Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3697574 A
Publication typeGrant
Publication dateOct 10, 1972
Filing dateApr 14, 1969
Priority dateOct 22, 1965
Publication numberUS 3697574 A, US 3697574A, US-A-3697574, US3697574 A, US3697574A
InventorsRobert E Karll, Edmund J Piasek
Original AssigneeStandard Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Boron derivatives of high molecular weight mannich condensation products
US 3697574 A
Images(12)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Piasek et al.

[451 Oct. 10,1972

1 1 BORON DERIVATIVES OF HIGH MOLECULAR WEIGHT MANNICH CONDENSATION PRODUCTS [72] Inventors: Edmund J. Piasek, Chicago, 1.;

Robert E. Karll, Munster, Ind.

[73] Assignee: Standard Oil Company, Chicago, Ill.

[22] Filed: April 14,1969 [21] Appl. No.: 816,079

Related US. Application Data [63] Continuation-in-part of Ser. No. 502,368, Oct.

22, 1965, Pat. No, 3,539,633.

Primary Examiner-Leon Zitver Assistant Examiner-L. B. De Crescente Attorney-Arthur G. Gilkes, William T. McClain and Fred R. Ahlers [5 7] ABSTRACT High molecular weight Mannich condensation products of (1) high molecular weight alkyl-substituted hydroxyaromatic compounds whose alkyl substituent has upward from 40 to 20,000 carbon atoms, (2) an amine which contains an HN group and (3) an aldehyde in the respective reactant molar ratio of 1:0.1-10:1.0-10 condensed with a boron compound are novel dispersant-detergent lubricant oil addition agents. Solutions of those addition agents in lubricant oil are novel and unique compositions affording anti-sludge and varnish deposition and corrosion inhibition.

6 Claims, N0 Drawings BORON DERIVATIVES OF HIGH MOLECULAR WEIGHT MANNICH CONDENSATION PRODUCTS RELATED APPLICATIONS This application is a continuation in part of our copending application Ser. No. 502,368, filed Oct. 22, 1965, now US. Pat. No. 3,539,633.

BACKGROUND OF THE INVENTION Present-day automobile and diesel engines have been designed for higher-power output, lower combustion products emission and longer in service periods of use of crankcase lubricating oils. All of these design changes have necessitated devising higher efficiency lubricating oils that will under the increased severity of in service use afford protection against corrosion of and deposition of sludge and varnish on engine parts that otherwise tend to accelerate decrease in both operating efficiency and life of the engine. The principle ingredient of crankcase lubricants is lubricating oil, a mixture of hydrocarbons derived from petroleum. There is a limit to which those hydrocarbon oils per se can be improved, e.g. removal of polymerizable components, acidic or acid forming components, waxes and other low temperature solids formers, and other deleterious components. A lubricant base oil refined even to the optimum still requires certain oil-soluble chemical addition agents to resist oxidation of the oil, deposition of sludge and varnish on metal parts and corrosion of metal parts and to provide added lubricity and regulated viscosity change from low to high temperatures. No one chemical addition agent has been found that provides all those extra functions.

Combustion products from the burning of fuel, lubricating oil and nitrogen of air as well as products of thermal degradation of hydrocarbon lubricating oils and addition agents tend to concentrate in the crankcase oil. Those products of combustion and thermal degradation tend to form oil-insoluble products that either surface coat metal parts (lacquer or varnish like films) or settle out as viscous (sludge) deposits or form solid ash-like or carbonaceous deposits. Any of these deposits can restrict and even plug grooves, channels and holes provided for lubricant flow to moving surfaces requiring lubrication. Crankcase oils are formulated (dissolving of addition agents in highly refined hydrocarbon lubricating oils) not only to reduce thermal decomposition of oil solvent and addition agent solutes but also to keep in suspension (as a dispersant) or to resuspend (as a detergent) insoluble combustion and thermal degradation products as well as neutralize acidic products. Neutral and over-based metallo-organic compounds such as the alkaline earth metal salts of sulfonic acids and hydrocarbon-P 8 reaction products were first used as dispersant-detergent addition agents. Their in service drawbacks were that their combustion and/or thermal degradation products left metal ash solids, they could not efficiently resuspend or disperse lacquer and varnish formers or sludge formers to meet present-day engine requirements and they lost their dispersant-detergent function when their alkaline earth metal component had been consumed by neutralizing acidic products of combustion.

Thus as the periods of in service use of crankcase oils were lengthened, lengthening of periods between oil drains for both automobile engines and railway diesel engines, more efficient dispersancy and detergency performance acid neutralization and a lower ash-forming tendency were needed for chemical addition agents used in lubricating oils. Many researchers have recently expended much effort directed to this problem. One new approach taken by researchers in different laboratories was to devise amine derivatives, e.g. salts, amides, imides and amidines of polycarboxylic acids that would function as dispersant-detergent addition agents. Others devised polymeric compounds having pendent or grafted-on pendent polar groups that provided the dispersant-detergent function. Still others devised for that dispersant-detergent function combinations of alkaline earth metal sulfonates and Mannich condensation products of a low molecular weight alkyl-substituted (C to C hydroxyaromatic compound, an amine having at least one replaceable hydrogen on a nitrogen and an aldehyde or alkaline earth metal salts (phenates) of those Mannich condensation products. Those combinations did not overcome the formation of metal-ash nor were they particularly suitable for the increased dispersancy-detergency service for long drain service of present-day engine requirements even though the combination offered some anti-oxidation activity.

The present invention is directed to boron-containing derivatives of high molecular weight Mannich condensation products derived from high molecular weight alkylated hydroxyaromatic compounds. Mannich condensation products derived from alkyl-substituted hydroxyaromatic compounds having relatively low molecular weight alkyl substituents, i.e. four to 20 carbon atoms in the alkyl hydrocarbon substituent and chlorinated wax (straight chain) type alkyl-substituents are known from prior U.S. Pats. such as No. 2,403,453, No. 2,353,491, No. 2,459,112, No. 2,984,550 and No. 3,036,003. However, boron-containing derivatives of those prior Mannich condensation products have not been disclosed for any lubricant oil use perhaps because those prior Mannich condensation products per se are not particularly suitable as sole dispersantdetergent addition agents for crankcase lubricants.

The Mannich condensation products closest to those from which the boron-containing derivatives of the present invention are derived are those Mannich condensation products illustrated below. One type of prior Mannich condensation product is that derived from the reaction of a low molecular weight alkyl phenol, an N, N-disubstituted amine and formaldehyde according to the following equation:

wherein R is a C to C alkyl group or chlorinated wax (straight chain) alkyl group and R is an alkyl and/or aryl radical.

A second type of prior Mannich condensation product is obtained by C to C alkyl phenols, formaldehyde and a diamine or diamino arene in the ratio of two moles of said alkyl phenol and two moles formaldehyde for each mole of diamine of the formula H N- R-NI-I where R is a divalent alkylene or arylene hydrocarbon. Such condensation products have been illustrated in the prior art by the following structural formula:

OH OH where A is a divalent alkylene radical of two to six carbon atoms and n is an integer of from 1 to or a polymeric ethylene imine of 30,000 to 40,000 molecular weight. The resulting products are illustrated in U.S. Pat: No. 3,036,003. It would appear from this reference that the reactants used for the preparation of those Mannich condensation products react equally with either the primary amino (-NH group or the secondary amino (--Nl-l-) groups in the alkylene polyamine or polymeric ethylene imine chain substantially without preference.

Certain of "the Mannich condensation products are disclosed by U.S. Pat. No. 3,036,003 as useful per se in as an oil soluble dispersant. For example, 2 percentof the tetra-(2-hydroxy-5-tertiary-octyl-benzyl) substituted product (from use of the molar ratio reaction of 4 moles p-t.octyl phenol, 4 moles formaldehyde and one mole tetraethylene pentamine used in a carbon black suspension test according to that patent'kept all (0.25 grams) of vthe carbon black suspended in a hydrocarbon solvent (mixture of equal volumes of each of kerosene and a mineral oil blend having a viscosity of 90 SSU at 210 F.). However, that patent demonstrates by an oxidation stability test that the same tetra- (2-hydroxy-t.octylbenzyl) substituted tetraethylene pentamine alone (no other detergent) permits sludge and varnish formulation as well as oxidation of the base oil solvent. Thus U.S. Pat. No. 3,036,003 demonstrates as unsuitable its Mannich condensation products when used alone as the sole dispersant or detergent.

Mannich condensation products of the prior art are prepared by reacting the alkyl phenol, lower aliphatic aldehyde (such as formaldehyde, paraformaldehyde and acetaldehyde) and amine, diaminoalkane, diaminoarene or alkylene polyamine at 100 to 350 F. in the absence or presence of a solvent. When a solvent is used, benzene, toluene, xylene and others easily removed from the condensation product are useful as are light mineral oil such as those used in blending stocks to prepare lubricant oil formulations as well as mixtures of these two types of solvents. Since water is formed as a by-product, the condensation reaction is conducted at least in part at a temperature sufficiently high, at least during the last part of the process, to drive off by-product either as water, as such, or as an azeotropic mixture with the aromatic solvent.

Also the prior art type Mannich condensation products were mainly taught as useful in lubricants in the form of the exactly neutralized or highly basic (or over-based) alkaline earth metal salts (alkaline earth metal phenate derivatives) of the Mannich products. The free phenates were not considered to have sufficient detergency or dispersancy to supply these functions alone but rather were taught as useful in combination with other detergent or dispersant, e.g. calcium or magnesium sulfonates, addition agents.

