator 44 is shown inserted in a receptacle 73, such as an instrument adaptor or the like, by known sealing means to assure a pressure-tight fit.
  • This layer can be a multi-layer insulation such as synthetic sheet material with a metalized coating.
  • the insulation extends to the delivery end of the system and is disposed around conduit 16, 18 and 26' of FIG. 3.
  • a cryogenic transfer system for transferring a liquid cryogen from a storage container to a remote point of use with the liquid being delivered at constant temperature pressure and flow rate comprising:
  • liquid transfer conduit having a first end disposed in a source of liquid cryogen and a second end with a nozzle therein for delivering the liquid cryogen to a point of use;
  • a cryogenic transfer system according to claim 1 wherein there is included valve means to vary the flow of liquid cryogen at the delivery end of the system.
  • a cryogenic transfer system according to claim 1 wherein the means for venting said second conduit includes a separate conduit for returning said second conduit flow to a point near the cryogen storage end of the system for venting.
  • a cryogenic transfer system according to claim 1 wherein there is provided a multilayer insulation surrounding said conduits.
  • a cryogenic transfer system comprising a first liquid cryogen transfer conduit having a supply end disposed in a cryogen supply vessel and a delivery end for providing cryogen at a point of use;
  • said second conduit being in fluid tight relation to the first conduit and including a nozzle at the end adjacent the supply end of the first conduit;
  • a third conduit extending from the delivery end of the second conduit to a point near the supply end of the second conduit and outwardly of the jacket to form a vent;
  • an adaptor to fix the system to a cryogen supply vessel in pressure tight relation thereto; and means for metering the flow of liquid cryogen at the supply end of the system.
  • a system according to claim 6 including a heat exchanger on the delivery end of the system.
  • thermoelectric heat exchanger is disposed between the needle valve and means for supporting an object to be cooled by the cryogen, the object supporting means including a control heater in contact with the heat exchanger.

Abstract

A system for transferring a cryogenic liquid from a storage vessel to a remote point of use at a constant temperature, pressure and flow rate wherein the transfer tube is jacketed with a second tube along substantially its entire length and these tubes are enclosed in an evacuated jacket. Use of a nozzle in the second tube entry end causes the liquid entering the jacket to decrease in pressure and temperature thereby subcooling the liquid in the transfer tube to prevent said liquid from boiling. The jacketing fluid absorbs heat entering the transfer system from the atmosphere. Included in the system as accessories are an adaptor for attaching the system to the storage vessel in pressure tight relationship and flow control on the delivery end of the system.

