Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3696742 A
Publication typeGrant
Publication dateOct 10, 1972
Filing dateOct 6, 1969
Priority dateOct 6, 1969
Publication numberUS 3696742 A, US 3696742A, US-A-3696742, US3696742 A, US3696742A
InventorsLeo P Parts, Edgar E Hardy
Original AssigneeMonsanto Res Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of making a stencil for screen-printing using a laser beam
US 3696742 A
Abstract
An improved metal screen-printing stencil in which the non-printing areas are closed with a solid polymer capable of undergoing residue-free depolymerization. The process of producing the stencil in which printing areas are opened by irradiation with a laser beam.
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Parts et a1.

[54] METHOD OF MAKING A STENCIL FOR SCREEN-PRINTING USING A LASER BEAM [72] Inventors: Leo P. Parts, Dayton; Edgar E. Hardy, Kettering, both of Ohio [73] Assignee: Monsanto Research Corporation, St.

Louis, Mo.

22 Filed: on. 6, 1969 211 Appl. No.: 864,161

[52] US. Cl. ..l0l/l28.4, 96/36.4, 117/8, 117/8.5, 117/93.31, 117/99, 204/159.14,

[51] Int. Cl ..B4lc 1/14 [58] Field of Search...346/76, 76 L, 1; 219/339, 121; 101/401.1, 395, 127, 128.4,128.2, 128.3;

[56] References Cited UNITED STATES PATENTS 2,682,687 7/1954 Franz ..264/80 2,860,576 1111958 Short ..l01/l28.3 2,924,520 2/1960 Leeds et a1 ..10l/128.3 X

3,170,792 2/1965 Cunninghamw..."10l/l28.3 X

[4 1 Oct. 10, 1972 Dombrow, B. A., Polyurethanes, Reinhold, N.Y. pages 134- 143 relied on. Piggin, B. P. Use of a Laser Beam to Remove Insulation IBM Tech. Bulletin, vol. 11, No. 7 (Dec. 1968) page 872 relied on.

Primary ExaminerRobert F. Burnett Assistant Examiner-Joseph C. Gil

Attorney-Morris L. Nielsen, L. Bruce Stevens, Jr. and Frank D. Shearin [5 7] ABSTRACT An improved metal screen-printing stencil in which the non-printing areas are closed with a solid polymer capable of undergoing residue-free depolymerization. The process of producing the stencil in which printing areas are opened by irradiation with a laser beam.

7 Claims, No Drawings METHOD OF MAKING A STENCIL FOR SCREEN- PRINTING USING A LASER BEAM BACKGROUND OF THE INVENTION open structure due to their inherently stronger and hence finer threads. Heretofore they have not realized their fullest development, particularly in preparing sharp-line stencils, because of problems in filling the screen. With gelatin, for example, it has been necessary to apply several coatings to build up a film of sufficient thickness to give fine detail in printing. Furthermore, it has been difficult to remove filler, usually organic matter, from printing areas cleanly and efficiently without partially loosening filler intended to plug nonprinting meshes in the screen. In addition, some printing detail and quality has been sacrificed by redeposition of removed filler in the fine metal screen, resulting in scummy stencils. It is well-known to those skilled in the art that screen-printing that will reproduce fine detail is much desired in preparing microcircuits, for example, by printing with resistive, conductive and dielectric inks. The present invention is directed to the solution of this problem.

SUMMARY OF THE INVENTION An object of the invention is to provide an improved metal screen-printing stencil. A further object is to provide a stencil capable of reproducing very fine detail. It is still a further object to provide an improved process for producing a metal screen-printing stencil.

These and other objects hereinafter defined are met by the invention wherein there is provided in a stencil for screen printing comprising a metal screen having printing and non-printing areas in which the non-printing areas are closed to the passage of printing ink by solid organic matter, the improvement in which the organic matter comprises a solid polymer capable of undergoing residue-free depolymerization.

As a further aspect of the invention, there is further provided a process for producing a stencil for screen printing comprising filling the apertures in a metal screen with a solid polymer capable of undergoing residue-free depolymerization, irradiating the prospective printing areas of said filled screen with a laser beam of sufficient intensity to depolymerize said polymer from said areas and completely evaporate the depolymerization products.