SUMMARY OF THE INVENTION Our invention is predicated upon the following discoveries: We have discovered that novel boron-containing derivatives of high molecular weight Mannich condensation products can be prepared from reactants (1) an alkyl-substituted hydroxyaromatic (phenolic) compounds having upward from 40 to about 20,000 carbon atoms in the alkyl substituent, (2) a compound having an active hydrogen on a nitrogen, i.e. having an and (3) an aldehyde by reacting or condensing a boron compound, e.g. boric acids and boric acid esters with the high molecular weight Mannich condensation products to provide a boron to nitrogen (B/N) weight ratio of 0.1 to. 4.0. Further, we have discovered that lubricating oil solutions of those boron-containing high molecular weight Mannich condensation products having 0.1 to weight percent of such boron-containing additives as solutes are novel compositions that provide or can be used to provide improved lubricant compositions having highly efficient dispersant-detergent properties and antioxidant properties.

The high molecular weight Mannich condensation products of this invention can be made by using the above-named reactants in the respective molar ratio suitable of l:0.ll0:l.0l0 and desirably l:0.7l.0:l.0 5-2.1. The technique for preparing such high molecular weight condensation products is, in general, the same as that before described to prepare the prior art low molecular weight Mannich condensation products. But for Mannich products having more than one molar equivalent of methylene or substituted methylene bridge (from the aldehyde reactant) joining hydroxyalkylphenyl to amino nitrogen, a two condensation step preparative method can be advantageously used. For example, the two Mannich condensation step route is advantageous for use of reactants (l), (2) and (3) above in the respective molar ratio of l.0:0.7-l.0:l .052.l when the amine reactant contains two primary amino (-Nl-l radicals. For example, in place of adding all of the formaldehyde yielding reactant to a mixture of alkyl phenol and such amines as have two primary amino radicals under Mannich condensation reaction conditions as in the general technique, twothirds of the formaldehyde yielding reactant is added to a mixture of alkyl phenol and amine having two primary amino radicals under Mannich reaction conditions and after the first by-product water has been substantially removed, the last one-third of formaldehyde yielding reactant is added under Mannich reaction conditions. Such a two Mannich step condensation reaction product, it is believed, is a mixture of head-to-tail and tail-to-tail type of bis-Mannich condensation products hereafter illustrated in simplified form rather than a more complex mixture of condensation products as would likely result from a one step Mannich reaction using the same three reactants in the same'reactant molar ratio, Analytical inspection of such mixture of head-to-tail and tail-to-tail condensation products tends to exclude methylene group bridging between nitrogen of secondary-amino groups and aromatic nuclear carbons especially when the amine reactant is a polyalkylene polyamine having three or more nitrogens as in diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine and the like polyamines.

The general Mannich condensation preparative technique of adding all of the formaldehyde yielding reactant to the mixture of high molecular weight alkyl phenol and polyamine reactant under Mannich reaction conditions produces from the respective molar ratio of those reactants (l), (2) and (3) of 1107-1215 -2.l, highly useful products substantially equivalent in nitrogen utilization, viscosity and in service performance to the products from the above described two Mannich condensation step process.

The boron-containing derivatives of any of the foregoing high molecular weight Mannich condensation products are the products of this invention and, as before stated, are highly useful as lubricating oil addition agents. These boron-containing derivatives that a B/N ratio of 0.1 to 4.0 and can be made by condensation or reaction compound of 1) those high molecular weight Mannich condensation products and (2) a boron compound reactive and/or coordinatable with a polar group such as an hydroxy group and/or a nitrogen-containing group present in the Mannich condensation products. Boron compounds having that property of reaction and/or coordination include boron oxide, boron oxide hydrate, boron trifluoride, boron tribromide, boron trichloride, HBF boron acids such as boronic acid (e.g., alkylB(OH) or aryl--B(OH) boric acid (i.e. H 80 tetraboric acid (i.e., H B 0 metaboric acid (i.e., H80 amides of such boron acids, and esters of such boron acids. The use of boric acid as the reactant to introduce boron into the high molecular weight Mannich condensation products is preferred. The manner of using such boron reactants with nitrogen-containing compounds in general is known and is disclosed for example in U.S. Pats. No. 3,000,916 and No. 3,087,936 among others.

As mentioned before the boron-containing derivatives of the high molecular weight Mannich condensation products of this invention are exceptionally useful addition agents for lubricating oil imparting thereto dispersant-detergent and antioxidant properties at relatively low concentrations of the addition agents, e.g. 0.1 to 10 weight percent in formulated crankcase lubricating oils. Higher concentrations of those addition agents, e.g. upward from 10 and up to 70 weight percent are useful concentrates for the preparation of those formulated crankcase lubricating oils and the fortification of used crankcase oil prior to scheduled complete drain. In contrast, boron-containing .derivatives of prior known Mannich condensation products derived from low molecular weight alkyl-substituted hydroxyaromatic compounds whose alkyl groups contain two to 20 carbon atoms are wholly unacceptable as dispersant-detergent addition agents for crank-case lubricating oils.

Illustration of the foregoing superiority of the present inventive boron-containing derivatives of Mannich condensation products from high molecular weight alkyl-substituted phenols over the prior art Mannich condensation products from low molecular weight alkyl phenols can be made by consideration of their abilities to prevent sludge and varnish deposition in standardized, industry accepted engine tests. To be acceptable dispersant-detergent addition agents for such in service use in present-day engines, the addition agents must provide dispersancy-detergency functions in those tests so that at the end of the engine test upon inspection of disassembled engine parts they provide over-all sludge and varnish deposit ratings of 40 and over. Such ratings are determined on a 0-50 scale where a rating of 50 for each of sludge and varnish means a clean engine free from detectable sludge and varnish. The boron-containing prior art Mannich condensation products used in crankcase lubricating oils as the sole source of dispersant-detergent addition agent at the maximum concentration levels at which they can be incorporated in lubricating oil cannot provide acceptable sludge or varnish ratings when used in such a standardized engine test. However, the present inventive boron-containing Mannich condensation products when used as the sole dispersant-detergent addition agent in lubricating oils suitably in the range of 0.1 to 10 and preferably 0.5 to 5.0, weight percent provide crankcase lubricating oils that in the same standardized engine tests give sludge and varnish ratings of 40 and higher, e.g. in the range of 45 to 50.

EMBODIMENTS OF THE INVENTION Representative high molecular weight Mannich condensation products used to prepare the inventive boron-containing products can be prepared from the following representative reactants of the classes before defined.

( 1) HIGH MOLECULAR WEIGHT ALKYL- SUBSTITUTED HYDROXYAROMATICS Representative of these high molecular weight alkylsubstituted hydroxyaromatic compounds are polypropylphenol, polybutylphenol, polyamylphenol and other polyalkyl phenols obtained by the alkylation of polyamylphenol with the appropriate molecular weight polypropylene, polybutylene, polyamylene and the like to give the suitable C to Czomo alkyl substituent on the benzene ring of phenol. Also such substituted cresols, thymol, carvacrol, hydroxy xylenes, naphthols and the like with C to Czomo alkyl-substituents can be used. The C to Czomo substituted alkyl-substituted phenols are preferred.

The C and higher high molecular weight alkyl-substituted phenols preferably are derived from the appropriate polypropylenes, polybutenes (polymers of lbutene, 2-butene, isobutylene and mixtures thereof) copolymers of propylene with monomers copolymerizable therewith or copolymers of butenes (butene-l, butene-2 and isobutylene) with monomers copolymerizable therewith wherein the copolymer molecule contains at least 90 percent, i.e. 90 to 100 percent, propylene or butene units. Said monomers copolymerizable with propylene or said butenes need not be hydrocarbon monomers for they can contain polar groups such as chloro, bromo, keto, ethereal, aldehydo and other polar groups. can also containnonaliphatic groups such as from styrene, a-methyl styrene,a, p-dimethyl styrene, divinyl benzene and the like. From the foregoing limitation placed on the propylene and butylene units (90 to 100 percent of those units) the. comonomers copolymerized .with propylene or said butenes, provide from to percent of the units in the copolymer. Said polymers and copolymers of propylene and butenes are thus substantially aliphatic hydrocarbon polymers. The resulting alkylated phenols are C and higher carbon content substantially alkyl hydrocarbon substituted phenols.

Preferred as the high molecular weightalkyl-substituted phenol reactants are those whose alkyl-substituent has a molecular weight in the range of 600 to 3,000 and more preferably in the rang of 800 to 2,500. Of such alkyl-substitutedphenols the polypropyl and polybutyl'phenols, having 100 percent propyl or butyl units in the polypropyl or polybutyl-substituent are preferred.

HN p

grou CONTAINING REACTANTS Representative of this class of reactants are those amine reactants having at least one active hydrogen atom on a nitrogenatom known as useful amine reactants for the preparation of the prior art Mannich products. Such containing reactants can contain only primary amino groups, only secondary amino groups or both primary and secondary amino groups. Monoand di-alkyl amines suitable for use in the preparation of Mannich condensation products are well known. Other typically suitable amine reactants include the diamino alkanes, and such diamino arenes as 0-, mand p-phenylene diamine and diaminonaphthalenes and di(ar'nino alkyl) substituted nitrogen-heterocyclic amines as the N,N- di(amino methyl), di(amino ethyl) and di(amino propyl) piperazines. The polyalkylene polyamines of theformula wherein A is a divalent hydrocarbon radical having two to eight carbons and x is an integer from 1 to 10 are quite useful because of the alkalivity provided by the secondary amino radicals in the chain. The divalent radical A is preferably an ethylene or propylene radical although it can desirably be a phenylene radical. Other useful representative amine reactants are disclosed in prior art relating to prior Mannich product preparation from C to C alkyl-sbustitued phenols and reference can be made to prior art disclosures for additional amine reactants having at least one HN radical.