Description

United States Patent Longsworth [54] LIQUID CRYOGEN TRANSFER SYSTEM [72] Inventor: Ralph C. Longsworth, Allentown,
[73] Assignee: Air Products and Chemicals, Inc.,
Allentown, Pa. v
[22] Filed: Jan. 18, 1971 [21] Appl. No.: 107,105
[ 51 Oct. 10,1972
Primary Examiner-Meyer Perlin Assistant Examiner-Ronald C. Capossela Attomey-Ronald B. Sherer, James C. Simmons and Max Klevit ABSTRACT A system for transferring a cryogenic liquid from a storage vessel to a remote point of use at a constant temperature, pressure and flow rate wherein the transfer tube is jacketed with a second tube along substantially itsentire length and these tubes are enclosed in an evacuated jacket. Use of a nozzle in the second tube entry end causes the liquid entering the jacket to decrease in pressure and temperature thereby subcooling the liquid in the transfer tube to prevent said liquid from boiling. The jacketing fluid absorbs heat entering the transfer system from the atmosphere. Included in the system as accessories are an adaptor for attaching the system to the storage vessel in pressure tight relationship and flow control on the delivery end of the system.
8 Claims, 3 Drawing Figures PATENTEDHBI 1mm 3 .696. 62 7 SHEET 1 OF 2 1 NVEN TOR. Ralph C. Longsworfh BY LIQUID CRYOGEN TRANSFER SYSTEM BACKGROUND OF THE INVENTION This invention pertains to liquid cryogen transfer systems for transferring a liquid cryogen from a storage vessel to a remote point of use. U. S. Pat. No. 3,433,028 and 3,364,689 are examples of cryogenic transfer lines that are known in the art. Transfer lines such as this are produced in smaller diameter versions for use in transferring a liquid cryogen, e.g., helium, from a storage dewar to a remote point of use such as instruments and the like used for infrared spectrophotometry.
ln building a transfer system for use with instruments requiring a liquid cryogen for cooling it is desirable to deliver the liquid to thepoint of use at a very low flow rate but with a constant flow rate. In the past this has been extremely difficult because the cryogen vaporizes resulting in what is known as vapor binding" in the transfer line. This vapor'binding results from the gas bubbles having a greater volume than the liquid thus forming a temporary block in the transfer line. This causes pressure to build up in the line to the point where the liquid is actually forced back into the storage dewar. At the delivery end of the transfer line the fluid is delivered in spurts with accompanying pressure and temperature cycling. The vapor binding results from heat leaking into the transfer line from the atmosphere and has been found with systems employing vacuum and solid type insulation between the actual liquid transfer tube and the outer jacket.
SUMMARY OF THE INVENTION In order to avoid the above described problems, and to, in general, provide an improved transfer system it has been discovered that if the liquid cryogen is caused to flow in a separate conduit surrounding the actual cryogen transfer conduit of the system for substantially the length of the transfer conduit that this second source of cryogen acts as a shield fluid to the initial transfer conduitabsorbing heat and preventing vapor binding in the transfer line. The second conduit surrounding the transfer conduit is provided with a nozzle in the end that is disposed in the source of liquid cryogen to provide for a pressure and temperature drop in the shield gas as it flows along the outer surface of the transfer conduit thereby subcooling the liquid in the center transfer conduit and preventing boiling thereof. The fluid in the annular space around the transfer conduit absorbs the energy radiated and conducted to the transfer line and evaporates as it proceeds from the supply end to the delivery end of the transfer system. The shield gas conduit is then vented outwardly of the covering jacket of the transfer system. It has also been found that the transfer system can be coupled to the source of the liquid cryogen by a special adaptor so that the normal boiling off of the cryogen in the storage vessel causes pressurization of the liquid cryogen to aid in steady state flow. It has also been found that a needle valve at the delivery end can be used to control the flow of the liquid cryogen and a heat exchanger in combination with the needle valve can be used to provide multiposition orientation of the delivery end of the transfer system.
Therefore it is the primary object of this invention to provide an improved liquid cryogen transfer system.
It is another object of this invention to provide a liquid cryogen transfer system that employs the liquid cryogen as a shield gas to prevent vaporization of the cryogen in the transfer tube.
It is still another object of this invention to provide a liquid cryogen transferi's'ystem that can be used in com bination with self-pressurization of the storage vessel and metered flow at the delivery end of the transfer system.
It is yet another object of this invention to provide a cryogen transfer system wherein the actual transfer tube can be of small diameter to make the entire transfer system flexible.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a cross sectional schematic diagram of the transfer system according to the present invention shown in operating position on a cryogenic storage vessel.