The silk screen process was for a long time a secret process. but now is well-known in the art (see Photomechanics and Printing, Mertle Publishing Company, Chicago, 1957, by Mertle and Monsen, Chapter 8; Silk Screen Process). Metal screens may be made of phosphor bronze, copper, molybdenum, gold, platinum or stainless steel, preferably the latter for fine detail printing. Mesh sizes of 80 to 400 may be used, the more practical being in the 200-325 mesh range.

In the present invention, in producing a stencil, the screen is coated and filled with a solid polymer capable of undergoing residue-free depolymerization. Subsequently the printing areas are exposed to the radiation of a laser so that the polymer is removed by depolymerization and evaporation of the depolymerization products, thereby leaving the screen mesh open for passage of ink.

Polymers applicable for this purpose include poly(methyl methacrylate), polyoxymethylene, polytetrafluoroethylene, poly(a-methyl styrene) and polychlorotrifluoroethylene. It is characteristic of these polymers that they are thermally degraded in the laser beam by what is believed to be a depolymerization process so that they revert to their monomeric state. Since their monomers, e.g., methyl methacrylate, formaldehyde, etc., are gases at the temperature of the polymer surface in the irradiated area no solid or molten residues remain from the degradation.

There may also be employed certain urethane formulations known in the art as solderable urethane wire enamels, see Polyurethanes, Part II Technology, Interscience Publishers, N.Y., 1964, Saunders and Frisch, pp, 580-582. These may be formulated as solutions of Mondur S, a blocked polyisocyanate hereinafter described, and either Multron R-2 or R-4, polyesters hereinafter described, applied and cured to form depolymerizable polymers. Curing conditions may be varied, as known in the art, usually employing temperatures up to 400 C. for a short period of time, e.g., 30-60 seconds at 290350 C.

We have found that these polymers admirably adhere to and fill the screen meshes and that they can be applied in thick coatings so desirable for fine detail reproduction. Upon irradiation with a laser beam whose direction and intensity is readily controlled, the depolymerized polymer leaves the screen cleanly and without residue.

The polymers may be applied to the screen as viscous solutions in suitable organic solvents, e.g. benzene, toluene, acetone, ethyl acetate, amyl acetate, etc. lt is preferable to remove the solvent prior to irradiation. The polymers may also be thermoformedto fill the screen openings, as by applying a film of the polymer to the surface and applying heat and pressure.

Instead of the preferred depolymerizable polymers named herein, there may be employed less effectively the copolymers of their respective monomers, e.g. trifluoronitrosomethane/tetrafluoroethylene; trifluoronitrosomethanel-chlorotrifluoroethylene; vinylidene fluoride/chlorotrifluoroethylene; as well as copolymers of lower alkyl methacrylates such as methyl, ethyl, butyl methacrylates; etc. There may also be employed related polymers including perfluoropropylene, poly(a,B,B-trifluorostyrene), poly(pxylylene), poly(p-tetramethyl phenylenemethylene), poly(p2,5-dimethyl phenylenemethylene), and poly(ptetramethyl phenylenemethylene). As replacements for poly(methyl methacrylate) there may be employed poly(alkyl methacrylates) where alkyl contains two to four carbon atoms.

Although the organic matter for coating the stencil of this invention must contain at least one depolymerizable polymer, it has been found that they may also contain minor proportions of other materials without adverse effect. Thus, there may be present: plasticizers, e.g. organic esters, phosphates, etc.; crosslinking agents, e.g. peroxides, or a difunctional agent up to 10 percent by weight, etc.; reinforcing agents and fillers, e.g., carbon black, fumed silica, etc.; pigments,

e.g., titanium dioxide, ferric oxide, etc.; and other materials which are readily removed from the irradiated zone as gaseous or particulate matter.