Suitable alkylene polyamine reactants include ethylendiamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene hepta-amine, heptaethylene octamine, octaethylene nonamine, nonaethylene decamine and decaethylene undecamine and mixtures of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H N-(A- NH-) H, mentioned before, A is divalent ethylene and x is 3 to 10 of the foregoing formula. Corresponding propylene polyamines such as propylene diamine and di-, tri-, tetra-, penta-propylene tri-, tetra-, penta propylene tri-, tetra-, and hexa-, heptaand octaamines are also suitable reactants. The alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes. Thus the alkylene polyamines obtained from the reaction of 2 to l 1 moles of ammonia with l to 10 moles of dichloro alkanes having two to eight carbon atoms and the chlorines on different carbons.

Also suitable polyamine type reactants are condensation products of urea or thiourea and the alkylene polyamines wherein for each x moles of urea or thiourea 2x moles of alkylene polyamine are used. Such a condensation product can have the formula:

wherein x is 1-10 and A are as above defined and 2 in oxygen or sulfur.

ALDEHYDE REACTANTS Representative aldehyde reactants include the aldehyde reactants disclosed in the prior art concerned with the preparation of Mannich condensation products from C to C alkyl-substituted phenols. For specific classes of such aldehydes and specific members of those classes reference can be made to such prior art disclosures. For the purposes of this invention the aldehyde preferred is formaldehyde and formaldehyde affording compounds such as formalin, paraformaldehyde and trioxymethylene.

The present invention is not predicated on the fact that the C and above alkyl substituents in the boroncontaining derivatives of the Mannich condensation products make them more oil-soluble than the C to C type-prior art Mannich condensation products. But rather invention is predicated on the fact that those higher molecular weight, C4 to C alkyl substituents make the high molecular weight boron-containing derivatives of the Mannich condensation products superior dispersant-detergent addition agents.

Since the products of this invention are ultimately for use in preparing lubricant oil formulations, it is advantageous to use light mineral oil, e.g. from white mineral oils to solvent extracted SAE 10 grade oils, as the reaction solvent. The high molecular weight Mannich condensation products of this invention are then obtained as solutes in concentrations of 40 to 70 weight percent in said mineral oil solvents. This is readily accomplished by using oil solutions of the C and higher carbon content alkyl-substituted phenol reactant dissolved in light mineral oil of from white mineral oil to SAE l grade oil. The examples which follow illustrate the preparation of products of this invention.

As mentioned before the Mannich condensation products obtained from the two step condensation are products that are likely mixtures of tail-to-tail, tail-tohead coupling. The following formulas are illustrative of such couplings in simple single but predominant products of the Mannich condensation:

Formula (I): TaiLto-Tail Formula (II): Tail-to-Head Formula (III): Tail-t0-Tail HZH H H H E Formula, (IV) Tail-to-Head OH OH wherein A is a saturated divalent alkyl hydrocarbon group of two to eight carbon atoms, x is 1 to 10, Z is oxygen or sulfur and R is an alkyl hydrocarbon group of from 40 to 20,000 carbon atoms. The inventive boroncontaining derivatives of compounds of Formulas I, II, III and IV are believed to have the respective moieties from boric acid, boron oxide, boron halides and esters of boron acids as a stable complex with the amino nitrogens (sometimes referred to as boroncoordinate complexes). These boron-containing derivatives are more properly boron compound interaction products for the reasons hereinafter appearing.

It is known that boron halides such as boron trifluoride, boron triiodide and boron trichloride can form a interaction product with phenolic hydroxy groups, i.e. hydroxy group substituents on a benzene ring. It has also been demonstrated that boron oxide, boron oxide hydrate, boron trifluoride, boron triiodide, boron tribromide, boron trichloride, boric acid, boronic acids (such as alkyl-B-(OH) and aryl-B- (OI-D tetraboric acid, metaboric acid and esters of boric acids form interaction products with other polar groups such as the primary andsecondary amino radical as well as phenolic hydroxy groups. Ethers, or-

.ganic acids, inorganic acids or hydrocarbons complexed with boron halides can be used as convenient means for introducing the boron compound as a reactant into the oil solutions of the high molecular weight Mannich products to prepare the boron-containing products of this invention. More specifically in place of the aqueous solution of boric acid, dimethyl formamide (DMF) solution of boric acid and oil slurry of boric acid used in the examples hereinbefore set forth, there can be used boron trifluoride-diethyl ether complex, boron trifluoride-phosphoric acid complex, boron trichloride-choroacetic acid complex, boron tribromide-dioxane complex, boron trifluoride-methyl ethyl ether complex. I

The boron reactant when introduced as a boronic acid can be methylboronic acid, phenylboronic acid, cyclohexylboronic acid, p-octyl-phenylboronic acid,

decylboronic acid and the like. The boron reactant when introduced as an ester of boric acid can be monodiand tri-esters derived by a means well known to the chemist by reacting one mole boric acid or tetraboric acid with such hydroxy compounds as alkanols, alkylene diols, cycloalkanols and the like. These esters of boric acids can be used to replace boric acid reactant illustrated in the examples hereinbefore set forth.

Since the boron reactant can form an interaction product with any or all of the polar groups, the phenol- IL MQPBLlh999913y ami and Primary amino groups present in compounds having structural formulas I, II, III and IV hereinbefore set forth, it is not known with certainty which of the polar groups are involved in the formation of the interaction product but it is believed that it is the amino groups with which boric acid forms the stable interaction product. It is not essential for the purposes of this invention for the boron compound reactant to form an interaction product with one or more particular polar group present as long as a stable boron compound interaction product forms. By stable boron compound interaction product is meant one that can be heated at least to 300-350 F. and filtered at 300-350 F. without substantially completely removing boron from the solute in the filtrate. It is desirable to have B/N ratios (weight ratio of boron to nitrogen) in the range of 0.01 to 1.0 and preferably in the range of from 0.05 to 0.5, present in the solute inventive boron-containing Mannich condensation products. Such stable boron interaction products when used in lubricant oil formulations provide better anticorrosion and/or anti-wear protection and dispersancydetergency than boron-containing derivatives of prior Mannich products especially when alkaline earth metal salts of alkylbenzenes sulfonic acids, e.g. calcium or magnesium salts of C to C alkyl-substituted benzene sulfonic acids, are also employed as addition agents.

The following examples will illustrate specific embodiments of this invention.

EXAMPLE 1 There are combined 1,000 grams ofa SAE oil solution having35 percent NAMW 892 polypropyl phenols (alkyl group from polypropylene) by weight-(0.392 mole alkyl phenol) and 0.392 mole tetraethylene pentamine (TEPA). This mixture is stirred and heated to 210 F. and 32 milliliters formaldehyde (0.392 mole) are added slowly permitting the temperature of the reaction mixture to increase to about 240 F. The resulting mixture is heated to 340 F. and nitrogen is in-. jected at 1.0 CFl-l for 90 minutes. The finaltemperature is 320 F. This mixture is stirred and cooled to 180 F. and an additional 32 milliliters formaldehyde are .added increasing the reaction temperature to 200 F.

At this temperature 40.9 grams (0.55 mole) boric acid I (ratio of 0.48 to 1.0N) is added and the resulting mixture is stirred and heated to 330 F., held at this temcontent is 0116 percent, both by weight.

EXAMPLE2 There are combined, stirred and heated to 180 F. 0.482 mole TEPA and 2,500 gramsof 33 percent by weight 1713 NAMW polybutyl phenol in solvent extracted SAE 5W oil to provide 0.482 mole of said polybutyl phenol. Then 0.482 mole CH O is added and the liquid mixture is stirred and heated to 340 F. and held at thattemperature for 105 minutes while injecting nitrogen at 2 CFH. Thereafter the liquid reaction mixture is coo1ed.to'l80 F., an additional 0.482 mole formaldehyde is added and the resulting liquid is stirred and heated to 340 F. while 2 CFl-l nitrogen is injected for 5 hours. The resulting liquid is filtered at 300 F.

The 300 F. filtrate, a clear-bright liquid, is cooled to 250 F. under a,.nitrogen.gas blanket and then 9.5 grams boric acid slurried in 20 grams SAE 5 oil is added. The resulting mixture is held at 250 F. for 60 minutes, isthen heated to 300 F. and held at 300 F.

with nitrogen injection at 2 CFH for 60 minutes. The

oil is filtered through celite at about 300 F. The filtrate is a bright liquid showing no Tyndall effect when light is reflected from the filtrate. By analysis it is found that the filtrate contains 1.08 percent nitrogen and 0.04 percent boron, all by weight.

EXAMPLE 3 There are combined, stirred and heated to F. 334 grams of 33 weight percent 1,900 NAMW (0.058 mole) alkyl phenol in SAE 5W oil and 0.058 mole of a boric acid derivative of TEPA (0.2 BIN). Then 0.058 mole C11 0 is added, the mixture is heated to 200 F. and .an additional 0.058 mole CH,O is added 45 minutes after the first addition. The mixture is stirred and heated to 270F., held at 270F. for 2 hours with 1.5 CFH nitrogen injection. The liquid product is filtered at 270 F.