FIG. 2 is a section taken along line 2-2 of FIG. 1.
FIG. 3 is an enlarged schematic of the delivery end of the cryogenic transfer system shown in conjunction with the needle valve and heat exchanger system.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1 there is shown a cryogenic transfer system 10 disposed with a cryogenic storage vessel 12 such as commonly referred to as a dewar wherein there is a quantity of cryogenic fluid 14.
The transfer system comprises a central transfer tube 16 that is disposed within the cryogenic fluid 14 and which actually transfers the cryogen from the dewar 12 to the remote point of use (not shown). Surrounding the transfer tube 16 is a complimentary tube 18 spaced apart from the tube 16 and held in fluid tight relation thereto. At the lower end 20, which is also referred to as the supply end of the cryogen transfer system, there is a nozzle 22. The tube 18 extends for almost the entire length of the actual cryogen transfer tube 16. At the delivery end 24 of the surrounding tube 18 there is a return conduit 26 which returns toward the supply end 20 of the conduit 18 and then exits outwardly of the jacket 28 through a suitable fitting 30. The entire system is covered by the jacket 28 which is in vacuum tight relationship to the inner conduits. The jacket 28 can be rigid but it also can be fabricated from flexible metallic coverings as are well known. The flexible metallic covering is preferred especially if the entire transfer line is to be flexible which can be accomplished by using small diameter conduits for the transfer tube 16 and the shield gas tube 18 and return tube 26. The end of transfer tube or conduit 16 that projects through the upper end 29 of jacket 28 contains a nozzle 31. A preferred method of achieving a flexible transfer system is disclosed in US. Pat. application Ser. No. 106,167 filed Jan. 13, l971 and owned by the assignee of the present application.
The transfer system 10 is disposed in dewar 12 by means of a dewar adaptor 32. The dewar adaptor 32 includes a housing 34 which communicates with the neck 36 of dewar l2 and is held in fluid tight relation therewith. Included within housing 34 is sealing means 38 including O-ring sealing devices 40 as are well known in the art. Included with housing 34 is a conduit 42 and a pressure release valve 46 to prevent over pressurization of the system.
In operation the dewar is fitted with the adaptor 32 and the transfer system thereby enabling the vaporizing cryogen in the dewar to increase the pressure inside the dewar and force liquid into both tubes 16 and 18. The nozzle 31 in conduit 16 is included to assure that the cryogen fluid in conduit 16 remains at the pressure inside dewar 12, thereby maintaining its boiling point above the boiling point of the cryogenic fluid in tube 18. As the cryogen enters tube 18 through nozzle 22 it drops in both temperature and pressure. The net effect of this drop in temperature and pressure is to subcool the liquid in tube 16 and thus prevent that liquid from boiling. For example at a dewar pressure of 2.5 psig liquid helium would have a boiling temperature of 4.4K. At essentially atmospheric pressure (inside tube 18) the helium has a boiling temperature of 4.2K. The liquid flowing in the annulus defined by tubes 16 and 18 also absorbs any energy radiated or conducted to the transfer line by evaporating the liquid as it proceeds from the supply end 22 to delivery end 24 of conduit 18. The liquid plus vapor is then conducted by a conduit 26 outwardly of the vacuum jacket 28 through the fitting 30. Because the cryogen flowing in the annulus defined by conduits 16 and 18 intercepts all heat leaking into the transfer line it is referred to as a shield gas conduit. The shield gas flow is a non-steady flow as a result of this heat input. However, if sufficient shield gas flow is present so that it is in a saturated state as it is vented through port 30 the cryogen flowing in conduit 16 will be subcooled and will be pure liquid.
With the device of FIG. 1 and 2 it is possible to achieve a steady flow of cryogenic liquid in the transfer line at a very low flow rate. Because the liquid is delivered in a saturated or subcooled state the size of a vacuum pump required to get to sub-atmospheric saturation pressure in the vessel to which the liquid is delivered is minimized. The fact that small cryogen transfer tubes can be used minimizes heat leak and allows for the system to be made flexible so that it can be readily bent into a variety of positions. The shield gas requirement is small thus enabling the transfer efficiency for the overall system to be very high. Another benefit arises from the fact that the small transfer tubes having small thermal mass make the cooldown time very minimal.