Optimum laser energy utilization and high polymerremoval speed can be attained by selecting polymers that have high absorbence at the emission wavelength of the laser. The optical characteristics of the organic matter can be altered, for the attainment of desired laser energy absorption characteristics, by incorporation of small amounts of strongly absorbing materials such as dyes. To attain desired definition and resolution, it is essential that the metal screen have high reflectivity at the emission wavelength of the laser used for the engraving of stencils. Examples of metals useful as screen materials for engraving with CO and argon lasers are: phosphor bronze, copper, molybdenum, gold, platinum, silver, and stainless steel. Useful lasers include CO argon and YAG-Nd lasers.

The laser is a device which has been well-described in the literature. It produces a high-energy, collimated beam of coherent electromagnetic radiation in the infrared, visible, and ultraviolet spectral range. Generally, lasers are classified by their type of excitation. As an example, a solid state laser, such as a ruby laser, consists essentially of a rod of the material with parallel ends polished and coated to reflect light, wherein the pumping radiation enters through the transparent sides. Another class of lasers, the gasdischarge lasers, use nonequilibrium processes in a gas discharge. The gas is excited by direct or alternating electric current, or by a radiofrequency energy source. The choice of laser may be determined not only by the power output available at its present state of development but also by its inherent wavelength output. Thus, a C laser wavelength is 10.6 um whereas a YAGzNd laser wavelength is 1.06 pm. Although the shorter wavelength can be focused to a smaller spot diameter, it may not be efficiently absorbed by many irradiated materials so that the longer 10.6 um wavelength may be preferred.

Laser emission may be pulsed or Q-switched to produce pulses, e.g. 50,000 energy bursts per second of intensely concentrated energy; or it may be continuous. Laser technology has developed rapidly, so that there are now available continuously-emitting lasers of useful power output, e.g. over 50 watts and even as high as 8,800 watts.

Since the laser produces a collimated beam that can be focused by a lens or a mirror, or deflected by a mirror, the energy flux density and direction of a laser beam can be readily controlled. Furthermore, the beam can be shaped by using stencils into which the desired patterns have been cut. For some applications, nonspherical optical lens and reflectors allow an effective means for control of the heated area. Still another way of directing the laser beam to a selected area is by backing the relatively transparent polymer-filled screen with a metallic reflector of the desired area; upon laser irradiation of the entire front surface of the filled screen at a level of intensity that would normally not degrade the polymer, the action of the beam is reinforced by the reflected beam sufficiently to cause degradation and opening of the holes.

Modulation of the laser beam is accomplished by several methods including the Kerr cell, mechanical modulators, etc. known to those skilled in the art (see Lasers, Marcel Dekker, Inc., N.Y., 1966, A. K. Levine, editor; and The Modulation of Laser Light, Scientific American, Vol. 218, No. 6, June 1968, page 17, Donald F. Nelson).

The laser engraver may be controlled by a computer, wherein the information is stored in a memory device. Alternately, a scanning system may be used in directing the laser beam in transferring information from a surface as set forth in US. Pat. No. 3,374,31 l issued Mar. 19, 1968 to R. Hell.

When a laser was investigated as' a means of opening up a stencil coated with some commercial plastics, rather disappointing results were obtained. With a phenolic composition, charring occurred so that the heated area was rough and black. With-a butyrate, yellow decomposition products deposited on the surface. With a polycarbonate, carbonaceous material formed where heated and yellow decomposition products deposited on the surface. With a polyester, the material foamed and gave a rough deposit. With a polyamide,

' melting and yellowing occurred. With polyethylene and polypropylene, there was extensive melting and flowing, with material deposited around the heated area. With polystyrene there was also material deposited around the heated area. However, surprisingly, with poly(methyl methacrylate) laser heating yielded a clean, sharply defined stencil. Subsequently, a limited number of other plastics were found to be adaptable to stencil preparation.

Previous to conducting these experiments, it was not known whether evolving vapors might undergo reactions in the vapor phase, while escaping through the path of the focused laser beam, and yield products that would deposit on the polymer surface, or whether evolving monomer vapors, while escaping through the path of the focused laser beam, might be converted to reactive molecular species that, upon reaction with the plastic stencil material would cause reduction of stencil image definition.