To 250 grams of filtrate there is slowly added 3.14 grams boric acid dissolved in 10 ml. dimethylformamide. to minimize frothing by DMFboiling. This mixture is heated to 340 F. and 2 CFH nitrogen is injected for 60 minutes. The liquid product is bright and clear. DMF appears to promote the interaction of boric acid with the free amine groups. The liquid product is filtered. The filtrate is a bright clear liquid having 025 percent boron and 0.83 percent nitrogen as determined by analysis.

EXAMPLE 4 There are combined 0.217 mole TEPA and 1250 grams of 33 weight percent 1900 NAMW polybutyl phenol dissolved in SAE 5 oil to provide 0.217 mole of that alkyl phenol and the mixture is stirred and heated to 120F. The first 0.217 mole CH O is added at 120 F nitrogen is injected at 2 CFH for 30 minutes, the mixture is heated to and held at 220 F. for 105 minutes, then cooled to 200 F. at which temperature the second addition of 0.217 mole CH O is made and the reaction temperature is raised to 220 F. and there held for 2 hours. Thereafter. 16 grams boric acid dissolved in 25 grams water is added at 200F. by means of a dropping funnel. Then the reaction temperature is increased to 300 F. and held there for90 minutes with 2 CFH nitrogen injection. The liquid product is filtered. The clear bright filtrate is found, by analysis, to contain 0.16 percent boron and 1.07 percent nitrogen by weight.

EXAMPLE 5 There are combined, stirred and heated to F. 0.05 8 mole diethylene triamine and 306 grams of a 38 percent solution of 2,000 NAMW polybutyl phenol (0.058 mole) in white oil. A first addition of 0.058

mole formaldehyde is made and the mixture is stirred and heated to 220 F. and held at 220 F. for 60 minutes. Thereafter the mixture is cooled to 200 F. and the second addition of 0.05 8 mole formaldehyde is made. This mixture is stirred and heated to 300F. and held at that temperature for 2 hours. There is no evidence of unreacted formaldehyde or amine. The liquid product is filtered. The filtrate, is a light and clear-liquid and has a 210 F. viscosity of 1531 SSU, a specific gravity of 0.8996 at 77 F. and from analysis is found to contain 0.67 percent nitrogen by weight. Boration of the foregoing Mannich product to a B/N ratio of 3.0 can be accomplished with boric acid dissolved in DMF reacted at 320 F. for 30 minutes followed by nitrogen injection until no further water comes off.

EXAMPLE 6 By substituting 0.058 mole bis-carbamide derived from DETA and urea (2 moles of BETA and 1 mole urea) in the foregoing reaction, a liquid product of 1.3 to 1.5 percent nitrogen by weight may be obtained. Boration of the foregoing Mannich product to a B/N ratio of 3.0 can be accomplished with boric acid dissolved in DMF reacted at 320 F. for 30 minutes followed by nitrogen injection until no further water comes off.

EXAMPLE 7 There are combined, stirred and heated to 140 F. while injecting 2 CFH nitrogen, 0.48 mole TEPA and 2,500 grams of solution containing 33 percent by weight 1713 NAMW polybutyl phenol in SAE 5W oil. The first addition of 0.48 mole formaldehyde is made and the liquid mixture is heated to 220 F. while stirring and nitrogen injection is continued for 105 minutes. The liquid reaction mixture is cooled to 200 F., the second addition of 0.48 mole formaldehyde is made and the liquid mixture is heated to 220 F. with continued stirring and nitrogen injection for 105 minutes. Thereafter a solution of 32 grams boric acid in 76 grams water heated to 210 F. is added dropwise to the stirred liquid reaction product still at 220 F. After the aqueous solution of boric acid is added, the reaction temperature is increased to 300 F. and held at 300 F. for 90 minutes with continued stirring and nitrogen injection. The resulting oil solution of borated reaction product is filtered at 300 F. The filtrate is a clear, bright liquid and by analysis is found to contain 0.17 percent boron and 1.05 percent nitrogen, both by weight. The weight ratio B/N in said product is 0.16.

EXAMPLE 8 There are combined, stirred and heated to 140 F. with nitrogen injection at 1.5 CFH, a solution of 33 per-, cent polybutyl phenol of 1713 NAMW (0.159 mole) in SAE 5W oil and 0.159 mole TEPA. The first addition of 0. 1 59 mole formaldehyde is made, the reaction temperature is increased to 320 F. and held there for 90 minutes with continued stirring and nitrogen injection. The reaction mixture is cooled to 160 F. and the second addition of 0.159 mole formaldehyde is made and 1 1.5 grams boric acid crystals are also added. This mixture is stirred and heated to 300 F. under a nitrogen atmosphere and held at 300 F. until no solid boric acid can be seen. Thereafter nitrogen is injected at '1 .5 CF l-l until water is substantially removed. The filtered solution of reaction product is found by analysis to have 1.1 1 percent nitrogen and 0.18 percent boron, both by weight. The solute reaction product has a B/N, weight ratio of 0.16.

EXAMPLE 9 There are combined, stirred and heated to 140 F., 2700 grams of solution of 1713 NAMW polybutyl phenol (0.58 mole) in SAE 5W oil and 0.58 mole TEPA. At 140 F. the first addition of 0.58 mole formaldehyde is made and the mixture is stirred and heated to 200 F. while injecting nitrogen at 1.0 CFH for 30 minutes and then the second 0.58 mole formaldehyde addition is made at 200 F. with no nitrogen injection. This mixture is heated to 260 F. with nitrogen injection and stirred for 3 hours at 260 F. Thereafter a slurry of 63 grams boric acid in 50 grams SAE 5W oil is added with no nitrogen injection but while stirring the resulting mixture under a nitrogen blanket atmosphere. The oil solution-boric acid slurry is stirred and heated to 300 F. and held at 290 to 300 F. for 60 minutes while injecting nitrogen at 1.0 CFl-l. The resulting SAE 5 W oil solution of reaction product is filtered at 320 F. The filtrate is found by analysis to contain 0.16 percent boron and 1.12 percent nitrogen (B/N weight ratio of 0.14) and has a 210 F. viscosity of 1,700 SSU.

EXAMPLE 10 i The process of Example 9 is repeated using 2,990 grams of 37.2 percent by weight 1,900 NAMW polybutyl phenol (0.58 mole), 0.58 mole TEPA, two additions of 0.58 mole each of formaldehyde, and 43 grams boric acid slurried in 50 grams SAE 5W oil. The filtrate has a 210F. viscosity of 1,766 SSU and is found by analysis to contain 0.08 percent boron and 1 percent nitrogen with weight ratio of B/N of 0.08.

EXAMPLE 1 1 The process of Example 10 is repeated using 2,255 gallons of 46 percent by weight 1,750 NAMW pol ybutyl phenol (4.32 pound moles), 376 gallons SAE 5W oil, 98 gallons (4.42 pound moles) TEPA, two additions of 350 pounds formalin (37 percent CH O) to provide 4.32 pound moles formaldehyde at eachaddition, 200 pounds boric acid slurried in 100 gallons SAE 5W oil at 250 F., and 50 gallons SAE 5W oil at 250 F. to wash boric acid slurry transler line into the reactor. The filtrate obtained from such a process typically has a 210 F. viscosity in the range of 800 to 900 SSU and contains about 40 weight percent borated reaction product dissolved in SAE 5W oil (40 percent product- 60 percent oil by weight), 1.18 to 1.22 percent nitrogen by weight, 0.09 to 0.11 percent boron by weight and a B/N ratio of 0.075 to 0.085.

An amount of the product of Example 2 containing 0.56 grams of the disubstituted amine shown is added to a measured volume of crankcase lubricant oil form ulation which had been used in a Lincoln Sequence V Engine Test for 384 hours (twice the time of the standard test time). This composition is heated and stirred at 300 F. for 16 hours and an aliquot of it is transferred to blotting paper. A control is made at the same time by stirring and heating at 300 F. for 16 hours an equal volume of used oil from the 394 hour Lincoln Sequence V Engine Test and depositing an aliquot on blotting paper. The deposits on the blotting paper are measured to obtain the average diameter of the outer oil ring (Do) and the average diameter of the inner sludge ring (Ds). The ratio of Ds/Do is an indication of the detergent-dispersant property of the addition agent. These ratios and the sludge settling tests are shown in TABLE 1.

TABLE] Ring Ratio Detergent-dispersant Screening Test Example Control 2 (hams None 0.56 Dull)" 100 60 91.5

The same test'procedure conducted with boron-containing Mannich condensation products of C to C alkyl-substituted phenol, typical of prior art products made for example from the respective molar ratio of 2 moles nonylphenolzl mole TEPA and 2 moles'formaldehyde, do not have sufficient dispersancy nature and hence show littleor no improvement over the control.

EXAMPLE 12 A high molecular weight Mannich condensation product is prepared by the one step process using high molecular weight polybutyl substituted (polybutyl group has anaverage of 60 carbons) phenol (916.

NAMW) dissolved in SAE 5W oil, 0.9 mole tetraethylene pentamine and 1.8 mole formaldehyde for a respective molar ratio of reactants of 1:0.5:1. The dry product contains 82 percent high molecular weight Mannich condensation product (2,000 NAMW) in the solvent oil.