There is shown in FIG. 3 a CRYOTIP refrigerator 44 which receives the transfer system 10 by means of an adaptor 46 from which the conduit 16 and 18' project toward the end of refrigerator 44 through a suitable refrigerator body 48. Conduits 16' and 18 are the delivery end counterparts of conduits 16 and 18 of FIG. 1. The projecting end 45 of the transfer system terminates at a needle valve 50 which serves to control the flow of the liquid cryogen. The needle valve 50 has a valve member 52 that can be adjusted by means of adjusting nut 54 at the top of the refrigerator body 48. The refrigerator body 48 includes suitable heaters to raise the temperature of the venting gas as it is conducted outwardly of the system through vent 60, lead through ports 58, and vacuum connector 62 for evacuating the system.
At the needle valve 50 end of the refrigerator there is a sample holder 64 which contains a suitably threaded aperture 66 and a heater 68 for warming the delivered cryogen. Between the needle valve 50 and the specimen holder 64 there is a heat exchanger 70. The
heat exchanger 70 serves to transfer the heat from the sample holder to the cryogenic fluid. Because the cryogenic fluid is forced through the exchanger the tip can operate in any orientation. The heat transfer is counter flow, thus it is possible to have the liquid enter from the needle valve and be warmed to a high temperature as it flows through the heat exchanger. For example, if liquid helium is being used, it flows from the needle valve 52 as a saturated liquid at 42 Kelvin and can then be warmed to 300 Kelvin as it flows through the heat exchanger. The refrigerator 44 contains the necessary ports 71 for venting the warmed cryogenic fluid from the entire system through vent 60. The refrigerator 44 is shown inserted in a receptacle 73, such as an instrument adaptor or the like, by known sealing means to assure a pressure-tight fit.
Referring back to FIG. 2 there is shown an insulating layer 27 surrounding conduits 16, 18, and 26. This layer can be a multi-layer insulation such as synthetic sheet material with a metalized coating. The insulation extends to the delivery end of the system and is disposed around conduit 16, 18 and 26' of FIG. 3.
Having thus described my invention the following is desired to be secured by Letters Patent of the United States.
I claim:
1. A cryogenic transfer system for transferring a liquid cryogen from a storage container to a remote point of use with the liquid being delivered at constant temperature pressure and flow rate comprising:
a liquid transfer conduit having a first end disposed in a source of liquid cryogen and a second end with a nozzle therein for delivering the liquid cryogen to a point of use;
surrounding said liquid transfer conduit in spaced relation thereto a second conduit, said second conduit extending for substantially the length of said liquid transfer conduit;
a nozzle on one end of said second conduit the end containing the nozzle disposed within the liquid inventory of the source of liquid cryogen;
surrounding said second conduit containing said liquid transfer conduit and in spaced relationship thereto an outer jacket, said outer jacket being in vacuum tight relationship to said transfer and second conduits;
means for venting said second conduit outwardly of said jacket; and
means for connecting said transfer system in pressure tight relationship to said cryogen storage container.
2. A cryogenic transfer system according to claim 1 wherein there is included valve means to vary the flow of liquid cryogen at the delivery end of the system.
3. A cryogenic transfer system according to claim 1 wherein the means for venting said second conduit includes a separate conduit for returning said second conduit flow to a point near the cryogen storage end of the system for venting.
4. A cryogenic transfer system according to claim 1 wherein there is provided a multilayer insulation surrounding said conduits.
5. A cryogenic transfer system comprising a first liquid cryogen transfer conduit having a supply end disposed in a cryogen supply vessel and a delivery end for providing cryogen at a point of use;
a nozzle in the delivery end of the liquid cryogen transfer conduit;
a second conduit spaced apart from said first conduit and concentric therewith for substantially the length of said first conduit;
said second conduit being in fluid tight relation to the first conduit and including a nozzle at the end adjacent the supply end of the first conduit;
a jacket surrounding a substantial length of the first and second conduits and forming a vacuum tight closure around the conduits;
a third conduit extending from the delivery end of the second conduit to a point near the supply end of the second conduit and outwardly of the jacket to form a vent;
an adaptor to fix the system to a cryogen supply vessel in pressure tight relation thereto; and means for metering the flow of liquid cryogen at the supply end of the system.
6. A system according to claim 5 wherein the meter ing includes a variable needle valve attached to the supply end of the system.
7. A system according to claim 6 including a heat exchanger on the delivery end of the system.
8. A system according to claim 7 wherein the heat exchanger is disposed between the needle valve and means for supporting an object to be cooled by the cryogen, the object supporting means including a control heater in contact with the heat exchanger.