Cofiled applications related to this subject include Engraved Article, Ser. No. 864,162; filed Oct. 6, 1969 Engraved Rigid Polymeric Compositions, Ser. No. 864,215, now abandoned; filed Oct. 6, 1969 and Data Signal Recording Meduim, Ser. No. 864,160. filed Oct. 6, 1969.

DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention is further illustrated by, but not limited to the following examples.

EXAMPLE 1 A metal screen was filled with poly(methyl methacrylate). A 25 percent solution of Plexiglas (Rohm and Haas) in toluene was applied to a ZOO-mesh stainless steel screen and dried, thereby completely filling the openings in the screen.

A stencil was prepared by laser irradiation through a mask in which small slits had been inscribed. The lines were faithfully and accurately reproduced in the stencil where the polymer was clearly removed. The stencil was used for applying a conventional conductive ink Liquid Bright Gold, Engelhard) to a quartz surface. When the coated quartz was heated at 250400 C. for

30 minutes there remained sharply defined lines of fine detail.

EXAMPLE 2 A stainless steel screen having 200 meshes per inch, each with an opening of approximately 0.0029 in. (0.074 mm.) on an edge was filled with polyoxymethylene as follows. A sheet of Delrin (E. l. du Pont de Nemours and Company, Inc.) of one-sixteenth inch thickness was laid on top of the screen and the whole placed between two chrome-plated metal plates. The assembly was heated to about 380 F. (193 C.) and thereupon subjected to about 20 tons of pressure per square inch; it was cooled to 320 F. (160 C.) and the pressure released. The plastic had flowed uniformly, completely filling the openings in the screen.

A stencil was then prepared as follows: A thin brass template having the word MONSANTO excised was laid over the filled screen. The assembly was then moved across a focused CO laser beam at 0.0125 inch (0.318 mm.) intervals at a linear speed of 3.8 mm./sec. and a laser power output of watts. The laser-irradiated portions were cleanly removed of polymer leaving the word MONSANTO faithfully reproduced as an open-screen area. The stencil was useful for screen printing with conventional silk screen ink or with a metal pigmented paint.

EXAMPLE 3 opened. The whole was useful as a screen-printing stencil.

EXAMPLE 4 Solderable urethane enamels are prepared as follows, using typical formulations known in the art, e.g. Polyurethanes, Part 11 Technology, lnterscience Publishers, N.Y., 1964, Saunders and Frisch, pp. 580- 582; and Technical Information Bulletin, No. 71-C20, Urethane Finishes for the Electrical Industry, Mobay Chemical Co., Pittsburgh, Pennsylvania.

Formulation A B C D Mondur S 324.5 324.5 333.5 333.5 Multron R-2 154.5 154.5 166.5 166.5 Polyamide 24.0 24.0 Cresylic acid 204.0 347.0 207.0 500.0 Methyl glycol acetate 146.0 146.0 Butyl acetate 28.0 28.0 Toluene 119.0 119.0 High flash naphtha 150.0

Total weight 1000.0 1000.0 1000.0 1000.0 Percent total solids 50.3 50.3 50.0

All parts shown are by weight.

Mondur S is a blocked polyisocyanate adduct 6 3??llt ftlefi n ll rle r fil. iffslilis iil illg l proximately percent total solids, 1 l.5l3.5 percent available NCO, and a specific gravity equal to 1.26-1.28 at 25/25 C.

Multron R-2 is a polyester resin described by Mobay Chemical Company in their Data Sheet of November 1, 1967 as having a hydroxyl number (corrected) of 390-420, an acid number of 6.8-9.0, a specific gravity equal to approximately 1.26 at 25/155 C., and a viscosity of 800l,100 centipoises for 70 percent solids in methyl cellosolve acetate at 25 C.

The polyamide is a soluble nylon, e.g. Zytel 61, du Pont de Nemours Co., now called Elvamide 8061 as described in the du Pont Technical Information Bulletin PM l-l 165 on Elvamide Polyamide (Nylon) Resins.