This product is borated in the following manner. For each 250 grams of product (82 percent of 2000 NAMW Mannich condensation product) there is added 250 grams of SAE 5W oil and 19 grams boric acid. The mixture is stirred, heated slowly to and held at 300 F. for 7 hours while injecting nitrogen to remove by-product water. The dried product is filtered to remove unreacted boric acid using Celite filter-aid; The filtrate is a clear solution containing 0.23 percent' boron.

EXAMPLE 13 There are combined, stirred and heated to 160 F., 2,000 grams" of SAE 5 oil solution of (45.9 percent) polybutyl-substituted phenol of 1600 NAMW to provide 0.716 mole of that substituted phenol, 94 grams (0.495 mole) tetraethylene pentamine and 420 grams of SAE 5W oil. Then one drop of liquid silicon antifoam agent and 100 milliliters of formalin (37 percent CH O) to provide 1.318 moles formaldehyde are added at one time to the hot stirred mixture. After the temperature'increase from the reaction of the added formaldehyde has occurred, the temperature of the stirred solution of reaction product is increased to 300 F. and nitrogen is injected into stirred and heated solution. Nitrogen injection and stirring is continued while the solution is held ata temperature of about 310 F. F.) for two hours to drive off by-product watenThen' the solution is filtered. The hot filtrate is bright, i.e., has a good clarity. The, solution contains about 42 percent by weight of high molecular weight Mannich condensation product, a nitrogen content of 1.02 percent and a viscosity of 1013 SSU at 210 F. The reactants polybu; tyl-substituted phenol, amine and formaldehyde are used in the respective molar ratio of 1:069: l .835.

The product of the foregoing example, oil solution having 1.07 percent nitrogen and of the high molecular weight Mannich condensation product as solute in the 42 percent concentration, is borated with boric acid to a boron content of 0.1 percent. This boric acid borated derivative is used in a crankcase lubricant oil formulation at a 4.5 volume percent concentration (about 2 weight percent of condensation product) with either 2.0 volume percent of 300 total basenumber (TBN) calcium sulfonate or 1.0- volume percent 300 TBN magnesium sulfonate and 1.0 volume percent of the solution of zinc dialkyl dithiophosphate anti-wear and anti-corrosion agent (hereafter more specifically defined). Both crankcase lubricant oil formulations (one with 300 TBN Ca-sulfonate and the other with 300 TBN Mg-sulfonate) when used in the Ford-289 cubic inch displacement Engine Test hereafter described, result in Total Sludge values in the range of 41 to 48 and Total Varnish values in the range of 41 to 43. Similar crankcase lubricant oil formulations, the only exception being the use of 3 volume percent of boric acid borated product of the foregoing example having 0.3 percent boron product equivalent high detergency-dispersancy results in the Ford-289 Engine Test (Sludge values of 41 to 48 and Varnish Values of 40 to 43) and provide in the CLR-L38 Engine Test. (hereafter described) designed to evaluate high temperature oxidation stability of crankcase lubricant oils, varnish and bearing loss values in the passing range for premium oils. Spot Dispersancy Test (hereafter described) using 3.1 volume percent of the oil solution having 0.3 percent boron produced a value of 88.5.

ENGINE TESTS The effectiveness of the substituted amine products of this invention as detergent-dispersant addition agent for lubricant oil compositions can be demonstrated by their use in such compositions as crankcase lubricants in actual engine tests such as the LincolnSequence V Engine Test, the Ford 289 Engine Test and the L-38 Engine Test aforementioned.

It will be noted that the hydroxyalkyl benzyl sub stituted amine products of this invention used in said tests unlike hydroxyalkyl benzyl substituted amines of the prior art are not used as their calcium, barium, magnesium or other alkaline earth metal or alkali metal salts.

The compounds of this invention can function as detergent-dispersant addition agents in lubricant oil compositions in the weight percent range suitably of from 0.1 to 10 percent, desirably in the range of 0.2 to 8.0 percent and preferably in the range of 0.5 to 5 percent. However, lubricant oil solutions having 10 to 50 percent or more by weight of the novel hydroxyalkyl benzyl substituted polyalkylene amines of this invention including the bis(polyalkylene amine) carbamides and thiocarbamides are useful in the preparation of finished lubricant oil compositions because they can be readily and conveniently combined withconcentrates of other lubricant oil addition agents suchas oil solutions of the alkaline earth metal sulfonates, e.g. normal and high based calcium and magnesium salts of petroleum sulfonic acids such as sour oil, mahagony acid and alkyl substituted benzene sulfonic acids having alkyl hydrocarbon groups of a carbon content of greater than 16 and more specifically of 30 to 20,000 carbon atom alkyl hydrocarbon group size, oil solutions of zinc dialkyl-dithiophosphates and other concentrate solutions of lubricant addition agents all of which are used for their anti-wear, anti-corrosion, anti-foam, oxidation inhibition, oiliness, viscosity-index improving properties. For example, the oil solution concentrates having 10 to 50 percent by weight of the novel substituted amine products of this invention can be easily blend mixed with base oils and oil solution concentrates of the aforementioned addition agents having anti-wear, anti-corrosion, viscosity-index improving, anti-foam, etc. properties in transfer line blending, i.e. each concentrate and base oil are charged to a transfer line from sources of supply of each concentrate in therequired proportions so that there flows from the transfer line a completely finished, fully formulated lubricant oil com-' position ready for packaging in quart, gallon, quart, 30 gallon or 55 gallon containers or tank car and/or truck for delivery to the ultimate consumer. Such finished and fully formulated lubricant oil compositions are useful as crankcase lubricants for automobile, truck and railway gasoline and/or diesel engines.

The aforementioned Lincoln Sequence V Engine Test, Ford 289 Engine Test and L-38 Engine Test are conducted in the following manner.

LINCOLN SEQUENCE V ENGINE TEST Briefly, this test designed to evaluate dispersancy characteristics of formulated lubricant oils consists of using the oil to be tested as a lubricating oil in a V-8 Lincoln Engine under prescribed test conditions. Accordingly, five quarts of oil are placed in the crankcase and the engine is started and run in accordance with the four-hour cycle:

The four-hour cycle is reset a total of 48 times (192 hours running time). After each 16 hours of operation the engine is shut down for 8 hours. Two-ounce samples of oil are taken every 30 hours and the oil level is adjusted with fresh oil to a level of five quarts. Added oil is weighed. At the time of the test, the hot oil is drained, weighed and recorded. The engine is then disassembled and the test for deposits of varnish and sludge among other observable results as set out in the table below. Engine components are examined visually and rated on a scale of l to l0, being a perfect reading indicating no sludge or varnish. A rating of 50 for total sludge and for total varnish is considered perfect; a rating of 60 percent or lower is considered passing for screen clogging; and a rating of 50 percent or lower is considered passing for ring plugging.

FORD289 ENGINE TEST The Ford 289 cubic inch displacement engine test, hereinafter designated as I -289 Test, is conducted in the same manner as the Lincoln Test Sequence V except for the apparent difference in test engines. This F-289 Test is more severe with respect to both sludge and varnish formulation and deposition. Also the F-289 Test is conducted with vapors from the crankcase being introduced into the engine fuel intake system by means of a positive crankcase ventilation system which, in part, results in the more severe sludge and varnish formation during test operation.

L-38 ENGINE TEST The L-38 Engine Test" is also known as CLR L-38 Engine Test and is designed to evaluate high temperature oxidation stability of the formulated lubri cant oil and such evaluation is based on piston varnish deposit and copper-lead bearing corrosion. In this test a single cylinder water cooled Labeco oil test engine is operated at 3150 rpm for 40 hours with the test oil formulation. The oil is maintained at 300 F. and cooling water is maintained at F. Copper-lead connecting rod bearings are weighed before and after the 40 hour test. Bearing weight loss (BWL) of 50 milligrams or less is desired. After the 40 hour test the piston is visually evaluated and a varnish value is assigned by comparison to varnish deposit pictorial standards having assigned values of l to 10 for the color and extent of varnish deposit. In this varnish value scale of l to 10, the value 10 represents a clean and varnish free piston and the value 1 represents a substantially complete dark varnish coated piston. To qualify as a premium oil additive the varnish value should be 9.0 and above.

The following lubricant formulations in which all of the addition agent indicated are by volume, are prepared for use in the foregoing engine tests. Products of this invention are identified by reference to the appropriate example of preparation and the volume percent solution produced. The weight percent of the solute product or dissolved is that of the active ingredient, i.e., the dissolved substituted amine product, is shown under weight Where used Ca300 and Mg-300 designate the respective sulfonates dissolved as concentrates in SAE 5W oil with a total base number of 300 for the solution and other higher or lower numbers designate higher or lower solution total base numbers. The designation ZOP is used to' identify a zinc dialkyldithiophosphate anti-wear anticorrosion addition agent whose alkyl groups are derived from the conjoint reaction of three different alcohols, two of which are primary alcohols such as C and C oxo-derived alcohols and the third is a secondary alcohol such as isopropyl or sec-butyl alcohols, with phosphorus pentasulfide and the total moles of the three alcohols is the stoichiometric amount required to obtain dialkyl dithiophosphoric acid for reaction with zinc or zinc oxide. Thus the Z0? is a statistical mixture of the zinc salts having the three aforementioned alcohol derived alkyl groups. Since the relative proportions of C iso, C primary and C primary alcohols can be varied considerably to provide an oil-soluble zinc salt, their precise proportions need not be indicated. A ZOP product typical of that used is a concentrate zinc dialkyl dithiophosphate in SAE 5W oil having the following typical properties: Solution has 210 F. viscosity of 67 SSU, 5% Zn, 8% P and 16% S, all by weight.