Claims (8)

1. A cryogenic transfer system for transferring a liquid cryogen from a storage container to a remote point of use with the liquid being delivered at constant temperature pressure and flow rate comprising: a liquid transfer conduit having a first end disposed in a source of liquid cryogen and a second end with a nozzle therein for delivering the liquid cryogen to a point of use; surrounding said liquid transfer conduit in spaced relation thereto a second conduit, said second conduit extending for substantially the length of said liquid transfer conduit; a nozzle on one end of said second conduit the end containing the nozzle disposed within the liquid inventory of the source of liquid cryogen; surrounding said second conduit containing said liquid transfer conduit and in spaced relationship thereto an outer jacket, said outer jacket being in vacuum tight relationship to said transfer and second conduits; means for venting said second conduit outwardly of said jacket; and means for connecting said transfer system in pressure tight relationship to said cryogen storage container.
2. A cryogenic transfer system according to claim 1 wherein there is included valve means to vary the flow of liquid cryogen at the delivery end of the system.
3. A cryogenic transfer system according to claim 1 wherein the means for venting said second conduit includes a separate conduit for returning said second conduit flow to a point near the cryogen storage end of the system for venting.
4. A cryogenic transfer system according to claim 1 wherein there is provided a multilayer insulation surrounding said conduits.
5. A cryogenic transfer system comprising a first liquid cryogen transfer conduit having a supply end disposed in a cryogen supply vessel and a delivery end for providing cryogen at a point of use; a nozzle in the delivery end of the liquid cryogen transfer conduit; a second conduit spaced apart from said first conduit and concentric therewith for substantially the length of said first conduit; said second conduit being in fluid tight relation to the first conduit and including a nozzle at the end adjacent the supply end of the first conduit; a jacket surrounding a substantial length of the first and second conduits and forming a vacuum tight closure around the conduits; a third conduit extending from the delivery end of the second conduit to a point near the supply end of the second conduit and outwardly of the jacket to form a vent; an adaptor to fix the system to a cryogen supply vessel in pressure tight relation thereto; and means for metering the flow of liquid cryogen at the supply end of the system.
6. A system according to claim 5 wherein the metering includes a variable needle valve attached to the supply end of the system.
7. A system according to claim 6 including a heat exchanger on the delivery end of the system.
8. A system according to claim 7 wherein the heat exchanger is disposed between the needle valve and means for supporting an object to be cooled by the cryogen, the object supporting means including a control heater in contact with the heat exchanger.
US3696627D 1971-01-18 1971-01-18 Liquid cryogen transfer system Expired - Lifetime US3696627A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10710571A 1971-01-18 1971-01-18

Publications (1)

Publication Number Publication Date
US3696627A true US3696627A (en) 1972-10-10

Family

ID=22314866

Family Applications (1)

Application Number Title Priority Date Filing Date
US3696627D Expired - Lifetime US3696627A (en) 1971-01-18 1971-01-18 Liquid cryogen transfer system

Country Status (1)