Multron R-2 may be replaced by Multron R-4, using about 42 parts of Multron R-4 for each parts of Mondur S. Multron R-4 is a polyester resin described by Mobay Chemical Company in their Data Sheet of Nov. 1, 1967 as having a hydroxyl number (corrected) of 270-290, an acid number of 4.0 maximum, a specific gravity equal to approximately 1.13 at 25/155 C and viscosity of 2,000-3,000 centipoises at 73 C.

In a typical application of this invention, a solderable urethane enamel is applied to the metal screen and subsequently cured at temperatures up to 400 C., the curing conditions being governed by the physical and chemical stability of the substrate at temperature. For example a thin layer of enamel is adequately cured at 290-350 C. within 30-60 seconds. If Multron R-4 is used, lower curing temperatures are usually employed.

When the solderable urethane coating is exposed to laser radiation as described in the preceding examples, at laser outputs to 10 watts, the irradiated portions are depolymerized and cleanly removed without residue.

What we claim is:

1. A process for producing a stencil for screen printing comprising a. filling the apertures in a metal screen with a solid polymer capable of undergoing residue-free depolymerization,

b. irradiating the prospective printing areas of said filled screen with a laser beam of sufficient intensity to depolymerize and evaporate said polymer from said areas.

2. A process of claim 1 in which the solid polymer is selected from the class of poly(methyl methacrylate), polyoxymethylene, polytetrafluoroethylene, poly(amethyl styrene) and polychlorotrifluoroethylene.

3. A process of claim 1 in which the laser beam is irradiated upon selected areas of the surface by interposition of a stencil having open areas for the transmission of a laser beam.