TABLE 11 Test Oil Formulations Formulation Example Number Numbervol.% wt.% 20] (Ia-300 Mg-300base oil The results of using above formulations in the Lincoln Sequence V Engine Test are presented in TABLE III.

TABLE III Lincoln Sequence V Engine Test Results The results of the use of the indicated formulations in the Ford-289 Engine Test are given in Table IV.

TABLE IV Ford-289 Engine Test Results Oil Ring Varnish Plugging Sludge 48 Formulation No.

The results from the CLR L-38 Engine Test using the formulations indicated are given in Table V.

TABLE V CLR L-38 Engine Test Results Formulation no. piston varnish bearing weight loss-mg.

What is claimed is: 1. An oil soluble boron-containing product comprising a boron-containing derivative of a Mannich condensation product of( l a high molecular weight alkylsubstituted hydroxyaromatic compound whose alkylsubstituent has from 40 to 20,000 carbon atoms, (2) a polyamine of the formula NHz H )1 wherein X is an integer of from 1 to 10 and A is a divalent hydrocarbon to of two to eight carbon atoms and (3) a formaldehyde affording compound in the respective reactant molar ratio of 1.010. ll0.0:l .0-l0.0 condensed with a boron compound selected from the group consisting of boron oxide, boron acids and boron halides, to provide a boron-containing product having a B/N weight ratio of 0. l-4:l .0.

2. The boron-containing product of claim 1 derived from boric acid condensed with the Mannich product derived from a high molecular weight alkyl-substituted phenol whose alkyl substituent has a molecular weight of 6003,000 as reactant l 3. The boron-containing product of claim 2 wherein said alkyl-substituted phenol is a polypropyl or polybutyl-substituted phenol.

4. The boron-containing product of claim 2 wherein said alkyl-substituent has a molecular weight of 800 to 2,500.

5. The product of claim 1 wherein the polyamine reactant (2) is a polyethylene polyamine.

6. The product of claim 5 wherein the polyethylene "H050 UNITED STATES PATENT OFFICE 15", n i CER'HJHCATE @F CORREC'IIQN Patent No. 3, 97, 57LL Dated OCTOBER 10, 97

Inventor) EDMUND J. PIASEK AND ROBERT E. KARLL It is certified that error appears in the above--identified patent and that said Letters Patent are hereby corrected as shown below:

Column 2, line 55: On second ring insert R as in preceding ring Column h, line 4-5: "suitable" should be v-- suitably Column 5, line 10: following "molar ratio, the comma should be a period Column 6; line 6: "crank-case" should be crankcase Column 6, line 55: "of polyamylphenol" should be of phenol Column 7, line 25: "rang" should be range 4 Column 8, a

' line 25 delete "propylene tri-, tetraand" Column 15', line 57: "(=1oF.)" should read (+lOF.) Column 19, line 8: in TABLE II for "Fomulation Nmnber-I" under the heading CA-300" insert omitted number O In Claim 1: (Column 20, line 2 the word "to", first occurrence should be cancelled and replaced with radical si ned and sealed this 15th day of May 1973.

(SEAL) Attest:

I EDWARD M.F.LETCHER, JR. ROBERT GOTTSCHALK ttesting Off cer Commissioner of Patents J