Country Link
US (1) US3696627A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107946A (en) * 1977-05-03 1978-08-22 The United States Of America As Represented By The Secretary Of The Navy Low heat loss liquid helium disconnect attachment and system
US4296610A (en) * 1980-04-17 1981-10-27 Union Carbide Corporation Liquid cryogen delivery system
US4592205A (en) * 1985-01-14 1986-06-03 Mg Industries Low pressure cryogenic liquid delivery system
US4646525A (en) * 1984-10-19 1987-03-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vessel for a cryogenic mixture and a process for drawing off the liquid
US4739633A (en) * 1985-11-12 1988-04-26 Hypres, Inc. Room temperature to cryogenic electrical interface
US4783969A (en) * 1986-07-30 1988-11-15 Penox Technologies, Inc. Cryogenic withdrawal apparatus and method
US4869077A (en) * 1987-08-21 1989-09-26 Hypres, Inc. Open-cycle cooling apparatus
US4870830A (en) * 1987-09-28 1989-10-03 Hypres, Inc. Cryogenic fluid delivery system
EP0356546A1 (en) * 1986-07-30 1990-03-07 Larry Hohol Cryogenic withdrawal apparatus and method
FR2730426A1 (en) * 1995-02-09 1996-08-14 Commissariat Energie Atomique Nozzle for spraying a cryogenic liquid
EP0922901A2 (en) * 1997-12-04 1999-06-16 Mve, Inc. Pressure building device for a cryogenic tank
US6003321A (en) * 1997-04-15 1999-12-21 The University Of Toledo Open flow helium cryostat system and related method of using
WO2002040915A2 (en) * 2000-11-14 2002-05-23 Air Products And Chemicals, Inc. Apparatus and method for transferring a cryogenic fluid
US6513336B2 (en) 2000-11-14 2003-02-04 Air Products And Chemicals, Inc. Apparatus and method for transferring a cryogenic fluid
US20030228707A1 (en) * 2002-04-25 2003-12-11 David Meneses Method and system for sampling cryogenic liquids, and air separation unit provided with at least one such system
US20060053987A1 (en) * 2004-09-16 2006-03-16 Ranajit Ghosh Method and apparatus for machining workpieces having interruptions
US7390240B2 (en) 2005-10-14 2008-06-24 Air Products And Chemicals, Inc. Method of shaping and forming work materials
US7434439B2 (en) 2005-10-14 2008-10-14 Air Products And Chemicals, Inc. Cryofluid assisted forming method
US7513121B2 (en) 2004-03-25 2009-04-07 Air Products And Chemicals, Inc. Apparatus and method for improving work surface during forming and shaping of materials
US7637187B2 (en) 2001-09-13 2009-12-29 Air Products & Chemicals, Inc. Apparatus and method of cryogenic cooling for high-energy cutting operations
US8220370B2 (en) 2002-02-04 2012-07-17 Air Products & Chemicals, Inc. Apparatus and method for machining of hard metals with reduced detrimental white layer effect
US20140124077A1 (en) * 2012-11-08 2014-05-08 Akin MALAS Pipeline for high pressure cryogenic applications
WO2023244112A1 (en) * 2022-06-16 2023-12-21 Universiteit Twente Cryogenic sub-cooling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362177A (en) * 1964-01-16 1968-01-09 Phillips Petroleum Co Vapor pressure control in liquefied gas dispensing
US3397720A (en) * 1964-10-23 1968-08-20 Hitco Multiple layer insulation for a cryogenic structure
US3433028A (en) * 1966-09-02 1969-03-18 Air Prod & Chem Cryogenic fluid conveying system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362177A (en) * 1964-01-16 1968-01-09 Phillips Petroleum Co Vapor pressure control in liquefied gas dispensing
US3397720A (en) * 1964-10-23 1968-08-20 Hitco Multiple layer insulation for a cryogenic structure
US3433028A (en) * 1966-09-02 1969-03-18 Air Prod & Chem Cryogenic fluid conveying system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107946A (en) * 1977-05-03 1978-08-22 The United States Of America As Represented By The Secretary Of The Navy Low heat loss liquid helium disconnect attachment and system
US4296610A (en) * 1980-04-17 1981-10-27 Union Carbide Corporation Liquid cryogen delivery system
EP0038673A2 (en) * 1980-04-17 1981-10-28 Union Carbide Corporation Apparatus and process for delivering liquid cryogen
EP0038673B1 (en) * 1980-04-17 1984-10-17 Union Carbide Corporation Apparatus and process for delivering liquid cryogen
US4646525A (en) * 1984-10-19 1987-03-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vessel for a cryogenic mixture and a process for drawing off the liquid
US4592205A (en) * 1985-01-14 1986-06-03 Mg Industries Low pressure cryogenic liquid delivery system
US4739633A (en) * 1985-11-12 1988-04-26 Hypres, Inc. Room temperature to cryogenic electrical interface
US4783969A (en) * 1986-07-30 1988-11-15 Penox Technologies, Inc. Cryogenic withdrawal apparatus and method
EP0356546A1 (en) * 1986-07-30 1990-03-07 Larry Hohol Cryogenic withdrawal apparatus and method
US4869077A (en) * 1987-08-21 1989-09-26 Hypres, Inc. Open-cycle cooling apparatus
US4870830A (en) * 1987-09-28 1989-10-03 Hypres, Inc. Cryogenic fluid delivery system
FR2730426A1 (en) * 1995-02-09 1996-08-14 Commissariat Energie Atomique Nozzle for spraying a cryogenic liquid
US6003321A (en) * 1997-04-15 1999-12-21 The University Of Toledo Open flow helium cryostat system and related method of using
EP0922901A2 (en) * 1997-12-04 1999-06-16 Mve, Inc. Pressure building device for a cryogenic tank
EP0922901A3 (en) * 1997-12-04 1999-09-15 Mve, Inc. Pressure building device for a cryogenic tank
US6513336B2 (en) 2000-11-14 2003-02-04 Air Products And Chemicals, Inc. Apparatus and method for transferring a cryogenic fluid
WO2002040915A3 (en) * 2000-11-14 2003-05-01 Air Prod & Chem Apparatus and method for transferring a cryogenic fluid
WO2002040915A2 (en) * 2000-11-14 2002-05-23 Air Products And Chemicals, Inc. Apparatus and method for transferring a cryogenic fluid
AU2002228925B2 (en) * 2000-11-14 2005-04-21 Air Products And Chemicals, Inc. Apparatus and method for transferring a cryogenic fluid
AU2002228925B9 (en) * 2000-11-14 2005-09-08 Air Products And Chemicals, Inc. Apparatus and method for transferring a cryogenic fluid
US7637187B2 (en) 2001-09-13 2009-12-29 Air Products & Chemicals, Inc. Apparatus and method of cryogenic cooling for high-energy cutting operations
US8220370B2 (en) 2002-02-04 2012-07-17 Air Products & Chemicals, Inc. Apparatus and method for machining of hard metals with reduced detrimental white layer effect
US7337616B2 (en) * 2002-04-25 2008-03-04 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude System for sampling cryogenic liquids, and air separation unit provided with at least one such system
US20030228707A1 (en) * 2002-04-25 2003-12-11 David Meneses Method and system for sampling cryogenic liquids, and air separation unit provided with at least one such system
US7513121B2 (en) 2004-03-25 2009-04-07 Air Products And Chemicals, Inc. Apparatus and method for improving work surface during forming and shaping of materials
US7634957B2 (en) 2004-09-16 2009-12-22 Air Products And Chemicals, Inc. Method and apparatus for machining workpieces having interruptions
US20060053987A1 (en) * 2004-09-16 2006-03-16 Ranajit Ghosh Method and apparatus for machining workpieces having interruptions
US7390240B2 (en) 2005-10-14 2008-06-24 Air Products And Chemicals, Inc. Method of shaping and forming work materials
US7434439B2 (en) 2005-10-14 2008-10-14 Air Products And Chemicals, Inc. Cryofluid assisted forming method
US20140124077A1 (en) * 2012-11-08 2014-05-08 Akin MALAS Pipeline for high pressure cryogenic applications
US8893748B2 (en) * 2012-11-08 2014-11-25 Linde Aktiengesellschaft Pipeline for high pressure cryogenic applications
WO2023244112A1 (en) * 2022-06-16 2023-12-21 Universiteit Twente Cryogenic sub-cooling