4. A process of claim 1 in which the laser beam is ir-

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2682687 *May 11, 1950Jul 6, 1954Western Electric CoMethod of making indicia plaques
US2860576 *May 24, 1956Nov 18, 1958Du PontMethod of producing stencil screens
US2924520 *Jun 25, 1956Feb 9, 1960Leeds Walter AComposition for printing screens
US3112850 *Oct 31, 1962Dec 3, 1963United Aircraft CorpDicing of micro-semiconductors
US3170792 *Feb 10, 1961Feb 23, 1965Owens Illinois Glass CoProcess for making a stencil screen coating and composition therefor
US3314073 *Oct 20, 1964Apr 11, 1967Prec Instr CompanyLaser recorder with vaporizable film
US3371190 *Jul 26, 1965Feb 27, 1968Meyer EdgarApparatus and method for perforating sheet plastic by means of an electron beam
US3374311 *Aug 27, 1963Mar 19, 1968Hell Rudolf Dr Ing KgProducing printing blocks,preferably intaglio printing blocks
US3379656 *May 31, 1960Apr 23, 1968Dow Chemical CoUrethanepolymer compositions
US3410203 *Feb 1, 1967Nov 12, 1968Rca CorpNon-impact printer employing laser beam and holographic images
US3410979 *May 28, 1964Nov 12, 1968Burroughs CorpMethod and apparatus for drilling holes by means of a focused laser beam
US3455239 *May 2, 1966Jul 15, 1969United Aircraft CorpMethod and article for printing and engraving
US3549733 *Dec 4, 1968Dec 22, 1970Du PontMethod of producing polymeric printing plates
Non-Patent Citations
Reference
1 *Dombrow, B. A., Polyurethanes, Reinhold, N.Y. pages 134 143 relied on.
2 *Piggin, B. P. Use of a Laser Beam to Remove Insulation , IBM Tech. Bulletin, vol. 11, No. 7 (Dec. 1968) page 872 relied on.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3779806 *Mar 24, 1972Dec 18, 1973IbmElectron beam sensitive polymer t-butyl methacrylate resist
US4078488 *Jul 23, 1976Mar 14, 1978Engineering Components LimitedMethod of preparing a printing screen by molding
US4117497 *Oct 21, 1976Sep 26, 1978International Business Machines CorporationPrinting and displaying technology using selective laser beam pricking of liquid film for writing information
US4360820 *Oct 1, 1979Nov 23, 1982OmexLaser recording medium
US4388865 *Mar 10, 1981Jun 21, 1983Crosfield Electronics LimitedPrinting layer of urethane and acetyl polymers and method of making
US4414059 *Dec 9, 1982Nov 8, 1983International Business Machines CorporationFar UV patterning of resist materials
US4497848 *Oct 28, 1983Feb 5, 1985Rca CorporationStencilling a unique machine-readable marking on each of a plurality of workpieces
US4526098 *Jan 4, 1980Jul 2, 1985Dl Process Co.Laser formed rotary print plate with internal sintered titanium ink reservoir
US4766033 *Jul 14, 1986Aug 23, 1988Asahi Kasei Kogyo Kabushiki KaishaHighly heat-sensitive film for stencil
US4806727 *Jan 27, 1986Feb 21, 1989Schablonentechnik Kufstein Gesellschaft M.B.H.Apparatus for producing a screen printing stencil
US4808790 *Apr 13, 1988Feb 28, 1989Schablonentechnik Kufstein Gesellschaft M.B.H.Process and apparatus for the production of a screen printing stencil
US4944826 *Aug 17, 1988Jul 31, 1990Zed Instruments Ltd.Method and apparatus for preparing a screen printing screen
US4946763 *May 13, 1988Aug 7, 1990Stork Screens B.V.Method for providing a design pattern on a metal stencil and metal stencil having a patternable covering layer
US5151572 *Oct 29, 1990Sep 29, 1992Prevent-A-Crime International, Inc.Method of making a stencil for etching glass
US5328537 *Apr 15, 1992Jul 12, 1994Think Laboratory Co., Ltd.Method for manufacturing screen printing plate
US5341157 *Aug 14, 1992Aug 23, 1994Bumb & AssociatesLaser-driven silk screen mask device
US5395414 *Apr 14, 1993Mar 7, 1995Dover Designs, Inc.Display panel with a large realistic digitized high fidelity visual pattern and method for producing the same
US5588359 *Jun 9, 1995Dec 31, 1996Micron Display Technology, Inc.Method for forming a screen for screen printing a pattern of small closely spaced features onto a substrate
US5821980 *Jul 14, 1995Oct 13, 1998Schablonentechnik Kufstein AktiengesellschaftDevice and method for producing a screen printing stencil having improved image sharpness
US6063476 *Dec 11, 1998May 16, 2000Ricoh Microelectronics Co., Ltd.Method of fabricating plastic mask for paste printing, plastic mask for paste printing, and paste printing method
US20110094398 *Nov 1, 2010Apr 28, 2011Lothar WefersMethod for producing perforated or partially perforated stencils with a relief
CN1048095C *Jul 14, 1995Jan 5, 2000库夫施泰因模板技术股份公司Device for producing a screen printing stencil
EP0098917A2 *Mar 15, 1983Jan 25, 1984International Business Machines CorporationA method of photoetching polyesters
EP0111128A2 *Oct 26, 1983Jun 20, 1984International Business Machines CorporationUV patterning of resist materials
EP0233755A2 *Feb 12, 1987Aug 26, 1987Amoco CorporationUltraviolet laser treating of molded surfaces
EP0692741A1 *Jul 14, 1994Jan 17, 1996Schablonentechnik Kufstein AktiengesellschaftDevice for making a printing screen
EP1449673A2 *Apr 1, 2003Aug 25, 2004Geert GellensMethod for single or double-sided printing and/or painting of pieces of glass before baking in an oven and after fragmentation and sandblasting
WO1995019888A1 *Jan 24, 1994Jul 27, 1995Bumb & AssociatesLaser-driven silk screen mask device
WO1998022259A1 *Nov 3, 1997May 28, 1998Philips Electronics NvPowder blasting method using a non-metal blasting mask
WO2003016055A1 *Jul 31, 2002Feb 27, 2003Dennler KarlMethod for producing a printing screen for serigraphy and associated coating system
Classifications
U.S. Classification101/128.4, 427/143, 430/945, 522/2, 427/510, 430/346, 430/308, 264/482
International ClassificationG03F7/039, H05K3/12, B41C1/14
Cooperative ClassificationB41C1/145, Y10S430/146, B23K2201/007, H05K3/1225, G03F7/039
European ClassificationG03F7/039, B41C1/14L, H05K3/12B2