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4016092 *Mar 8, 1976Apr 5, 1977Mobil Oil CorporationOrganic compositions containing borate and phosphonate derivatives as detergents
US4303445 *Jul 18, 1980Dec 1, 1981Exxon Research & Engineering Co.Ink jet printing formulations
US4394278 *May 26, 1981Jul 19, 1983Mobil Oil CorporationFriction reducing additives and compositions thereof
US4446037 *Apr 4, 1983May 1, 1984Mobil Oil CorporationHydrolysed imidazoline-aldehyde-mercaptan product
US4511516 *Sep 15, 1982Apr 16, 1985Union Oil Company Of CaliforniaBoron containing heterocyclic compounds
US4557843 *Jan 29, 1985Dec 10, 1985Union Oil Company Of CaliforniaFor corrosion, oxidation and wear resistance
US4595514 *Jan 29, 1985Jun 17, 1986Union Oil Company Of CaliforniaBoron-containing heterocyclic compound and lubricating compositions containing same
US4623474 *Dec 10, 1981Nov 18, 1986Union Oil Company Of CaliforniaExtreme pressure lubricants
US4627930 *Jan 29, 1985Dec 9, 1986Union Oil Company Of CaliforniaBoron-containing heterocyclic compounds and lubricating oil containing same
US4629579 *Dec 7, 1984Dec 16, 1986Union Oil Company Of CaliforniaBoron derivatives
US4629580 *Jan 29, 1985Dec 16, 1986Union Oil Company Of CaliforniaBoron-containing heterocyclic compounds and lubricating oil containing same
US4655948 *Aug 27, 1985Apr 7, 1987Mobil Oil CorporationGrease compositions containing borated catechol compounds and hydroxy-containing soap thickeners
US4657686 *Jan 29, 1985Apr 14, 1987Union Oil Company Of CaliforniaLubricating compositions
US4661274 *Jan 13, 1986Apr 28, 1987Mobil Oil CorporationAdditive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds
US4686056 *Apr 7, 1983Aug 11, 1987Union Oil Company Of CaliforniaMetal-boron derivatives as lubricant additives
US4724099 *Jul 11, 1986Feb 9, 1988Union Oil Company Of CaliforniaLubricating compositions
US4743386 *Aug 27, 1985May 10, 1988Mobil Oil CorporationGrease compositions containing phenolic- or thio-amine borates and hydroxy-containing soap thickeners
US4780227 *May 4, 1987Oct 25, 1988Mobil Oil CorporationGrease composition containing borated alkoxylated alcohols
US4781850 *Mar 10, 1987Nov 1, 1988Mobil Oil CorporationGrease compositions containing borated catechol compounds and hydroxy-containing soap thickeners
US4801729 *Dec 30, 1987Jan 31, 1989Union Oil Company Of CaliforniaLubricating compositions
US4828734 *May 14, 1987May 9, 1989Mobil Oil CorporationGrease compositions containing borated oxazoline compounds and hydroxy-containing soap thickeners
US4892670 *Jan 29, 1985Jan 9, 1990Union Oil Company Of CaliforniaLubricating compositions
US4925983 *Apr 14, 1988May 15, 1990The Lubrizol CorporationBoronated compounds
US4961868 *Mar 7, 1989Oct 9, 1990Mobil Oil CorporationBorated organic compound, sulfur and phosphorus compounds, metal or amine derivative of a hydroxy-containing soap thickener
US5084194 *Nov 14, 1990Jan 28, 1992Mobil Oil CorporationGrease composition
US5124055 *Mar 16, 1990Jun 23, 1992Ethyl Petroleum Additives, Inc.Cosulfurized blend of soybean oil and ester, amide, or ester-amide with polar substituent
US5169547 *Sep 29, 1988Dec 8, 1992Mobil Oil CorporationAmine-containing hindered phenolic antioxidant lubricant additives and compositions thereof
US5310491 *Apr 13, 1993May 10, 1994Uniroyal Chemical Company, Inc.Lubricant composition containing antioxidant
US5334329 *Oct 7, 1988Aug 2, 1994The Lubrizol CorporationLubricant and functional fluid compositions exhibiting improved demulsibility
US5498809 *May 22, 1995Mar 12, 1996Exxon Chemical Patents Inc.Terminal ethylvinylidene groups which can be functionalized, dispersants
US5554310 *Jun 9, 1994Sep 10, 1996Exxon Chemical Patents Inc.Trisubstituted unsaturated polymers
US5583099 *May 16, 1996Dec 10, 1996The Lubrizol CorporationBoronated compounds
US5663130 *Mar 11, 1996Sep 2, 1997Exxon Chemical Patents IncPolymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5811379 *Jun 17, 1996Sep 22, 1998Exxon Chemical Patents Inc.Alpha-olefins polymerized in the presence of a late transition metal catalyst using a diluted feed from a refinery or steam cracker; hydrocarbon soluble; dispersants; wax crystal and viscosity modifiers; materials
US5814111 *Aug 6, 1996Sep 29, 1998Shell Oil CompanyGasoline compositions
US6030930 *May 14, 1997Feb 29, 2000Exxon Chemical Patents IncUseful in lubricating oils, and to concentrates containing the oil-soluble dispersant additives
US6034184 *Jun 23, 1998Mar 7, 2000Mobil Oil CorporationConjugated diene copolymer; hydrogenation; mixing with oil
US6042626 *Aug 1, 1997Mar 28, 2000Ethyl CorporationTo reduce deposit formation in thermally stressed distillate fuels such as jet fuel, diesel fuel and exhaust systems
US6054539 *Jul 31, 1998Apr 25, 2000Mobil Oil CorporationSelectively hydrogenated polymer compositions: polybutadiene-isoprene-polybutadiene
US6066603 *Jul 21, 1997May 23, 2000Exxon Chemical Patents Inc.Modified polyolefin
US6103676 *Jun 23, 1998Aug 15, 2000Mobil Oil CorporationDispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: hydroformylation/reductive amination reaction products
US6162768 *Jun 23, 1998Dec 19, 2000Mobil Oil CorporationHydrogenation of polymers
US6172015Jul 21, 1999Jan 9, 2001Exxon Chemical Patents, IncCopolymer derived from olefinic monomer and alpha, beta-unsaturated carbonyl compound as polar monomer
US6215033Dec 11, 1998Apr 10, 2001Mobil Oil CorporationDispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: blends with lower molecular weight components
US6228817Jun 23, 1998May 8, 2001Mobil Oil CorporationDispersant comprising copolymer of two different conjugated dienes which has been selectively hydrogenated, functionalized, and post treated
US6248702Nov 30, 1998Jun 19, 2001Mobil Oil CorporationDispersant and dispersant viscosity index improvers from selectively hydrogenated aryl-substituted olefin containing diene copolymers
US6319881Jul 12, 1999Nov 20, 2001Exxonmobil Oil CorporationIn lubricants, engine performance
US6468948Jul 21, 1999Oct 22, 2002Infineum Usa L.P.Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6627584Jan 28, 2002Sep 30, 2003Ethyl CorporationAutomatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US6824671May 17, 2001Nov 30, 2004Exxonmobil Chemical Patents Inc.1-decene and 1-dodecene are polymerized using an alcohol promoted boron trifluoride and cocatalysts; lubricants
US6827750Aug 24, 2001Dec 7, 2004Dober Chemical CorpControlled release additives in fuel systems
US6835218Aug 24, 2001Dec 28, 2004Dober Chemical Corp.Fuel additive compositions
US6860241Aug 24, 2001Mar 1, 2005Dober Chemical Corp.Fuel filter including slow release additive
US6869917Aug 16, 2002Mar 22, 2005Exxonmobil Chemical Patents Inc.5 cSt poly-alpha-olefin comprising an oligomer of 40-80 % 1-decene and 60-20 % 1-dodecene and a 4 cSt poly-alpha-olefin; prepared by oligomerizing the monomers in the presence of BF3, alcohol and alkyl acetate
US6949688Oct 6, 2004Sep 27, 2005Exxonmobil Chemical Patents Inc.Oligomerization of 1-decene and 1-dodecene, in the presence of boron fluoride and activators as catalysts, then hydrogenation to form lubricants having stability; extreme temperature lubricants
US7001531Aug 24, 2001Feb 21, 2006Dober Chemical Corp.Releasing polymer into coolant; concentrated aqueous solution; internal combustion engine
US7049273Jul 17, 2002May 23, 2006Afton Chemical Intangibles LlcHybridized olefin copolymer additives
US7214649Dec 31, 2003May 8, 2007Afton Chemical CorporationReaction product of an acrylamide and a (poly)alkyleneamino-substituted hydrocarbylsuccinimide, hydrocarbyl-substituted amine, or a Mannich base adduct derived from hydrocarbyl-substituted phenol condensed with an aldehydes and an amine; improving engine, gear or transmission performance
US7581558Jun 5, 2007Sep 1, 2009Cummins Filtration Ip Inc.Controlled release of additives in fluid systems
US7615519Jul 19, 2004Nov 10, 2009Afton Chemical CorporationAdditives and lubricant formulations for improved antiwear properties
US7615520Mar 14, 2005Nov 10, 2009Afton Chemical CorporationBase oil of lubricating viscosity and hydrocarbon soluble metal compound effective to provide a reduction in oxidation of lubricant composition; metal of the metal compound is selected from titanium, zirconium, and manganese; essentially devoid of sulfur, phosphorus, and phenolic antioxidant compounds
US7632788Dec 12, 2005Dec 15, 2009Afton Chemical CorporationNanosphere additives and lubricant formulations containing the nanosphere additives
US7645726Dec 10, 2004Jan 12, 2010Afton Chemical Corporationcrankcase dispersant; internal combustion engines; for improving dispersion of soot in diesel engine
US7645728Feb 17, 2004Jan 12, 2010Afton Chemical CorporationLubricant and fuel additives derived from treated amines
US7682526Dec 22, 2005Mar 23, 2010Afton Chemical Corporationconcentrate may include a reaction product of a fatty acid, an alkylene polyamine, a hydrocarbyl succinic acid or anhydride, and an alkoxylated alkylphenol component and from about 2 to about 50 wt. % alkyphenol component; suitable for pipeline fluid, drilling fluid; storage stability
US7709423Nov 16, 2005May 4, 2010Afton Chemical CorporationAdditives and lubricant formulations for providing friction modification
US7737094Oct 25, 2007Jun 15, 2010Afton Chemical Corporationbase oil and an overbased calcium detergent consisting essentially of a carbonated reaction product of an acid and an excess of basic alkaline earth metal neutralizing agent, wherein detergent is present in an amount that is effective to reduce engine wear in engine; and operating engine using E85 fuel
US7743738Mar 1, 2007Jun 29, 2010Afton Chemical CorporationScavenging phosphorus, sulfur, and lead from combustion exhaust using tungsten compounds and lubricant
US7767632Dec 22, 2005Aug 3, 2010Afton Chemical CorporationAdditives and lubricant formulations having improved antiwear properties
US7772167Dec 6, 2006Aug 10, 2010Afton Chemical CorporationFully formulated lubricating oil comprising a succinimide dispersant, a metal containing detergent, anantioxidant, and a hydrocarbon soluble titanium carboxylate; improved sludge reducing properties compared oil without the titanium compound; antisludge agents; antideposit agents; oxidation resistance
US7776800Dec 9, 2005Aug 17, 2010Afton Chemical CorporationFully formulated lubricating oil comprising a succinimide dispersant, a Calcium detergent, anantioxidant, and a hydrocarbon soluble titanium carboxylate; improved sludge reducing properties compared oil without the titanium compound; antisludge agents; antideposit agents; oxidation resistance
US7794512Mar 16, 2007Sep 14, 2010Afton Chemical Corporationfuel contains tungsten or tungsten compound will interact with iron resulting from the combustion, and reduce iron deposits on spark plugs, valve seats, exhaust system; prevent leading to sparkplug failure
US7833953Aug 28, 2006Nov 16, 2010Afton Chemical CorporationDispersant and a base oil containing more than 1.6% by weight of tetracycloparaffins
US7867958Dec 11, 2006Jan 11, 2011Afton Chemical Corporationincludes an oil-soluble or oil-dispersible component selected from a photo-crosslinkable poly(2-cinnamoyloxyalkyl acrylate) core and a diblock acrylate copolymer corona in a fully formulated lubricant composition; engine oil, gear oil, automatic transmission fluids, manual transmission fluids