Similar Documents

Publication Publication Date Title
US3696627A (en) Liquid cryogen transfer system
US4211086A (en) Cryogenic breathing system
US4348873A (en) Apparatus for refrigeration treatment
US3304729A (en) Cryogenic storage system
US3699696A (en) Cryogenic storage and expulsion means
US3611746A (en) Cryostat for cooling vacuum-housed radiation detector
CN101396299B (en) Dewar integrated low-temperature operation device coupled with celioscope
US4314459A (en) Stable and precise cryogenic device
GB9713380D0 (en) Apparatus and method for regulating temperature in a cryogenic test chamber
US3648018A (en) Transfer device for cryogenic fluids
US20140190187A1 (en) Cryogenic Liquid Conditioning and Delivery System
US2707377A (en) Storage and shipping container for cold liquefied gas
GB1310766A (en) Apparatus for the continuous cooling of objects to temperatures below 2.18k
US3623337A (en) Apparatus for freezing liquid in a section of a pipe
US2996893A (en) Low temperature liquid transfer apparatus
US3803858A (en) Gas transfer system for liquid fuels
US4201319A (en) Dispensing system employing liquid cryogen
US2958204A (en) Liquid oxygen converter
WO2008152634A1 (en) Siphon for delivery of liquid cryogen from dewar flask
US3836779A (en) Cooling apparatus for infrared detectors
US3166915A (en) Cooling arrangement
US3333587A (en) Cryosurgical device
US3548607A (en) Liquid nitrogen transfer system using the leidenfrost principle
US3070968A (en) Liquid to gas conversion system
US2726515A (en) Self-contained heat exchange plates with electric resistance

Legal Events

Date Code Title Description
AS Assignment

Owner name: APD CRYOGENICS INC., A CORP OF PA.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AIR PRODUCTS AND CHEMICALS, INC., A CORP OF DE.;REEL/FRAME:004686/0713

Effective date: 19870310

Owner name: APD CRYOGENICS INC.,PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AIR PRODUCTS AND CHEMICALS, INC.;REEL/FRAME:004686/0713

Effective date: 19870310