US7879774Dec 15, 2006Feb 1, 2011Afton Chemical CorporationFully formulated lubricating oil comprising a succinimide dispersant, a Calcium detergent, anantioxidant, and a hydrocarbon soluble titanium carboxylate; improved sludge reducing properties compared oil without the titanium compound; antisludge agents; antideposit agents; oxidation resistance
US7879775Jul 14, 2006Feb 1, 2011Afton Chemical CorporationLubricant compositions
US7883638May 27, 2008Feb 8, 2011Dober Chemical CorporationUsed in an open circulating cooling water system water and comprises a core having a polymeric coating including an additive for sustained release into the coolant; slow release of a microbiocide by means of a butyl acrylate-vinyl acetate-vinyl neoheptanoate terpolymer release agent
US7888299Jan 13, 2004Feb 15, 2011Afton Chemical Japan Corp.For use in heavy duty (HD) axle and transmission applications; low odor, high temperature oxidation stability, antiwear protection, copper passivation and synchronizer performance without requiring the use of metal detergents
US7897548Mar 15, 2007Mar 1, 2011Afton Chemical CorporationAdditives and lubricant formulations for improved antiwear properties
US7897552Nov 30, 2007Mar 1, 2011Afton Chemical CorporationAdditives and lubricant formulations for improved antioxidant properties
US7902133Jul 14, 2006Mar 8, 2011Afton Chemical CorporationLubricant composition
US7938277May 27, 2008May 10, 2011Dober Chemical CorporationControlled release of microbiocides
US8008237Jun 18, 2008Aug 30, 2011Afton Chemical CorporationMethod for making a titanium-containing lubricant additive
US8048831Aug 15, 2008Nov 1, 2011Afton Chemical CorporationDispersant reaction product with antioxidant capability
US8048834Sep 17, 2007Nov 1, 2011Afton Chemical CorporationAdditives and lubricant formulations for improved catalyst performance
US8109287Jul 22, 2009Feb 7, 2012Cummins Filtration Ip, Inc.Controlled release of additives in fluid systems
US8207099Sep 22, 2009Jun 26, 2012Afton Chemical CorporationLubricating oil composition for crankcase applications
US8211840Dec 9, 2008Jul 3, 2012Afton Chemical CorporationAdditives and lubricant formulations for improved antiwear properties
US8278254Sep 10, 2007Oct 2, 2012Afton Chemical CorporationLubricating base oil, metal salt of phosphorothioic acid such as zinc dialkyldithiophosphate ZDDP, and a synergistic amount of a hydrocarbon soluble titanium compound such as a titanium carboxylate to increase antiwear properties
US8333945Feb 17, 2011Dec 18, 2012Afton Chemical CorporationNanoparticle additives and lubricant formulations containing the nanoparticle additives
US8377856Sep 14, 2010Feb 19, 2013Afton Chemical CorporationExtended drain diesel lubricant formulations
US8425772Jul 29, 2011Apr 23, 2013Cummins Filtration Ip, Inc.Filtration device with releasable additive
US8546311Mar 10, 2009Oct 1, 2013Volkswagen AktiengesellsschaftMethod for lubricating a clutch-only automatic transmission component requiring lubrication
US8557752Mar 22, 2006Oct 15, 2013Afton Chemical CorporationLubricating compositions
US8586520Jun 27, 2012Nov 19, 2013Exxonmobil Research And Engineering CompanyMethod of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US8591747May 26, 2009Nov 26, 2013Dober Chemical Corp.Devices and methods for controlled release of additive compositions
US8702995May 27, 2008Apr 22, 2014Dober Chemical Corp.Controlled release of microbiocides
US8703666Jun 1, 2012Apr 22, 2014Exxonmobil Research And Engineering CompanyLubricant compositions and processes for preparing same
US8703669Feb 17, 2009Apr 22, 2014Afton Chemical CorporationUltra-low sulfur clutch-only transmission fluids
US8741821Jan 3, 2007Jun 3, 2014Afton Chemical CorporationNanoparticle additives and lubricant formulations containing the nanoparticle additives
US8778857Aug 6, 2009Jul 15, 2014Afton Chemical CorporationLubricant additive compositions having improved viscosity index increase properties
DE102007023939A1May 23, 2007Jul 10, 2008Afton Chemical Corp.Nanoteilchenadditive und Schmiermittelformulierungen, die die Nanoteilchenadditive enthalten
DE102007056248A1Nov 22, 2007Jul 10, 2008Afton Chemical Corp.Additive und Schmiermittel-Formulierungen für verbesserte Antiverschleißeigenschaften
DE102007061422A1Dec 20, 2007Oct 2, 2008Afton Chemical Corp.Schmierölzusammensetzung für verbesserte Oxidations-,Viskositätsanstiegs-,Ölverbrauchs- und Kolbenablagerungskontrolle
DE102008005874A1Jan 24, 2008Sep 18, 2008Afton Chemical Corp.Additive und Schmiermittelformulierungen für verbesserte Antiverschleißeigenschaften
DE102008009042A1Feb 14, 2008Nov 13, 2008Afton Chemical Corp.Additive und Schmiermittelformulierungen für verbesserte Phosphor-Retentionseigenschaften
DE102009001301A1Mar 3, 2009Sep 24, 2009Audi AgVerfahren zum Schmieren einer Komponente nur für die Kupplung eines automatischen Getriebes, welche Schmierung erfordert
DE102009012567A1Mar 11, 2009Oct 1, 2009Afton Chemical Corp.Getriebeöle mit sehr wenig Schwefel nur für Kupplung
EP0132383A2 *Jul 19, 1984Jan 30, 1985Amoco CorporationBoration of polyamine dispersants with polyborate esters
EP0399764A1May 21, 1990Nov 28, 1990Ethyl Petroleum Additives LimitedLubricant compositions
EP0558835A1Jan 30, 1992Sep 8, 1993Albemarle CorporationBiodegradable lubricants and functional fluids
EP0683220A2May 18, 1995Nov 22, 1995Ethyl CorporationLubricant additive compositions
EP0713908A1Nov 21, 1995May 29, 1996Ethyl CorporationPower transmission fluids
EP0769546A2Oct 17, 1996Apr 23, 1997The Lubrizol CorporationAntiwear enhancing composition for lubricants and functional fluids
EP1568759A2Feb 24, 2005Aug 31, 2005Afton Chemical CorporationPower transmission fluids
EP1640440A1Aug 30, 2005Mar 29, 2006Infineum International LimitedFriction and/or wear reduction in manual or automated manual transmissions
EP1669435A1Dec 9, 2005Jun 14, 2006Afton Chemical CorporationDispersant reaction product with antioxidant capability
EP2017329A1Apr 17, 2008Jan 21, 2009Afton Chemical CorporationEnvironmentally-Friendly Lubricant Compositions
EP2025737A1Jul 30, 2008Feb 18, 2009Afton Chemical CorporationEnvironmentally-friendly fuel compositions
EP2031045A1Jul 29, 2008Mar 4, 2009Infineum International LimitedLubricant compositions with reduced phosphorous content for engines having catalytic converters
EP2039741A1Aug 8, 2008Mar 25, 2009Afton Chemical CorporationAdditives and lubricant formulations for improved catalyst performance
EP2067843A1Sep 12, 2008Jun 10, 2009Afton Chemical CorporationAdditives and lubricant formulations for improved antioxidant properties
EP2072611A1Nov 11, 2008Jun 24, 2009Afton Chemical CorporationLubricant composition suitable for engines fueled by alternate fuels
EP2077316A2Dec 4, 2008Jul 8, 2009Infineum International LimitedLubricant compositions with low HTHS for a given SAE viscosity grade
EP2135925A1Apr 1, 2009Dec 23, 2009Afton Chemical CorporationMethod for making a titanium-containing lubricant additive
EP2143781A1Jun 2, 2009Jan 13, 2010Afton Chemical CorporationFriction modifiers for slideway applications
EP2154230A1Aug 8, 2008Feb 17, 2010Afton Chemical CorporationLubricant additive compositions having improved viscosity index increasing properties
EP2196522A1Oct 19, 2009Jun 16, 2010Afton Chemical CorporationAdditives and lubricant formulations having improved antiwear properties
EP2230292A1Nov 8, 2004Sep 22, 2010Afton Chemical CorporationMethods of lubricating transmissions
EP2251401A2Apr 27, 2010Nov 17, 2010Afton Chemical CorporationLubricant formulations and methods
EP2261311A1May 4, 2010Dec 15, 2010Afton Chemical CorporationLubricating method and composition for reducing engine deposits
EP2371935A1Feb 24, 2011Oct 5, 2011Afton Chemical CorporationLubricant compositions for improved engine performance
EP2420553A1Apr 17, 2008Feb 22, 2012Afton Chemical CorporationEnvironmentally-Friendly Lubricant Compositions
EP2489637A1Feb 15, 2012Aug 22, 2012Afton Chemical CorporationCerium oxide nanoparticle additives and lubricant formulations containing the nanoparticle additives
EP2524958A1May 14, 2012Nov 21, 2012Afton Chemical CorporationLubricant compositions containing a heteroaromatic compound
EP2557144A1Aug 10, 2012Feb 13, 2013Afton Chemical CorporationLubricant compositions containing a functionalized dispersant
EP2687582A1Jun 28, 2013Jan 22, 2014Afton Chemical CorporationLubricant compositions for direct injection engines
EP2698418A1 *Aug 8, 2013Feb 19, 2014Afton Chemical CorporationCalcium neutral and overbased mannich and anhydride adducts as detergents for engine oil lubricants
WO1986004601A1Jan 29, 1986Aug 14, 1986Lubrizol CorpSulfur-containing compositions, and additive concentrates and lubricating oils containing same
WO1998047989A1Mar 19, 1998Oct 29, 1998Exxon Chemical Patents IncPower transmission fluids containing alkyl phosphonates
WO2002010276A2Jul 30, 2001Feb 7, 2002Chor HuangPolymeric mixture useful as viscosity improver for lubricating oils
WO2008013698A1Jul 17, 2007Jan 31, 2008Exxonmobil Res & Eng CoMethod for lubricating heavy duty geared apparatus
WO2009119831A1Mar 27, 2009Oct 1, 2009Fujifilm CorporationComposition and method for forming coating film
WO2010147993A1Jun 15, 2010Dec 23, 2010Chevron Phillips Chemical Company LpOligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
WO2011026990A1Sep 7, 2010Mar 10, 2011Shell Internationale Research Maatschappij B.V.Lubricating compositions
WO2011102835A1Feb 19, 2010Aug 25, 2011Toyota Jidosha Kabushiki KaishaWet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents
WO2011102836A1Feb 19, 2010Aug 25, 2011Infineum International LimitedWet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents
WO2011143418A1May 12, 2011Nov 17, 2011Exxonmobil Research And Engineering CompanyMethod for reducing one or more of deposits and friction of a lubricating oil
WO2013003392A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyMethod of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLubricating compositions containing polyetheramines
WO2013003405A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLubricating compositions containing polyalkylene glycol mono ethers
WO2013003406A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLow viscosity engine oil with superior engine wear protection
WO2013055480A1Sep 12, 2012Apr 18, 2013Exxonmobil Research And Engineering CompanyLow viscosity engine oil compositions
WO2013055481A1Sep 12, 2012Apr 18, 2013Exxonmobil Research And Engineering CompanyHigh efficiency engine oil compositions
WO2013055482A1Sep 12, 2012Apr 18, 2013Exxonmobil Research And Engineering CompanyLubricating compositions
WO2013066915A1Oct 31, 2012May 10, 2013Exxonmobil Research And Engineering CompanyLubricants with improved low-temperature fuel economy
WO2013074498A1Nov 13, 2012May 23, 2013Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2013082206A1Nov 29, 2012Jun 6, 2013Exxonmobil Research And Engineering CompanyMethod for improving engine wear and corrosion resistance
WO2013096532A1Dec 20, 2012Jun 27, 2013Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2013142110A1Mar 11, 2013Sep 26, 2013Exxonmobil Research And Engineering CompanyNovel antioxidant combination and synthetic base oils containing the same
WO2013181318A1May 30, 2013Dec 5, 2013Exxonmobil Research And Engineering CompanyLubricant compostions and processes for preparing same
WO2013182581A1Jun 5, 2013Dec 12, 2013Evonik Oil Additives GmbhFuel efficient lubricating oils
WO2014008121A1Jun 28, 2013Jan 9, 2014Exxonmobil Research And Engineering CompanyEnhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
WO2014066444A1Oct 23, 2013May 1, 2014Exxonmobil Research And Engineering ComapnyFunctionalized polymers and oligomers as corrosion inhibitors and antiwear additives